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Lesson One: Symmetries in QFT

(I) Symmetries and Conservation Laws; Noether Theorem

In classical Mechanics

L = L(qi, q̇i; t), EoM:
d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0

If qj is a cyclic coordinate

∂L

∂qj
= 0 =⇒ ṗj = 0, with pj ≡ ∂L

∂q̇j
=⇒ pj = const.

Example:

Translational invariance ∂L
∂xi

= 0 =⇒ pi is constant of motion

Rotational invariance ∂L
∂θi

= 0 =⇒ Lθi
is constant of motion
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In Quantum Field Theory

Noether Theorem for global and continuous symmetries

- Space-time transformation → Lorentz transformation

- Internal symmetries ♠

Example 1: Internal Global Phase Transformation

The Lagrangian density

L = ∂µϕ
�∂µϕ − m2ϕ�ϕ

invariant under global U(1) transformation

ϕ → e+iαϕ, ϕ� → e−iαϕ�

The corresponding conserved current

jµ ≡ ∂L
∂ (∂µϕ)

∆ϕ +
∂L

∂ (∂µϕ�)
∆ϕ�

with

∆ϕ = +iϕ, and ∆ϕ� = −iϕ�
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Conserved Current

jµ = i (ϕ∂µϕ� − ϕ�∂µϕ) , with ∂µj
µ = 0

leads to a constant charge corresponding to the global U(1) transformation

0 =
∫
V

d3x ∂µj
µ = ∂0

∫
d3x j0 + surface term.

Defining

Q ≡
∫

d3x j0, we will have Q̇ = 0 =⇒ Q = const.
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Example 2: Internal Local Symmetries

Under local U(1) gauge transformation

ψ → e+iα(x)ψ, ψ̄ → e−iα(x)ψ̄

the QED Lagrangian density

L = ψ̄( i∂/ )ψ − mψ̄ψ

is invariant only when we introduce a gauge field by minimal coupling

∂µ → Dµ = ∂µ + ig Aµ, with Aµ → Aµ − 1

g
∂µα(x)

The modified Lagrangian is

L = ψ̄( iD/ )ψ − mψ̄ψ
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Example 3: QCD and Symmetries

Elementary degrees of freedom are

- Fermionic fields: ψa
α,f Quarks in fundamental repr.

- Gauge fields: Aa
µ Gluons in adjoint repr.

with the indices

- α = 1, · · · 4 labels the spinor indices

- f = 1, · · ·Nf labels the quark flavors (u, d, s, c, b, t)

- a labels the color indices

in fundamental repr. for fermions and in adjoint repr. for gluons

- µ labels the space-time indices

Nf = 2 case:

- (u, d) light quarks (approximately massless) ♠
- (s, c, b, t) heavy quarks

L = Ψ̄a ( iD/ ) Ψa − 1

4
Ga

µνG
a
µν, Ψa =

⎛
⎜⎝ ψa

1

ψa
2

⎞
⎟⎠

with Ga
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν
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Lagrangian density

L = Ψ̄a ( iD/ ) Ψa − 1

4
Ga

µνG
a
µν

is invariant under

Global Vector Symmetries SUV (2) × UV (1):

Ψ → exp (−iαaτ a/2) Ψ, Ψ̄ → Ψ̄ exp (+iαaτ a/2)

τ a, a = 0, 1, 2, 3 with τ 0 = 1 , and �τ = �σ are the Pauli matrices

Conserved global Noether vector currents

ja
µ = Ψ̄ γµ

τ a

2
Ψ, a = 0, 1, 2, 3

Conserved charges

Qa =
∫

d3x ja
0(x) =

∫
d3x Ψ̄ γ0

τ a

2
Ψ

- For a = 0 → Q0 is the UV (1) baryon charge

- For a = 1, 2, 3 → Qa is the SUV (Nf = 2) isospin charge
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Lagrangian density

L = Ψ̄a ( iD/ ) Ψa − 1

4
Ga

µνG
a
µν

is invariant under

Global Axial Vector Symmetries SUA(2) × UA(1):

Ψ → exp (−iγ5α
aτ a/2) Ψ, Ψ̄ → Ψ̄ exp (−iγ5α

aτ a/2)

Conserved global Noether axial vector currents

ja
µ,5 = Ψ̄ γµγ5

τ a

2
Ψ, a = 0, 1, 2, 3

Conserved charges

Qa
5 =

∫
d3x ja

0,5(x) =
∫

d3x Ψ̄ γ0γ5
τ a

2
Ψ

Canonical Commutation Relations:

Canonical ETC relations of the quantum fields =⇒ Charge algebra

[Qa, Qb] = [Qa
5, Q

b
5] = iεabcQc, and [Qa

5, Q
b] = iεabcQc

5 for a = 1, 2, 3
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Chiral Representation:

Aim:

SUV (2) × SUA(2) × UV (1) × UA(1) −→ SUL(2) × SUR(2) × UV (1) × UA(1)

To do this, define

ΨL,R ≡ PL,RΨ, PL,R ≡ 1

2
(1 ∓ γ5)

The Lagrangian density (in the chiral limit mu = md = 0 )

L = Ψ̄L ( iD/ ) ΨL + Ψ̄R ( iD/ ) ΨR

which is invariant under SUL(2) × SUR(2) transformation

ψL,R → UL,RψL,R, with UL,R = e−iαa
L,RT a

L,R, T a
L,R = T a ⊗ PL,R

Further define

Qa
L,R ≡ 1

2
(Qa ∓ Qa

5) , a = 1, 2, 3

with the new chiral charge algebra

[Qa
L, Qb

L] = iεabcQc
L, [Qa

R, Qb
R] = iεabcQc

R, [Qa
R, Qb

L] = 0, for a = 1, 2, 3
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(II) Spontaneous Symmetry Breaking (SSB) of Continuous Global Symmetries

Various Symmetry Breaking Mechanisms:

- Spontaneous symmetry breaking: ♠
Symmetry of the Lagrangian is not shared with the ground state solution

- Anomalous symmetry breaking:

L is invariant under certain sym. transformation =⇒
Classical conservation law ∂µj

µ = 0, but 〈∂µj
µ〉 = A 
= 0

A is the so called Quantum Anomaly
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Example 1: Abelian U(1) global symmetry

L = ∂µϕ
� ∂µϕ − V (ϕ, ϕ�) with V (ϕ, ϕ�) ≡ m2ϕ�ϕ + λ (ϕ�ϕ)2

L is invariant under global U(1) transformation:

ϕ(x) → eiαϕ(x)

Find the Ground state by minimizing the potential

(a) m2 > 0: ϕ = ϕ� = 0

(b) m2 < 0: |ϕ|2 = −m2

2λ ≡ a2

(b)(a)
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Minima of V (ϕ) lie along the circle |ϕ| = a forming a set of degenerate vacua

|〈0|ϕ|0〉|2 = a2
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Polar Coordinates

ϕ(x) = ρ(x)eiθ(x)

Then 〈ϕ〉 = a leads to

〈0|ρ(x)|0〉 = a and 〈0|ϑ(x)|0〉 = 0

• Choose only one vacuum among the set of degenerate vacua

• Expand L around ρ′ = ρ − a with

〈0|ρ′(x)|0〉 = 0 and 〈0|ϑ(x)|0〉 = 0

We get

L = ∂µρ
′∂µρ′ + (ρ′ + a)

2
∂µθ∂

µθ − λρ′4 − 4aλρ′3 − 4λa2ρ′2 + λa4

There is no mass term for ϑ(x)

ϕ and ϕ� are massive SSB−→

ϑ is the massless Goldstone boson and ρ′ is massive with m2
ρ′ = 4λa2
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Example 2: Non-Abelian SO(3) global symmetry

L =
1

2
∂µϕi∂

µϕi − 1

2
m2ϕiϕi − λ (ϕiϕi)

2 , i = 1, 2, 3

L is invariant under global SO(3) transformation:

G = SO(3) : ϕi →
(
e−iTkαk

)
ij

ϕj =
[
U(g)ϕ

]
i

Find the Ground state by minimizing the potential

(a) m2 > 0: |�ϕ| = 0

(b) m2 < 0: |�ϕ0|2 ≡ 〈 3∑
i=1

ϕ2
i 〉 = −m2

4λ ≡ |�a|2

There are infinitely many degenerate vacua

We choose only one of them

�ϕ0 ≡ 〈�ϕ〉 = aê3,

and break the symmetry spontaneously

• It exists g ∈ G under which �ϕ′
0 = U(g) �ϕ0 
= �ϕ0 or

�ϕ′
0 = U(h) �ϕ0 = �ϕ0 ∀h ∈ H ⊂ G

• But the potential is invariant under the whole group G

V (�ϕ′) = V (�ϕ), �ϕ′ = U(g)�ϕ, ∀g ∈ G
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The Number of Goldstone Bosons

L can be evaluated around the new vacuum �ϕ = �ϕ0 + �χ

V =
m2

2

(
ϕ2

1 + ϕ2
2 + (χ + a)2

)
+ λ

(
ϕ2

1 + ϕ2
2 + (χ + a)2

)2

= 4λa2χ2 + 4aλχ
(
ϕ2

1 + ϕ2
2 + χ2

)
+ λ

(
ϕ2

1 + ϕ2
2 + χ2

)2 − λa4

Therefore
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕ1

ϕ2

ϕ3

with m2
ϕi

= −m2,
SSB−→

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕ1 Goldstone boson mϕ1
= 0,

ϕ2 Goldstone boson mϕ2
= 0,

χ massive m2
χ = 8λa2

Goldstone Theorem: The Classical Proof

STEP 1: Expanding V (ϕ) about its minimum, ∂V
∂ϕ | 
ϕ0

= 0

V (�ϕ) = V (�ϕ0) +
∂V (�ϕ)

∂ϕi

∣∣∣∣∣

ϕ0

χi

︸ ︷︷ ︸
=0

+
1

2!

∂2V (�ϕ)

∂ϕi∂ϕj

∣∣∣∣∣

ϕ0

χiχj

Since minimum =⇒ the mass matrix≥ 0

Mij ≡ ∂2V (�ϕ)

∂ϕi∂ϕj

∣∣∣∣∣

ϕ0

≥ 0

# of zeros of Mij = # of massless Goldstone bosons
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STEP 2: Use the invariance of V (�ϕ)

V
(
�ϕ′

0

)
= V (U(g)�ϕ0) = V (�ϕ0 + δ�ϕ0)

= V (�ϕ0) +
∂V (�ϕ)

∂ϕi

∣∣∣∣∣

ϕ0︸ ︷︷ ︸

=0

δϕi
0 +

1

2!

∂2V (�ϕ)

∂ϕi∂ϕj

∣∣∣∣∣

ϕ0

δϕi
0δϕ

j
0 = V (�ϕ0)

leading to

∂2V (�ϕ)

∂ϕi∂ϕj

∣∣∣∣∣

ϕ0

δϕi
0δϕ

j
0 = 0

• If g = h ∈ H, with U(h)�ϕ0 = �ϕ0 we have δϕi
0 = 0 and the above relation

vanishes trivially. This is only satisfied for one direction (direction which we

have chosen for the vacuum, here the ê3-direction)

• If g ∈ G/H, we have δϕi
0 
= 0 and to satisfy ∂2V (
ϕ)

∂ϕi∂ϕj

∣∣∣∣∣

ϕ0

δϕi
0δϕ

j
0 = 0, the mass

matrix Mij must vanishes, i.e.

∂2V (�ϕ)

∂ϕi∂ϕj

∣∣∣∣∣

ϕ0

= 0

We conclude:

# of Goldstone bosons = dimension of the coset space G/H

= dim G − dim H.
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What about Quantum Effects?

Effective action and effective potential:

Generating functional for connected Feynman diagrams

W [J ] ≡ −i lnZ[J ], with Z[J ] ≡ 1

Z[0]

∫
Dϕ eiS[ϕ]+i

∫
d4x J(x)ϕ(x)

• Define classical field ϕc

ϕc(x) ≡ δW [J ]

δJ
, with lim

J→0
ϕc ≡ 〈ϕ〉

• Perform a Legendre transformation on W [J ] → Effective action

Γ[ϕc] ≡ W [J ] −
∫

d4xJ(x)ϕc(x) obeying
δΓ[ϕc]

δϕc(x)
= −J(x)

• For J → 0

dΓ[ϕc]

dϕc

∣∣∣∣∣〈ϕ〉 = 0, i.e. 〈ϕ〉 is min. of Γ[ϕc]

• Expansion of Γ[ϕc]

Γ[ϕc] =
∑
n

1

n!

∫
dp1 · · · dpn δ (p1 + · · · + pn) Γ(n) (p1, · · · , pn)︸ ︷︷ ︸

1PI-diagrams

ϕc(p1) · · ·ϕc(pn).

• Γ[ϕc] is the generating functional of connected 1PIs
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• Alternatively:

Eff. action [ϕc] =
∫
Ω

( effective kinetic[ϕc] + effective potential terms[ϕc] )

• If vacuum is translational invariant then ϕc = 〈ϕ〉 ≡ ϕ̄ =const. and eff. kin.

term vanishes

• We are left with

Γ[ϕ̄] = −Ω U(ϕ̄)

• U(ϕ̄) = the effective potential

• Expansion in ϕ̄

U(ϕ̄) = −
∞∑

n=0

1

n!
Γ(n)(pi = 0) ϕ̄n
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Goldstone Theorem: Proof using the effective potential

Assumption: Two properties for the transformation

ϕn(x) → ϕn(x) + iεα ∑
m

(tα)nmϕm(x), (with generator tα)

• Continuous and global linear transformation

• Path integral measure remains invariant under this transformation

(otherwise → Anomaly)

Use a theorem (which can be proved):

• For linear symmetry transformations the symmetries of the original action

S[ϕ] are automatically also symmetries of the effective action Γ[ϕ̄]
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Proof:

• Use the invariance of Γ[ϕ̄]:

0 =
δΓ[ϕc]

δ(δϕc)
≡ ∑

n

∫
d4x

δΓ[ϕc]

δϕn
c (x)

δϕn
c (x) = iεα ∑

n,m

∫
d4x

δΓ[ϕc]

δϕn
c (x)

(tα)nmϕm
c (x)

• Taking the special case of ϕ̄ =const., we had Γ[ϕ̄] = −Ω U(ϕ̄) and

∑
n

∫
d4x

δΓ[ϕc]

δϕn
c (x)

δϕn
c (x) = 0 =⇒ dU (ϕ)

dϕ

∣∣∣∣∣
ϕ̄

= 0 (1)

i.e.

∑
n,m

∂U(ϕ)

∂ϕn(x)
tnmϕm(x)

∣∣∣∣∣
ϕ̄

= 0 (2)

• Differentiate (2) with respect to ϕ̄� and use (1), we get

∑
n,m

∂2U(ϕ)

∂ϕn(x)∂ϕ�(x)

∣∣∣∣∣
ϕ̄

(tα)nmϕ̄m = 0

• Question: What is ∂2U(ϕ)
∂ϕn(x)∂ϕ�(x)?
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Claim:
∂2U(ϕ)

∂ϕn(x)∂ϕ�(x) = inverse of the full propagator for zero external momentum p

Proof:

• Γ[ϕ] is the generating functional of all connected 1PI Graphs

• Defining the full propagator (two-point function) by

∆(x, y) = −i
δ2W [J ]

δJ(x)δJ(y)

and the vertex function by

Γ(x, y) =
δ2Γ[ϕ]

δϕ(x)δϕ(y)

• We can verify
∫

d4z ∆(x, z)Γ(z, y) = iδ4(x − y)

• Thus

∂2U(ϕ)

∂ϕn(x)∂ϕ�(x)

∣∣∣∣∣
ϕ̄

= ∆̃−1
nm(p = 0)
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• Using this notation

∑
n,m

∂2U(ϕ)

∂ϕn(x)∂ϕ�(x)

∣∣∣∣∣
ϕ̄

(tα)nmϕ̄m = 0 =⇒ ∑
n,m

∆̃−1
�n (0)(tα)nmϕ̄m = 0

• If the symmetry is broken (min. of the effective pot. is not invariant), i.e.

δϕ̄n =
∑
m

(tα)nmϕ̄m 
= 0

then the only possibility to satisfy the above equation is

∆̃−1
�n (0)vn = 0

where vn are the eigenvectors of ∆̃−1
�n (0) with zero eigenvalue

• This means that ∆̃�n(p) must have a pole at p2 = 0 and these are the

massless Goldstone bosons

• We conclude

• Goldstone bosons are eigenvectors of the mass matrix

• Goldstone bosons are poles of the full Green’s function

• # Goldstone bosons = the dimensionality of the space of eigen-

vectors with zero eigenvalues
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(III) Spontaneously Broken Approximate Symmetries; Vacuum Alignment

Question:

What happens if we add a small (explicit) symmetry breaking term to the

action?

(−→ pseudo – Goldstone bosons)

Example: Non-Abelian SO(3) case + additional term

L =
1

2
∂µ�ϕ · ∂µ�ϕ − V (ϕ), V (�ϕ) ≡ V0 + V1 =

m2

2
�ϕ · �ϕ + λ (�ϕ · �ϕ)2 + �u · �ϕ

Claim: Vacuum alignment, i.e., it automatically chooses the direction of �u

�ϕ0‖�u, where �ϕ0 was the minimum of V0(ϕ)
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Proof: Use perturbation theory

U(ϕ) = U0(ϕ) + U1(ϕ), with U1 a small perturbation

• The small perturbation will shift the minimum of U0, i.e. ϕ̄0

∂U(ϕ)

∂ϕn

∣∣∣∣∣
ϕ̄=ϕ̄0+ϕ̄1

= 0 i.e. ϕ̄ = min. of U(ϕ)

• Expand U(ϕ) in the first order of ϕ̄1

0 =
∂ (U0 + U1)

∂ϕn

∣∣∣∣∣
ϕ̄≡ϕ̄0+ϕ̄1

=⇒ ∑
m

∂2U0(ϕ)

∂ϕnϕm

∣∣∣∣∣
ϕ̄0

ϕ̄1m +
∂U1(ϕ)

∂ϕn

∣∣∣∣∣
ϕ̄0

= 0

• Multiply this equation with (tα)n� ϕ̄0
� and add over n and �

0 =
∑
m

⎛
⎝∑

n,�

∂2U0(ϕ)

∂ϕm∂ϕn

∣∣∣∣∣
ϕ̄0

(tα)n�ϕ̄
0
�

⎞
⎠ ϕ̄1m +

∑
n,�

∂U1(ϕ)

∂ϕn

∣∣∣∣∣
ϕ̄0

(tαn�)ϕ̄
0
�

• The first term vanishes using the invariance of U0 and we get

0 =
∑
n,�

∂U1(ϕ)

∂ϕn

∣∣∣∣∣
ϕ̄0

δϕ̄0
n Vacuum Alignment
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iii) Spontaneously Broken Approximate Symmetries; Vacuum Alignment

Question:
What happens if we add a small (explicit) symmetry breaking term to

the action?

(−→ pseudo – Goldstone bosons)
Example: Non-Abelian SO(3) case + additional term

L =
1

2
∂µ�ϕ · ∂µ�ϕ − V (ϕ), V (�ϕ) ≡ V0 + V1 =

m2

2
�ϕ · �ϕ + λ (�ϕ · �ϕ)2 + �u · �ϕ

Claim: Vacuum alignment, i.e., it automatically chooses the direction of �u

�ϕ0‖�u, where �ϕ0 was the minimum of V0(ϕ)

To show this build ∂V1(ϕ)
∂ϕn

= un =⇒

0 =
∑
n,�

∂V1(ϕ)

∂ϕn

∣∣∣∣∣
ϕ̄0

δϕ̄0
n = un(t

α)n�ϕ̄
0
� = unε

αn�ϕ̄0
� = (�u × ϕ̄0)

α =⇒ ϕ̄0‖�u

The vacuum is aligned
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(IV) Hypothesis of Spontaneous Chiral Symmetry Breaking in Strong Interaction

• In chiral limit mu = md = 0, LQCD exhibits SUL(2) × SUR(2) symmetry

• Claim: This symmetry must be broken spontaneously, i.e.

Qa
R|0〉 
= 0, Qa

L|0〉 
= 0, or Qa|0〉 = 0, Qa
5|0〉 
= 0, a = 1, 2, 3

• The physical vacuum |0〉 is defined by minimizing the Hamiltonian H
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• To prove: let us assume the invariance of the vacuum and see what goes

wrong, i.e.

Qa
R|0〉 = Qa

L|0〉 = 0 or Qa|0〉 = Qa
5|0〉 = 0

• On the other hand:

[QL, H] = [QR, H] = 0

• Take an eigenstate of the Hamiltonian which is simultaneously eigenstate

of the parity operator

H|Ψ〉 = E|Ψ〉 and P |Ψ〉 = +|Ψ〉

• [Qa
L,R, H]|Ψ〉 = 0 =⇒ Qa

L,RH|Ψ〉 = H
(
Qa

L,R|Ψ〉) = E
(
Qa

L,R|Ψ〉) .

• Define new eigenstate of H and P |Ψ′〉

P |Ψ〉 = +|Ψ〉, then |Ψ′〉 ≡ 1√
2

(QR − QL) |Ψ〉 P |Ψ′〉 = −|Ψ′〉

• We conclude: If Hamiltonian and the vacuum are symmetric under global

chiral transformation, then two states |Ψ〉 and |Ψ′〉 arise which are simul-

taneous eigenstates of the Hamiltonian (true particles) and parity (with

opposite parity)

• But: No such states exist in the spectrum of particles
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• Hence: The chiral symmetry of QCD SUL(2) × SUR(2) is spontaneously

broken into isospin symmetry SU(2), i.e.

Qa
R|0〉 
= 0, Qa

L|0〉 
= 0, or Qa|0〉 = 0, Qa
5|0〉 
= 0, a = 1, 2, 3

• Remember: According to Goldstone theorem

If a theory has a global symmetry of the Lagrangian which is not a

symmetry of the vacuum, there must be a massless Goldstone boson ,

scalar or pseudoscalar , corresponding to each generator which does not

leave the vacuum invariant

• Question: What are the Goldstone boson associated with this SSB

• In the SUL(2) × SUR(2) case:

3 generator of broken invariance =⇒ 3 pseudoscalar mesons: 3 pions

π+, π0, π−

• In the SUL(3) × SUR(3) case: There are also η mesons and K associated

with PCAC

• Question: What about UA(1) symmetry? → Anomalous breaking of sym-

metry =⇒ leading to pion decay, etc.
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• Tomorrow: QCD under extreme conditions:
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Phase diagram of QCD


