
New Englert type solutions of eleven
dimensional supergravity

IPM Workshop on Aspects of Integrable Systems and AdS/CFT
November 1, 2012

Ali Imaanpur

Department of Physics, School of Sciences
Tarbiat Modares University, Tehran, Iran



Plan of Talk

• Eleven dimensional supergravity vs N = 8 supergravity in d = 4

• Field equations

• Squashed and the Englert solutions

• Pope-Warner solution and the Englert solution

• New Englert type solutions

• Symmetries

1



d = 11 supergravity vs d = 4 N = 8 supergravity

• In 1979, Cremmer and Julia constructed an N = 8 supergravity in
4 dimensions by dimensional reduction of the 11 dimensional super-
gravity on T 7.

• In 1981, de Witt and Nicolai observed that an SO(8) symmetry of
the reduced theory can be gauged. However, this also introduced a
complicated scalar potentioal into the theory.

• The emergence of AdS4 × S7 solution of 11d supergravity changed
the sene. In fact, it did not take any longer to conjecture that the
de Witt, Nicolai theory should be obtained if one expands the theory
around this solution and compactifies it on S7 and then truncates it
to the massless sector.
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d = 11 supergravity vs d = 4 N = 8 supergravity

• Further, it was conjectured that critical points of the de Witt, Nico-
lai potential should be in one-to-one correspondence with the 11d
supergravity solutions of the type AdS4 × S7.

• In particular, the SO(8) symmetric vacuum corresponds to the Freund-
Rubin solution of AdS4 × S7, where F4 has components only along
AdS4.

• Warner identified more critical points of N=8, d=4 supergravity with
11d supergravity solutions: The Englert solution, Pope-Warner solu-
tion .., where in all cases the SO(8) symmetry is further broken by
components of F4 along S7.

3



Field equations

The dynamical fields in eleven dimensional supergravity consists of

gMN , AMNP , ΨM

The Maxwell field equation for AMNP reads

d ∗11 F4 = −1

2
F4∧F4 ,

For gMN we have the Einstein equations

RMN =
1

12
FMPQRF PQR

N − 1

3 · 48
gMN FPQRSF PQRS ,

where M, N,P, . . . = 0, 1, . . . , 10.
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Freund-Rubin solution

Let us start with the Freund-Rubin solution. The 4-form field strength
has components only along the four dimensions

F4 =
3

8
R3ε4 , ds2 = R2(

1

4
ds2

AdS4
+ ds2

S7) , Rµν = −12/R2 gµν.

The metric on S7 can be written as an SU(2) bundle over S4

ds2
S7 =

1

4
(dµ2 +

1

4
sin2 µ Σ2

i + (σi − cos2 µ/2 Σi)
2) ,

Σi’s and σi’s are two sets of left-invariant one-forms

Σ1 = cos γ dα + sin γ sin α dβ ,

Σ2 = − sin γ dα + cos γ sin α dβ ,

Σ3 = dγ + cos α dβ ,

and with a similar expression for σi’s.
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Squashed solution revisited

Squashing corresponds to modifying the round metric on S7 as

ds2
S7 =

1

4
(dµ2 +

1

4
sin2 µ Σ2

i + λ2(σi − cos2 µ/2 Σi)
2) ,

with λ the squashing parameter. We take the following ansatz for the
11d metric:

ds2 =
R2

4

(
ds2

4 + dµ2 +
1

4
sin2 µ Σ2

i + λ2(σi − cos2 µ/2 Σi)
2
)

,

and choose the orthonormal basis of vielbeins as

e0 = dµ , ei =
1

2
sin µ Σi , êi = λ(σi − cos2 µ/2 Σi)
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Squashed solution revisited: Ansatz

Let us introduce ω3, the volume element of the fiber S3

ω3 = ê1∧ê2∧ê3 ,

taking the derivative along with using the Hodge dual we derive

d ∗ dω3 = 6λ2 ω4 − 1

λ
dω3 , ω4 = e0∧e1∧e2∧e3 ,

ω4 is the volume element of the base, with dω4 = 0. For a linear combi-
nation of these two forms we have

d ∗ (α ω4 + β dω3) = 6λ2β ω4 + (α− β/λ) dω3

i.e., the subspace of ω4 and dω3 is closed under d∗. This is exactly what
we need to construct a consistent ansatz of F4.
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Squashed solution revisited: Ansatz

The above analysis shows that we can take the following ansatz:

F4 = Nε4 + α ω4 + β dω3 ,

with N , α, and β constant parameters to be determined by field equations,
also note dF4 = 0. Substituting this into the Maxwell equation yields

6λ2 β = −8N

R3 α , α− β

λ
= −8N

R3 β .

A nontrivial solution exists if

λ

(
8N

R3

)2

− 8N

R3 − 6λ3 = 0 .
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Squashed solution revisited

With above ansatz, the RHS of the Einstein equations read:

Rµν =

(
4

R2

)4 (
− 3!

12
N 2 − 4!

3 · 48
(−N 2 + α2 + 6λ2β2)

)
gµν ,

Rαβ =

(
4

R2

)4 (
3!

12
(α2 + 3λ2β2)− 4!

3 · 48
(−N 2 + α2 + 6λ2β2)

)
δαβ ,

Rα̂β̂ =

(
4

R2

)4 (
3!

12
(4 λ2β2)− 4!

3 · 48
(−N 2 + α2 + 6λ2β2)

)
δα̂β̂ ,

with µ, ν = 0, . . . , 3, α, β = 4, . . . 7, and α̂, β̂ = 8, 9, 10. For the LHS;

Rαβ =

(
4

R2

) 
3(2− λ2)

2


 δαβ , Rα̂β̂ =

(
4

R2

) 
1 + 2λ4

2λ2


 δα̂β̂ ,

these are to be substituted on the LHS of the Einstein equations.
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Squashed solution revisited: solution

We can now solve for β, N , λ and α, and get two types of solutions.
Those with no internal flux:

α = β = 0 , λ2 = 1 (round sphere) , λ2 = 1/5 (squashed).

We also get solutions with fluxes:

α2 = 9/5 , β2 = 9 , λ2 = 1/5

For λ = 1/
√

5, α = −3/
√

5, β = 3, and N = 3R3/(4
√

5) which
represents the squashed S7 with Einstein metric

Rαβ =

(
4

R2

)
27

10
δαβ , Rα̂β̂ =

(
4

R2

)
27

10
δα̂β̂ . (1)

This is the squashed solution with torsion obtained in 1980’s using the
covariantly constant spinors.
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CP3 as an S2 bundle over S4

It is possible to write the S7 metric as a U(1) bundle over CP3. Further,
CP3 itself can be written as an S2 bundle over S4:

ds2
S7 = dµ2 +

1

4
sin2 µ Σ2

i + λ2(σi − cos2 µ/2 Σi)
2

= λ2(dτ − A)2 + dµ2 +
1

4
sin2 µ Σ2

i + λ2(dθ − sin φA1 + cos φA2)
2

+ λ2 sin2 θ (dφ− cot θ(cos φA1 + sin φA2) + A3)
2 ,

where,

Ai = cos2 µ/2 Σi ,
and,

A = cos θ dφ + sin θ(cos φA1 + sin φA2) + cos θA3 .
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Basis

In this new form of the metric, we can further rescale the U(1) fibers:

ds2
S7 = dµ2 +

1

4
sin2 µ Σ2

i + λ2(dθ − sin φA1 + cos φA2)
2

+ λ2 sin2 θ (dφ− cot θ(cos φA1 + sin φA2) + A3)
2 + λ̃2(dτ − A)2 ,

and choose the following basis

e0 = dµ , ei =
1

2
sin µ Σi ,

e5 = λ(dθ − sin φA1 + cos φA2) , e7 = λ̃(dτ − A) ,

e6 = λ sin θ(dφ− cot θ(cos φA1 + sin φA2) + A3) .

In this basis the Ricci tensor is diagonal and reads

R00 = R11 = R22 = R33 = 3− λ2 − λ̃2/2 ,

R55 = R66 = λ2 + 1/λ2 − λ̃2/2λ4 , R77 = λ̃2 + λ̃2/2λ4 .
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Ansatz

A natural 3-form to begin with is ω3 = e567. We define

R1 = sin φ(e01 + e23)− cos φ(e02 + e31) ,

R2 = cos θ cos φ(e01 + e23) + cos θ sin φ(e02 + e31)− sin θ(e03 + e12) ,

K = sin θ cos φ(e01 + e23) + sin θ sin φ(e02 + e31) + cos θ(e03 + e12) .

These three forms are orthogonal to each other, i.e.,

R1∧R2 = K∧R1 = K∧R2 = 0 .

Let us also define,

Re Ω = R1∧e5 + R2∧e6 , Im Ω = R1∧e6 −R2∧e5 .
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Ansatz

We have three independent 4-forms ω4, e7∧Im Ω, and e56∧K, which are
closed, do not contract into each other, and are closed under d∗ operation.
So a suitable ansatz for F4 is

F4 = Nε4 + α ω4 + β e7∧Im Ω + γ K∧e56 ,

for α, β, γ three real constants. Taking the Hodge dual we have

∗11F4 = Nω3∧ω4 + ε4∧(α ω3 − β Re Ω + γ K∧e7) .
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Reduced field equations

With this ansatz, we see that the Maxwell equations reduce to

−αλ2 + Nλβ + γ = 0 ,

αλ̃ + 2β/λ + (λ̃/λ2 + N)γ = 0 ,

Nα− 4λβ + 2λ̃γ = 0 .

The Einstein equations read

3− λ2 − λ̃2

2
=

1

3
(α2 + β2 +

1

2
γ2 +

1

2
N 2) ,

λ2 +
1

λ2 −
λ̃2

2λ4 =
1

3
(−α2

2
+ β2 + 2γ2 +

1

2
N 2) ,

λ̃2 +
λ̃2

2λ4 =
1

3
(−α2

2
+ 4β2 − γ2 +

1

2
N 2) .
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Squashed solution

We can reduce the equations further and find solutions. Let us start by
assuming

λ = λ̃ ,

then by the Einstein equations we must have β2 = γ2. Taking β = −γ
yields

λ = λ̃ = 1/
√

5 , N = −6/
√

5 , α2 = β2 = γ2 = 9/5 ,

which is again the squashed solution with torsion and the Ricci tensor

Rµν = −45/10 gµν.
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Englert type solution

For β = γ, we get

λ = λ̃ = 1 , N = −2 , α2 = β2 = γ2 = 1 ,

this is an Englert type solution with Rµν = −5/2 gµν. This has the same
four-dimensional Ricci tensor as the original solution found by Englert
using parallelizing torsions on the 7-sphere, and later by Duff and Pope
and Warner using Killing spinors. It was shown that the symmetry of the
Englert solution is in fact SO(7). However, as we will discuss the solution
with

α = −β = −γ = 1 ,

has an SU(3)× U(1) symmetry.
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Pope-Warner solution

To derive the Pope-Warner solution let us begin by defining

Re L = −R1∧e5 + R2∧e6 , Im L = R1∧e6 + R2∧e5 .

Further, if we define

P = e−2iτL ⇒ dP = 2/λ̃ ∗ P .

This implies that for the 4-form field strength we can take

F4 = Nε4 + η e7∧ (sin 2τ Re L− cos 2τ Im L) ,

with η a real constant. The Maxwell and Einstein equations imply

N = −2/λ̃ , λ2 = 1 , λ̃2 = 2 , η2 = 2 .
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Pope Warner and the Englert solution

We can construct another consistent ansatz by taking a linear combination
of Pope-Warner ansatz and the one introduced before. However, by this
we get T56 6= 0, unless we set β = 0. Let us then set

F4 = Nε4 + α ω4 + γ K∧e56 + η e7∧ (sin 2τ Re L− cos 2τ Im L) ,

Maxwell eqs. then require

N = −2/λ̃ , λ2 = λ̃2 = 1 , α = γ ,

while, the Einstein equations imply: α2 = γ2 = η2 = 1 .

This is the original Englert solution with Rµν = −5/2 gµν, and an SO(7)
symmetry. The two Englert solutions have the same metric but fluxes
have different symmetries.
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New Ansatz and solutions

Having defined the three independent forms R1 , R2 , and K, we note that
there are still other options to take for F4. Let us define

R = R1 + iR2 , ê = e5 + ie6 ,

R̃ = eiτR , M = eiτ ê∧K ,

so that we can show that

d(e7∧R̃) =
i

λ
e7∧M +

λ̃

λ2 e56∧R̃ =
1

λ
∗M +

λ̃

λ2 ∗ (e7∧R̃) ,

dM =
i

λ̃
e7∧M +

1

λ
e56∧R̃ =

1

λ̃
∗M +

1

λ
∗ (e7∧R̃) .

Hence an ansatz for F4 could be the following linear combination

ξ1 d(e7∧R̃) + ξ2 dM .
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New Ansatz and solutions

The bad news is that by the above ansatz we get nonzero components for
T56. What about taking a linear combination of all the ansatzs we have
obtained so far, namely:

F4 = Nε4 + α ω4 + β e7∧Im Ω + γ K∧e56 + η e7∧ (sin 2τ Re L− cos 2τ Im L)

− ξ e7∧ (sin τ e5 + cos τ e6)∧K + ξ e56∧ (cos τ R1 − sin τ R2) ,

Note that if α 6= 0 then we must have λ2 = λ̃2 = 1, which is the round
sphere. Further, for having T76 = T75 = T56 = 0, we need to set

ξ (η − β + γ) = 0 , ξ2 − 4ηβ = 0 .

There is one more condition coming from Maxwell eqs.;

γ = α + 2β .
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New Ansatz and solutions

With the new ansatz, the Einstein equations read

3

2
=

1

3
(α2 + β2 +

1

2
γ2 + η2 + ξ2) +

2

3
,

3

2
=

1

3
(−1

2
α2 + β2 + 2γ2 + η2 +

5

2
ξ2) +

2

3
,

3

2
=

1

3
(−1

2
α2 + 4β2 − γ2 + 4η2 + ξ2) +

2

3
,

where we have set λ2 = λ̃2 = 1, and N = −2. Requiring a diagonal
TMN , and by using the Maxwell eqs. we see that they collapse to

3

2
=

1

3
α2 +

1

2
α2 +

2

3
, and

3

2
= −1

6
α2 + α2 +

2

3
,

which fix α2 = 1.
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New Ansatz and solutions

Setting α = 1, we can fix all other constants in terms of, say, β:

η = −1− β , γ = 1 + 2β , ξ2 = −4β(β + 1) ,

so that we have a real solution whenever

−1 ≤ β ≤ 0 .

As for the four-dimensional Ricci tensor we obtain

Rµν = −5

2
gµν ,

which is identical to that of Englert solution.
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New Ansatz and solutions

So we end up with a new set of Englert type solutions of AdS4×S7. The
4-form flux now has a moduli generalizing the known Englert solution.
In particular, the Englert type solution with SU(3) × U(1) symmetry is
obtained if

α = −β = −γ = 1 , η = ξ = 0 ,

whereas we obtain the original Englert solution with an SO(7) symmetry
by setting

α = γ = −η = 1 , β = ξ = 0 .
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Symmetries

The conventional symmetries are more visible if we write the metric of S7

as a U(1) bundle over CP3. Let Za, a = 1, . . . , 4, indicate the complex
coordinate of C4 in which S7 of radius one is embedded:

Zi =
zieiτ

(1 +
∑

k |zk|2)1/2 , Z4 =
eiτ

(1 +
∑

k |zk|2)1/2 , i = 1, 2, 3

so that
∑

a |Za|2 = 1. One can now see that e7 and L are the pullback
onto S7 of the following forms in C4;

ẽ7 = − i

2
(Z̄adZa + ZadZ̄a) , L̃ =

1

6
εabcd Za dZb∧dZc∧dZd .

Therefore, e7 and L, and hence terms proportional to η are invariant under
an SU(4)+ under which Za transforms in the fundamental representation.
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Symmetries

Similarly, we can see that F = dA, the Kähler form, is the pullback of

F+ = idZa∧dZ̄a ,

which is also invariant under SU(4)+. The flux of Englert solution is the
pullback of

F+∧F+ + 2 d ReP̃ ,

for this particular combination, the flux has an enhanced SO(7) symmetry.
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Symmetries

Note that there is a second SU(4)− under which (Z i, Z̄4) transforms in
the fundamental representation, and leaves

F− = i(dZi∧dZ̄i − dZ4∧dZ̄4) ,

invariant. It is not difficult to see that the 4-form flux that we obtained
first is proportional to the pullback of

(F−∧F− − F+∧F+)/Z4Z̄4 − F+∧F+ ,

onto S7. This term, however, is invariant under an SU(3)× U(1) group
(the common subgroup of SU(4)+ and SU(4)−), where Zi’s rotate under
SU(3), and U(1) shifts them by a phase.
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Symmetries

With a similar argument we can show that the new terms proportional to
ξ in our ansatz are the pullback of 4-forms which are anti-self-dual and
invariant under SU(4)−. Hence, the largest group which leaves all terms
invariant is the SU(3) common subgroup of SU(4)+ and SU(4)−.
So, generically, our new solution has an SU(3) symmetry, though, it gets
enhanced to SO(7) at

ξ = β = 0 ,

and to SU(3)× U(1) at

η = ξ = 0 .
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