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L esson One: Symmetriesin QFT
(1) Symmetries and Conservation Laws, Noether Theorem

In classical Mechanics

d oL 0L
L= L(qg;,q;t), EoM: ——— — — =0
If ¢; is a cyclic coordinate
oL . oL
—=0=1p, =0, with Pi = —— — p; = const.
6(17' J J an J
Example:
Translational invariance gf = 0 = p, is constant of motion

Rotational invariance %% = 0 = Ly, is constant of motion




In Quantum Field Theory

Noether Theorem for global and continuous symmetries

- Space-time transformation — Lorentz transformation
- Internal symmetries [ )

Example 1: Internal Global Phase Transformation

The Lagrangian density
L =0, 0" —m*o*y
invariant under global U(1) transformation

* —tQ, _*

p— e, o e

The corresponding conserved current

oL oL
Ap+ ——A
P00 T

*

with

Ap = +ip, and Ap* = —ip*



Conserved Current

gt =i (pd'p* — @ otyp), with d,g" =0
leads to a constant charge corresponding to the global U(1) transformation
0= /d?’x 0" = 80/d3a: 7" + surface term.
1%
Defining

Q= / x4, we will have Q=0 —> () = const.



Example 2: Internal Local Symmetries

Under local U(1) gauge transformation
Wb — etia@y, b — i@
the QED Lagrangian density
L =i )y —mipy
Is invariant only when we introduce a gauge field by minimal coupling
Oy — D, =0,+1g A, with A, — A, — ;Oﬂa(:ﬂ)

The modified Lagrangian is

L=1y(iD) —mip)



Example 3: QCD and Symmetries

Elementary degrees of freedom are
- Fermionic fields: o f Quarks in fundamental repr.
- Gauge fields: Al
with the indices
- a=1,---4 labels the spinor indices

- [ =1.--- Ny labels the quark flavors (u,d,s,c,b,t)

Gluons in adjoint repr.

- a labels the color indices
in fundamental repr. for fermions and in adjoint repr. for gluons

- 1 labels the space-time indices

Ny = 2 case:
- (u, d) light quarks (approximately massless) &

- (s,¢,b,1) heavy quarks

TG ( a 1 a a a !
L=0"(iD) V" = GG, W ( ;)

with G, = 0,A; — 0,A5, + gf"" AL Ay



Lagrangian density

a( a 1 a a
EZ\I/(ZD)\II _ZGMVG/‘V

IS invariant under

Global Vector Symmetries SUy (2) x Uy (1):

U — exp (—ia"7/2) W, U — Uexp (+ia"7"/2)
7% a=0,1,2,3with 7' = 1, and 7 = & are the Pauli matrices
Conserved global Noether vector currents
w T
]Z:\IJ'VME\I]’ a=20,1,2,3

Conserved charges

a

@ = T
Q' = /dsx Jo () = /dgl’ v %5\1]

-Fora=0 — " is the Uy/(1) baryon charge
- Fora=1,2,3 — Q“is the SUy (NN, = 2) isospin charge



Lagrangian density

T/0 ( a 1 a a
EZ\II (Zﬂ))\:[/ _ZGMVG/‘V

IS invariant under

Global Axial Vector Symmetries SU4(2) x U4(1):

U — exp (—ivsa’t"/2) U, U — Uexp (—ivsa’r"/2)

Conserved global Noether axial vector currents

a

jis=0 %%%\p, 0=0,1,23

Conserved charges

a

» - T
Q5 = /d333 90,5(@ = /dgx N ’70’755‘3

Canonical Commutation Relations:

Canonical ETC relations of the quantum fields = Charge algebra

Q" Q" =[Q5, Q3] =ie™Q, and  [Q5,Q" =ic"Q;  for

a=1,2,3



Chiral Representation:

Aim:
SUy(2) x SU4(2) x Uy (1) x Ug(1) — SUL(2) x SUR(2) x Uy (1) x Ux(1)
To do this, define

U, r=PLpY, Prp= % (1F75)
The Lagrangian density (in the chiral limit m, =m;=10)
L=, (iD)V, +Vp(iD)Vp
which is invariant under SU.(2) x SUg(2) transformation
Yr.r — UL pYrL R, with Upp=e "irlin, Trr=T"®Prp

Further define

1
5(@0:’:@%)7 CL:1,2,3

with the new chiral charge algebra

Q%,R =

[QOD Zﬂ - Z.E(Lchiv [ g?v ?—2] - i‘gabCQ;{? [ (1{27 lﬂ =0, for a=1,2,3



(I1) Spontaneous Symmetry Breaking (SSB) of Continuous Global Symmetries

Various Symmetry Breaking Mechanisms:

- Spontaneous symmetry breaking: &
Symmetry of the Lagrangian is not shared with the ground state solution

- Anomalous symmetry breaking:
L is invariant under certain sym. transformation —
Classical conservation law d,,j* = 0, but (9,7") = A # 0
A is the so called Quantum Anomaly



Example 1: Abelian U(1) global symmetry

L=0,p"0p—=V (p,¢") with V (g, 0) = me* o + A (¢*p)?
L is invariant under global U (1) transformation:

p(x) — ()

Find the Ground state by minimizing the potential
(@) m? > 0: =9 =0

2

(b) m?* < 0: o> = =% = a?

(@) (b)



Minima of V() lie along the circle || = « forming a set of degenerate vacua

[{0l|0)|* = o’




Polar Coordinates

Then (¢) = a leads to

(Olp()|0) =a and  (0]J(x)[0) =0

e Choose only one vacuum among the set of degenerate vacua

e Expand £ around p/ = p — a with

0l¢/(x)[0) =0 and  (0]9(x)[0) =0
We get

£ — 8Mp/8/$p/ _|_ (IO/ _|_ CL)2 auea'ue - )\pl4 o 40/)\p/3 _ 4>\a2pl2 _|_ )\@4
There is no mass term for ¥(x)

¢ and ¢* are massive 558

1 is the massless Goldstone boson and ' is massive with m?, = 4\a”



Example 2: Non-Abelian SO(3) global symmetry

1 1 .
L= 5 ngiaugpi - §m290i90i — A (902'902‘)2 ) 1=1,2,3

L is invariant under global SO(3) transformation:

G =S0(3) : i — (e_iTM%j L {U(g)@]

Find the Ground state by minimizing the potential
(@) m* > 0: 1B =0

— 3 m _ —
(b) m* <0: |G = (% ¢f) =~ =la’

There are infinitely many degenerate vacua
We choose only one of them

and break the symmetry spontaneously
e ltexists g € G under which ', = U(g)@) # @, or

S;/():U(h)%zﬁo Vhe HCG
e But the potential is invariant under the whole group G

V() =V(@), &=U9)g Vg e



The Number of Goldstone Bosons

L can be evaluated around the new vacuum b=@o+ X
m? 2 2 2 2 2 2\2
Vo= (e (x+a)?) + A (el + 90+ (x +a)?)

2
= 4Xa®)* +4adx (oF + 05+ X°) + A (ef + 05+ X°) — Ad’

Therefore
P1 ¢ Goldstone boson m,,,
Vo with mfpi = —m?, SRR ¢, Goldstone boson m,,
©3 X massive m?

X

Goldstone Theorem: The Classical Proof

STEP 1. Expanding V() about its minimum, ‘(3)—‘: 5 =0

1PV
©0 2! 8902'690]'

—I/_/

i

X'

©o

Since minimum = the mass matrix> 0

OV (P)
Mi' —
7T 0pi0p;

>0
%0

# of zeros of M;; = # of massless Goldstone bosons




STEP 2: Use the invariance of V (¢)

V() = VU@ =V (B +5)

- 10*°V(F
S 4 = ()

Sphdh = V(Fo)
& 21 0pi0¢;|s, 070

leading to
0*V (%)
Dpi0p;

Sphdph =0
h)

o If g="h e H, with U(h)3y = Gy we have ) = 0 and the above relation
vanishes trivially. This is only satisfied for one direction (direction which we
have chosen for the vacuum, here the é;-direction)

o If g € G/H, we have i # 0 and to satisfy % 5idph = 0, the mass
1o

matrix M;; must vanishes, i.e.
0°V (P)
0p;0p;

=0

®o

We conclude:

# of Goldstone bosons = dimension of the coset space G/H
= dim G —dim H.




What about Quantum Effects?

Effective action and effective potential:

Generating functional for connected Feynman diagrams
- ; _ 1 iS[pl+i [ diz J(z)p(z)
W[J = —ilnZ[J], with Z[J]= Z[O]/Dcp e

e Define classical field ¢,

SWIJ]

pelr) = ==, with  lim g, = (p)

e Perform a Legendre transformation on W |[.J| — Effective action

[ = WI[J] — /d4xJ(x)goc(x) obeying 6(5591;([?91(]) = —J(x)
e For J —0
dl;g[;ic] o 0, i.e. (p)is min. of I'[p,]

e Expansion of T'[p]

] = ,/dp1 <dpy 6 (pr+ -+ ) TP (D1, pa) @el(p1) - - pelpn).
1PI-diagrams

e ['[¢.] is the generating functional of connected 1PIs



Alternatively:
Eff. action [p.] = / ( effective kinetic[yp.| + effective potential terms|p.] )
Q

If vacuum is translational invariant then ¢. = (¢) = ¢ =const. and eff. kin.
term vanishes

We are left with

Plg] = -QU(®)

U(p) = the effective potential
Expansion in ¢



Goldstone Theorem: Proof using the effective potential

Assumption: Two properties for the transformation
pn(x) = n(x) +1e” () umepm(x),  (with generator )

e Continuous and global linear transformation
e Path integral measure remains invariant under this transformation
(otherwise — Anomaly)
Use a theorem (which can be proved):

e For linear symmetry transformations the symmetries of the original action
Slp| are automatically also symmetries of the effective action I'[]



Proof:

e Use the invariance of I'[g]:

— 6F[SOC] — 4 5]‘_‘[900] @ 4 ] o m
0= 500 = 5 % gy 9200 = [ g i
e Taking the special case of ¢ =const., we had I'|p] = —Q U(¢) and
1 OClpe o o\ dU (p)| _
Z/d (o) Spl(z) =0  — i |, =" (1)
e
oU(p) _

e Differentiate (2) with respect to ¢, and use (1), we get
0*U(p)
i Oon(2)9pe() |

e Question: What is %’?

(ta)nm@m =0




Claim:
9*U(yp)

T oo — inverse of the full propagator for zero external momentum p

Proof:

['[¢] is the generating functional of all connected 1PI Graphs

Defining the full propagator (two-point function) by

W]
A0 = w0 w)
and the vertex function by
8*T'[]
Dz, y) = — 0
) = @)

We can verify
/d4z Az, 2)[(z,y) = id*(x — y)

e Thus
0°U(p)
Opn(x)0pr()

= AL, (p=0)

- nm
2




Using this notation
0*U

5 () 7

i Opn(2)0r(x)lg

If the symmetry is broken (min. of the effective pot. is not invariant), i.e.

(ta)nm@m =0 = %Zz_nl(o) (ta)nm@m =0

58571 - Z(ta)nm@m ?’é 0

m

then the only possibility to satisfy the above equation is
Zf_nl (O)Un - 0

where v, are the eigenvectors of A,1(0) with zero eigenvalue

This means that A,,(p) must have a pole at p> = 0 and these are the
massless Goldstone bosons

We conclude

e Goldstone bosons are eigenvectors of the mass matrix
e Goldstone bosons are poles of the full Green’s function

e # Goldstone bosons = the dimensionality of the space of eigen-
vectors with zero eigenvalues




(I'11) Spontaneously Broken Approximate Symmetries;, Vacuum Alignment

Question:
What happens if we add a small (explicit) symmetry breaking term to the
action?
(— pseudo — Goldstone bosons)

Example: Non-Abelian SO(3) case + additional term

1. = . m2
ﬁ=§u¢-0¢—V(<ﬂ), V(w)EVo+V1=7

Claim: Vacuum alignment, i.e., it automatically chooses the direction of «

G- FHNG- @) +i- @

Gol|, where o was the minimum of V; ()



Proof: Use perturbation theory

U(p) = Us(p) + Ur(p), with U; a small perturbation

The small perturbation will shift the minimum of U, i.e. ¢

U ()
dpn

=0 e @ = min. of U(y)
P=Po+P1

Expand U(y) in the first order of ¢,

0 (Uy+Uy)

2
> 0°Uo(p)
dpn

E)Z/‘ (@9
_ 1( )
P=Po+P1 m 68071%0771

im

0=
Yo a@n

=0
%o

Multiply this equation with (t%),, ¢¥ and add over n and ¢

9*Us(p) o) - U1 ()
— ta n m
0 ;<%8¢m8¢n (t")ney | @1 +n% Do,

( ne)Pr
%0

Yo

The first term vanishes using the invariance of U, and we get

0=% oU:(p)

5@°
n,l 89071

~ n
®o

Vacuum Alignment




lii) Spontaneously Broken Approximate Symmetries; Vacuum Alignment

Question:
What happens if we add a small (explicit) symmetry breaking term to

the action?

(— pseudo — Goldstone bosons)
Example: Non-Abelian SO(3) case + additional term

1. . . . mZH . oL o
L=30,8-06-V(e), V@=Vt+Vi="¢ G+AF @) +i-¢

—

Claim: Vacuum alignment, i.e., it automatically chooses the direction of «

Gol|, where o was the minimum of Vj ()
To show this build %1 = v, —

OVi(p)
0:
% 890” %o

5@0 un(ta)né@g — Unfomg@g - (ﬁ X @O)Q — @OHE

n —

The vacuum is aligned



(IV) Hypothesis of Spontaneous Chiral Symmetry Breaking in Strong I nteraction

e In chiral limit m, = mg; = 0, Locp exhibits SUL(2) x SUR(2) symmetry
e Claim: This symmetry must be broken spontaneously, i.e.

Qrl0) #0, Q7[0) #0,  or  Q"0) =0, Q5l0)#0, a=123

e The physical vacuum |0) is defined by minimizing the Hamiltonian H



To prove: let us assume the invariance of the vacuum and see what goes
wrong, i.e.

QRl0) =Q7|0)=0 or  Q|0)=Q5/0) =0

On the other hand:
QL. H] = [Qr, H] =0
Take an eigenstate of the Hamiltonian which is simultaneously eigenstate

of the parity operator

H|V) = E|7) and  P|¥) = +|V)

[QGL,Rv H]|¥) =0 = QGL,RHW) =H (QGL,RM’)) =E (Q%,R‘\D» :

Define new eigenstate of H and P |U’)
/ ]‘ / /
PIU)=+0),  then  |U)= 5 (Qr-Qu)W)  P¥)=-|¥)

We conclude: If Hamiltonian and the vacuum are symmetric under global
chiral transformation, then two states |¥) and | V') arise which are simul-
taneous eigenstates of the Hamiltonian (true particles) and parity (with
opposite parity)

But: No such states exist in the spectrum of particles



Hence: The chiral symmetry of QCD SU(2) x SUg(2) is spontaneously
broken into isospin symmetry SU(2), i.e.

Q%]0) #0, Q7)|0) # 0, or Q°|0) =0, Qz|0) # 0, a=1,2,3

Remember: According to Goldstone theorem

If a theory has a global symmetry of the Lagrangian which isnot a
symmetry of the vacuum, there must be a massless Goldstone boson ,
scalar or pseudoscalar , corresponding to each generator which does not
|eave the vacuum invariant

Question: What are the Goldstone boson associated with this SSB

In the SUL(2) x SUR(2) case:
3 generator of broken invariance =—- 3 pseudoscalar mesons: 3 pions

In the SUL(3) x SUg(3) case: There are also n mesons and K associated
with PCAC

Question: What about U4(1) symmetry? — Anomalous breaking of sym-
metry — leading to pion decay, etc.



e Tomorrow: QCD under extreme conditions:

Temperature
©
A2
2| LHC , o
5 deconfined
> RHIC
@ el A~
. SPS <qg>=~0
150MeV
v \\\‘J~\\ (tri)critical point
<qg> = 0
‘color
'confined’ superconducting’
critical point <qq> 7t O
Neutron stars

-
my/3 Quark chemical potential

Phase diagram of QCD



