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d = 11 supergravity vs d =4 N = 8 supergravity

e In 1979, Cremmer and Julia constructed an N = 8 supergravity in
4 dimensions by dimensional reduction of the 11 dimensional super-
gravity on 17

e In 1981, de Witt and Nicolai observed that an SO(8) symmetry of
the reduced theory can be gauged. However, this also introduced a
complicated scalar potentioal into the theory.

e The emergence of AdS, x S solution of 11d supergravity changed
the sene. In fact, it did not take any longer to conjecture that the
de Witt, Nicolai theory should be obtained if one expands the theory
around this solution and compactifies it on S” and then truncates it
to the massless sector.



d = 11 supergravity vs d =4 N = 8 supergravity

e Further, it was conjectured that critical points of the de Witt, Nico-
lai potential should be in one-to-one correspondence with the 11d
supergravity solutions of the type AdS, x S”.

e In particular, the SO(8) symmetric vacuum corresponds to the Freund-
Rubin solution of AdS, x S”, where F; has components only along
AdS,.

e Warner identified more critical points of N=8, d=4 supergravity with
11d supergravity solutions: The Englert solution, Pope-Warner solu-
tion .., where in all cases the SO(8) symmetry is further broken by
components of F; along S”.



Field equations

The dynamical fields in eleven dimensional supergravity consists of

gun, Aunp, Uy

The Maxwell field equation for A,y p reads
1
d *11 F4 - —5 F4/\ F4 ,

For gi/n we have the Einstein equations

1

Ryn = — FuporEy gun Fporst’ PQRS.

R_i
12 3 - 48
where M, N, P,...=0,1,...,10.



Freund-Rubin solution

Let us start with the Freund-Rubin solution. The 4-form field strength
has components only along the four dimensions

3 1
Fy = §R364, ds® = RQ(stid& +ds%), R =—12/R*g.,.

The metric on S7 can be written as an SU(2) bundle over S*
o Lo Ly 2 2
dsgr = E(d,u + sin i+ (o; — cos” /2 )%,
>;'s and o;'s are two sets of left-invariant one-forms

Y1 = cosyda +sinysinadf,
Yo = —sinyda + cosysinadf,
Y3 =dvy+cosadf,

and with a similar expression for o;’s.



Squashed solution revisited

Squashing corresponds to modifying the round metric on S” as
1 1
dsi: = Z(d;f + 1 sin? 4 X7 4+ \*(0; — cos® /2 %)?)

with A the squashing parameter. We take the following ansatz for the
11d metric:

R? 1
ds® = - (dsi + dpi® + 7 sin® 3+ X (o7 — cos” j1/2 Zi)Q) |

and choose the orthonormal basis of vielbeins as

e’ = du, ezzisin,uEi, ¢' = Moy — cos® 112 %))



Squashed solution revisited: Ansatz
Let us introduce ws, the volume element of the fiber S*
wy = eINE*NE?

taking the derivative along with using the Hodge dual we derive

1
dxdws = 6X\2wy — —dws, wy = e’AelAe*Ae?,

A

w, 1s the volume element of the base, with dw, = 0. For a linear combi-
nation of these two forms we have

d* (awy + B dws) =62 Fwy + (o — B/N) dws

i.e., the subspace of w,; and dwjs is closed under dx. This is exactly what
we need to construct a consistent ansatz of Fj.



Squashed solution revisited: Ansatz

The above analysis shows that we can take the following ansatz:
Fy=Ney+ awys + dws,

with NV, o, and 3 constant parameters to be determined by field equations,
also note dFy = 0. Substituting this into the Maxwell equation yields

SN I} SN
6M\2 3 = —— ——=——0.
A nontrivial solution exists if

8N\?> 8N ;
M) =0



Squashed solution revisited

With above ansatz, the RHS of the Einstein equations read:
AN* 7 3l A
R/u/:<> <_N2 - 7(_N2+OZ2 +6>\2ﬁ2>> Juv

R —443!(2 N5 — D (CN? a4 600)) 6
b= @ F 3N = g (PN aZ £ OX) Ja

R :(4)4(3'(“252) N 6N ) 5
a0\ R? 348 ab

with 4, v =0,...,3, a,3=4,...7,and &, 3 = 8,9, 10. For the LHS;

4\ (3(2=\?) 4\ (142X
Rop = <R2> (2 ) Oag,  Rap= (Rz> ( N2 Oap»

these are to be substituted on the LHS of the Einstein equations.



Squashed solution revisited: solution

We can now solve for 3, N, A and «, and get two types of solutions.
Those with no internal flux:

a=0£=0, A =1 (round sphere), A =1/5 (squashed).
We also get solutions with fluxes:
o> =9/5, p*=9, N =1/5

For A\ = 1/v/5, a = =3/V/5, 8 = 3, and N = 3R?/(4y/5) which
represents the squashed S” with Einstein metric

4\ 27 4\ 27
Ruj = <R?> G Ry = <R2> = (1)

This is the squashed solution with torsion obtained in 1980's using the
covariantly constant spinors.
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CP? as an S? bundle over S*

It is possible to write the S” metric as a {/(1) bundle over CP”. Further,
CP? itself can be written as an S? bundle over S*:

1
dsi: = dyp*+ 1 sin? 1 X7 4+ \*(0; — cos® j1/2 X;)*
1
= MN(dr — A)? +dp* + 1 sin? 1 X2 + \3(df — sin pA; + cos pA;)?
+ A sin?0 (d¢ — cot §(cos pA; + sin g As) + A3z)?,
where,
A; = cos® w2 %,

and,

A = cosfdg + sinf(cos pA; + sin pAy) + cos G As .
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Basis
In this new form of the metric, we can further rescale the U(1) fibers:
1
dsz: = dp* + 1 sin? 1 X2 + \3(df — sin pA; + cos pA;)?
+ Xsin? 6 (dg — cot (cos pA; + sin pAs) + Ag)? + N2(dr — A)?,

and choose the following basis

|
e = du, eZ:§sin,uEi,

e® = \(df — sin pA; + cos pAy), e = Ndr — A),
% = \sin6(d¢ — cot O(cos pA; + sin pAy) + Az) .
In this basis the Ricci tensor is diagonal and reads
Rop = Ri1 = Ry = Rg3 =3 — N — \?/2,
Rss = Res = M2+ 1/X2 = A2/2X4 ) Ryp = A2 + \2/2)0%
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Ansatz

A natural 3-form to begin with is w3 = ¢’%". We define

Ry = sing(e’ + e*) — cos ¢(e” 4 e1),
Ry = cosfcos (™ + e) 4 cosOsin gp(e” + €*!) — sinO(e® + e'?) |
K = sinfcos (™ + e**) + sinfsin ¢(e” + €*!) + cos 0(e” + e'?).

These three forms are orthogonal to each other, i.e.,
RiANRy = KANRy = KARy=0.
Let us also define,

ReQ = RiAe® + Rone®,  ImQ = RyAe® — Rone’.
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Ansatz

We have three independent 4-forms wy, e’ AIm (2, and ¢’AK, which are
closed, do not contract into each other, and are closed under dx operation.
So a suitable ansatz for Fj is

Fy=Nes+ awy —1—567/\11119 +’yK/\e56,
for «, (3, v three real constants. Taking the Hodge dual we have

x11F = NwsAwy + 64/\(0& w3 — GReQ) 4+ ’)/K/\€7) .
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Reduced field equations

With this ansatz, we see that the Maxwell equations reduce to

—aN + NG+~ =0,
aX+ 26/ A+ (AN +N)y=0,
Na—4\G 420y =0.

The Einstein equations read

1 X 1, o 1
2, - 2 = 2 2 | T ar2
A +A~2 o = 3T T2+ N,
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Squashed solution

We can reduce the equations further and find solutions. Let us start by
assuming

A=\,

then by the Einstein equations we must have 3> = 7. Taking 3 = —v
yields

A=A=1/vV5, N=-6/V5, a*=p3*=~>=9/5,
which is again the squashed solution with torsion and the Ricci tensor

R, = —45/10 g,,.
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Englert type solution
For 5 = ~, we get
A=A=1, N=-2, F=3F=+=1,

this is an Englert type solution with R, = —5/2 g,,,. This has the same
four-dimensional Ricci tensor as the original solution found by Englert
using parallelizing torsions on the 7-sphere, and later by Duff and Pope
and Warner using Killing spinors. It was shown that the symmetry of the
Englert solution is in fact SO(7). However, as we will discuss the solution
with

a=-f=—y=1,
has an SU(3) x U(1) symmetry.
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Pope-Warner solution

To derive the Pope-Warner solution let us begin by defining
Re L = —RiNe” + RaAe’ Im L = RiAe® + Rone’.
Further, if we define
P=e%L = dP=2/\xP.
This implies that for the 4-form field strength we can take
Fy=Neg+ne'A(sin2rRe L — cos27Im L),
with 77 a real constant. The Maxwell and Einstein equations imply

N=-=2/\, XN=1, MN=2, ?=2.
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Pope Warner and the Englert solution

We can construct another consistent ansatz by taking a linear combination
of Pope-Warner ansatz and the one introduced before. However, by this
we get 155 # 0, unless we set 7 = 0. Let us then set

Fy=Neg+aws+ 7 KN +1e"A(sin27Re L — cos 27 Im L) |
Maxwell egs. then require
N=-=2/\, N=X=1, a=n~,
while, the Einstein equations imply: o =2 =n?> =1.

This is the original Englert solution with %, = —5/2¢,,, and an SO(7)
symmetry. The two Englert solutions have the same metric but fluxes
have different symmetries.
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New Ansatz and solutions

Having defined the three independent forms R, , R>, and /', we note that
there are still other options to take for F). Let us define

R= R+ iR, e =e’ +ied,

R=¢€e"R, M=¢e"énK,

so that we can show that

~ ' A ~ 1 A ~
d(e'AR) = ;JAM + ﬁe%/\R =3 * M + et (e"AR),
' 1 ~ 1 1 ~
dM = ;\67/\M—f— Xe56/\R =3 * M + 3 (e"AR) .

Hence an ansatz for F; could be the following linear combination

£, d(e"AR) + & dM .

20



New Ansatz and solutions

The bad news is that by the above ansatz we get nonzero components for
Tss. What about taking a linear combination of all the ansatzs we have
obtained so far, namely:

Fy=Nes+aws+ B NImQ + v KA’ +ne’A(sin2r Re L — cos 27 Im L)
— e'A(sinTe® + cosT e )AK + £ N (cosT Ry —sinT Ry),

Note that if o # 0 then we must have A2 = \? = 1, which is the round
sphere. Further, for having 175 = 175 = T5s = 0, we need to set

E—B+7)=0, &—4B=0.
There is one more condition coming from Maxwell egs.;

vy=a+20.
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New Ansatz and solutions

With the new ansatz, the Einstein equations read

3 1 o Lo o oy 2
5 =3 @ o T+ )+ o
D 9 he z
5= 3 (g0 T2+ 58+ o,
3 1.1, 2 2 2 | g2y, 2
S (= 432 — 4 =
5 =3 (750 H407 ="+ A+ &) + o,
where we have set \2 = \? = 1, and N = —2. Requiring a diagonal
Ty, and by using the Maxwell eqs. we see that they collapse to
3 1., 1, 2 3 1, 5 2
°_ = b Il d °_ _Z It
5 3044—2044—3, an 5 6a+a+3,

which fix o2 = 1.
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New Ansatz and solutions

Setting o = 1, we can fix all other constants in terms of, say, [7:
n=-1-0, v=1+28, &=-46(6+1),
so that we have a real solution whenever
~1< 3 <0.

As for the four-dimensional Ricci tensor we obtain

)
R,uu = _5 Guv

which is identical to that of Englert solution.
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New Ansatz and solutions

So we end up with a new set of Englert type solutions of AdS, x S7. The
4-form flux now has a moduli generalizing the known Englert solution.
In particular, the Englert type solution with SU(3) x U(1) symmetry is
obtained if

a=—-f=-=1, n=£=0,

whereas we obtain the original Englert solution with an SO(7) symmetry
by setting
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Symmetries

The conventional symmetries are more visible if we write the metric of S”
as a U(1) bundle over CP?. Let Z% a =1,...,4, indicate the complex
coordinate of C* in which S” of radius one is embedded:
) ZieiT 61’7’
= AR ;o i=1,2,3
(14 g 2212 (1 + S 2r]?)1/2

so that ¥, |Z%? = 1. One can now see that ¢’ and L are the pullback
onto S7 of the following forms in C*;

- ] S
&7 = —;(Z“dZ“ +2'42"), L= ewea 20 dZ"NIZ°NZ".

Therefore, ¢” and L, and hence terms proportional to 1) are invariant under
an SU(4)" under which Z“ transforms in the fundamental representation.

25



Symmetries

Similarly, we can see that F' = dA, the Kahler form, is the pullback of
Ft =idZ°NdZ",

which is also invariant under SU(4)". The flux of Englert solution is the
pullback of

FY*AF* +2dReP,

for this particular combination, the flux has an enhanced SO(7) symmetry.
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Symmetries

Note that there is a second SU(4)~ under which (Z?, Z*) transforms in
the fundamental representation, and leaves

F~ =i(dZ'NdZ" — dZ*NdZ*),

invariant. It is not difficult to see that the 4-form flux that we obtained
first is proportional to the pullback of

(F-ANF~ — F"AFY) /242 — FTAFT

onto S7. This term, however, is invariant under an SU(3) x U(1) group
(the common subgroup of SU(4)" and SU(4)~), where Z''s rotate under
SU(3), and U(1) shifts them by a phase.
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Symmetries

With a similar argument we can show that the new terms proportional to
¢ in our ansatz are the pullback of 4-forms which are anti-self-dual and
invariant under SU(4)~. Hence, the largest group which leaves all terms
invariant is the SU(3) common subgroup of SU(4)" and SU(4)".

So, generically, our new solution has an SU(3) symmetry, though, it gets
enhanced to SO(7) at

and to SU(3) x U(1) at
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