

# Statistical Methods in Particle Physics

Saeid Paktinat IPM

IPM National School on the Phenomenological And Experimental aspects of the Elementary Particle Physics

16-19 Oct 2007

### Outline

- Definitions
- Famous pdf's
- $\chi^2$  and its applications

## Definitions(1)

• S is a sample space, A and B are two subset of S, probability is a real value and  $P(A) \ge 0$ 

$$A \cap B = 0 \Rightarrow P(A \cup B) = P(A) + P(B)$$
  
 $P(S)=1$ 

- Random variable is a numerical characteristic assigned to an element of S.
- e.g, people's height, weight, ...

## Definitions(2)

- If x is a continuous variable f(x)dx is the probability to have a measurement which lies between x and x+dx
- f(x) is called the *probability density function* (pdf)

$$\langle u(x) \rangle = \int_{-\infty}^{+\infty} u(x) f(x) dx$$

• Different moments are defined as

$$\alpha_n = \int_{-\infty}^{+\infty} x^n f(x) dx \quad \langle x \rangle = \alpha_1 \text{ and } \sigma^2 = \alpha_2 - \langle x \rangle^2$$
• Variance is the square of the standard deviation

 Variance is the square of the standard deviation (Root Mean Square)

#### Famuos pdf's (Gaussian pdf)

When many small, independent effects are additively contributing to each observation the result follows the Gaussian (normal) distribution, e.g, people's height.

$$f(x; \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

$$0.9 \\
0.8 \\
0.7 \\
0.6 \\
0.5 \\
0.4 \\
0.3 \\
0.2 \\
0.8 \\
0.7 \\
0.6 \\
0.5 \\
0.4 \\
0.3 \\
0.2 \\
0.8 \\
0.7 \\
0.6 \\
0.5 \\
0.4 \\
0.3 \\
0.2 \\
0.5 \\
0.4 \\
0.3 \\
0.2 \\
0.5 \\
0.4 \\
0.3 \\
0.2 \\
0.5 \\
0.4 \\
0.3 \\
0.2 \\
0.5 \\
0.4 \\
0.3 \\
0.2 \\
0.5 \\
0.4 \\
0.3 \\
0.2 \\
0.5 \\
0.5 \\
0.6 \\
0.5 \\
0.6 \\
0.5 \\
0.7 \\
0.6 \\
0.7 \\
0.6 \\
0.7 \\
0.7 \\
0.6 \\
0.7 \\
0.7 \\
0.8 \\
0.8 \\
0.7 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\
0.8 \\$$

#### Poisson distribution

- Probability to find n events in a special range when the mean is v.
- variance is equal to V.

$$f(n, v) = \frac{v^n e^{-v}}{n!}$$

• Large v approaches the Gaussian pdf.



18 Oct 2007

## Chi-square $(\chi^2)$ pdf

S.Paktinat

k independent, normally distributed variables x<sub>i</sub>:

$$z = \sum_{i=1}^{k} \frac{(x_i - \mu_i)^2}{\sigma_i^2}$$

z follows a chi-square pdf with k degrees of freedom.

$$f(x;k) = \frac{(1/2)^{k/2}}{\Gamma(k/2)} x^{k/2-1} e^{-x/2} \int_{0.8}^{1.0} e^{-x/2} dx$$

• For the large k, it approaches Gaussian pdf with mean k and variance 2k.



## $\chi^2$ application

#### Chi-square distribution is used as a test

- To estimate the unknown parameters of a model
- To evaluate the unknown mean value of a distribution
- To quantify the goodness of fit

#### Parameter estimation

- Maximum likelihood
- If x<sub>1</sub>, x<sub>2</sub>, ... x<sub>n</sub> are the independent measurements which follow pdf f(x,T) with T(T<sub>1</sub>, T<sub>2</sub>,... T<sub>m</sub>) a vector of unknown parameters:
- Likelihood  $\rightarrow$  L = f(x<sub>1</sub>,T) \* f(x<sub>2</sub>,T) \*... f(x<sub>n</sub>,T)
- The correct T will maximize the L.

#### Least squares

•  $(x_i, y_i)$  are the results of an experiment. If  $y_i$  has to follow a gaussian pdf with mean  $F(x_i, T)$  and a known variance  $\sigma_i^2$ , the correct T will minimize

$$\chi^{2} = \sum_{i=1}^{n} \frac{(y_{i} - F(x_{i}, T))^{2}}{\sigma_{i}^{2}}$$

## An example

extract the slope and the offset of a line...

#### The Origins of the Chi-Square Statistic

 If the deviations from the mean follow Gaussian statistics, the probability of making any one observation is given by:

$$P_{G}(x_{i}) = \frac{1}{\sigma\sqrt{2\pi}} \exp \left[ -\frac{1}{2} \left( \frac{y_{i} - f(x_{i})}{\sigma_{i}} \right)^{2} \right] \text{ where } x - \mu \rightarrow y_{i} - f(x_{i})$$

• The total probability of obtaining a set of N measurements,  $\{x_i, y_i\}$ , is equal to the *product* of the probabilities for each data point:

$$P_{\{x,y\}} = \prod_{N} P_{\sigma} = \left\{ \prod_{N} \frac{1}{\sigma \sqrt{2\pi}} \right\} * \left\{ \exp \left[ -\frac{1}{2} \sum_{i=1}^{N} \left( \frac{y_{i} - \mathbf{f}(x_{i})}{\sigma_{i}} \right)^{2} \right] \right\}$$

- Maximizing the probability is equivalent to minimizing the sum in the exponential term of  $P_{\{x,y\}}$ , specifically the sum of the deviations,  $\Delta y$ .
- The chi-square statistic is <u>defined by</u> this sum:

$$\chi^2 \equiv \sum_{i=1}^N \left( \frac{y_i - f(x_i)}{\sigma_i} \right)^2$$

http://www.sns.gov/workshops/sns hfir users/posters/Laub Chi-Square Data Fitting.pdf

#### Goodness of fit

- Goodness of fit means how well a statistical model fits a set of observations. Measures of goodness of fit typically summarize the discrepancy between observed values and the values expected under the model in question.
- In ROOT TMath::Prob( $\chi^2$ ,ndf) gives the probability to find  $\chi^2$  with ndf.

#### mean value of a distribution (Kinematic Fit)

- $t \rightarrow bW \rightarrow bjj$
- W can be made of two non b-jets
- Top can be made of the extracted W and b-jet.





## Top quark extraction

 The purpose of the analysis is not to measure the top mass → top mass can be used with W mass as 2 constraints to find the best jet combination

$$\chi^2 = \sum_{i=1}^{3} \frac{(E_i - E_i^m)^2}{\sigma_i^2} + \frac{(m_W - M_W)^2}{(\Gamma_W/2)^2} + \frac{(m_{Top} - M_{Top})^2}{(\Gamma_{Top}/2)^2}$$

•  $E_i^m$  is a measured energy with a gaussian distribution ( $E_i$ ,  $\sigma_i$ ).

## The least $\chi^2$ in every event



## Starting from the right hypthesis Generator level info is used.

