Lesson One

🖌 Symmetries in Quantum Field Theory 🛛 🔶

A Theoretical Excursus

Néda Sadooghi (SUT and IPM) Tehran-Iran

September 2005

Content

- Symmetries and Conservation Laws; Noether Theorem
- Spontaneous Symmetry breaking; Goldstone Theorem
- Spontaneously Broken Approximate Symmetries; Vacuum Alignment
- Hypothesis of Spontaneous Chiral Symmetry Breaking in QCD

Lesson Two

QCD at High Temperature and Finite Density

A Phenomenological Excursus

Néda Sadooghi (SUT and IPM) Tehran-Iran

September 2005

Content

- QCD at Zero Temperature and Density
- QCD under Extreme Conditions; Motivation
- QCD Phase Diagram
 - Phases of QCD at high temperature and zero chemical potential
 - ◊ Lattice QCD in 3 minutes
 - ◊ Color deconfinement and chiral symmetry restoration from lattice
 - Phases of QCD at high temperature and finite chemical potential
- What about Experiments? (SPS, RHIC, LHC, VLHC-1, VLHC-2)

Lesson One: Symmetries in QFT

(I) Symmetries and Conservation Laws; Noether Theorem

In classical Mechanics

$$L = L(q_i, \dot{q}_i; t),$$
 EoM: $\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = 0$

If q_j is a cyclic coordinate

$$\frac{\partial L}{\partial q_j} = 0 \Longrightarrow \dot{p}_j = 0, \quad \text{with} \quad p_j \equiv \frac{\partial L}{\partial \dot{q}_j} \quad \Longrightarrow p_j = \text{const.}$$

Example:

Translational invariance $\frac{\partial L}{\partial x_i} = 0 \implies p_i$ is constant of motionRotational invariance $\frac{\partial L}{\partial \theta_i} = 0 \implies L_{\theta_i}$ is constant of motion

In Quantum Field Theory

Noether Theorem for global and continuous symmetries

- Space-time transformation \rightarrow Lorentz transformation
- Internal symmetries

Example 1: Internal Global Phase Transformation

The Lagrangian density

$$\mathcal{L} = \partial_{\mu}\varphi^{\star}\partial^{\mu}\varphi - m^{2}\varphi^{\star}\varphi$$

invariant under global U(1) transformation

 $\varphi \to e^{+i\alpha}\varphi, \qquad \varphi^{\star} \to e^{-i\alpha}\varphi^{\star}$

The corresponding conserved current

$$j^{\mu} \equiv \frac{\partial \mathcal{L}}{\partial \left(\partial_{\mu}\varphi\right)} \Delta \varphi + \frac{\partial \mathcal{L}}{\partial \left(\partial_{\mu}\varphi^{\star}\right)} \Delta \varphi^{\star}$$

with

$$\Delta \varphi = +i \varphi,$$
 and $\Delta \varphi^{\star} = -i \varphi^{\star}$

Conserved Current

$$j^{\mu} = i \left(\varphi \partial^{\mu} \varphi^{\star} - \varphi^{\star} \partial^{\mu} \varphi \right), \quad \text{with} \quad \frac{\partial_{\mu} j^{\mu} = 0}{\partial_{\mu} j^{\mu}} = 0$$

leads to a constant charge corresponding to the global U(1) transformation

$$0 = \int\limits_V d^3x \; \partial_\mu j^\mu = \partial_0 \int d^3x \; j^0 +$$
surface term.

Defining

$$Q \equiv \int d^3x \ j^0$$
, we will have $\dot{Q} = 0 \implies Q = \text{const.}$

Example 2: Internal Local Symmetries

Under local U(1) gauge transformation

$$\psi \to e^{+i\alpha(x)}\psi, \qquad \bar{\psi} \to e^{-i\alpha(x)}\bar{\psi}$$

the QED Lagrangian density

$$\mathcal{L} = \bar{\psi}(i\partial)\psi - m\bar{\psi}\psi$$

is invariant only when we introduce a gauge field by minimal coupling

 $\partial_{\mu} \rightarrow D_{\mu} = \partial_{\mu} + ig A_{\mu}, \quad \text{with} \quad A_{\mu} \rightarrow A_{\mu} - \frac{1}{g} \partial_{\mu} \alpha(x)$

The modified Lagrangian is

$$\mathcal{L} = \bar{\psi}(i\mathbb{D})\psi - m\bar{\psi}\psi$$

Example 3: QCD and Symmetries

Elementary degrees of freedom are

- Fermionic fields: $\psi^a_{\mathbf{\alpha},f}$ Quarks in fundamental repr.
- Gauge fields: A^a_{μ} Gluons in adjoint repr.

with the indices

- $\alpha = 1, \cdots 4$ labels the spinor indices
- $f = 1, \dots N_f$ labels the quark flavors (u, d, s, c, b, t)
- a labels the color indices

in fundamental repr. for fermions and in adjoint repr. for gluons

- $\boldsymbol{\mu}$ labels the space-time indices

 $N_f = 2$ case:

- (u, d) light quarks (approximately massless)
- (s, c, b, t) heavy quarks

$$\mathcal{L} = \bar{\Psi}^a \left(i \mathcal{D} \right) \Psi^a - \frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu}, \qquad \Psi^a = \left(\begin{array}{c} \psi_1^a \\ \psi_2^a \end{array} \right)$$

with
$$G^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g f^{abc} A^b_\mu A^c_\nu$$

Lagrangian density

$$\mathcal{L} = \bar{\Psi}^a \left(i \mathcal{D} \right) \Psi^a - \frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu}$$

is invariant under

Global Vector Symmetries $SU_V(2) \times U_V(1)$:

$$\Psi \to \exp\left(-i\alpha^a \tau^a/2\right)\Psi, \qquad \bar{\Psi} \to \bar{\Psi}\exp\left(+i\alpha^a \tau^a/2\right)$$

 τ^a , a=0,1,2,3 with $\tau^0\,=\,{\bf 1}$, and $\vec{\tau}=\vec{\sigma}$ are the Pauli matrices

Conserved global Noether vector currents

$$j^{a}_{\mu} = \bar{\Psi} \gamma_{\mu} \frac{\tau^{a}}{2} \Psi, \qquad a = 0, 1, 2, 3$$

Conserved charges

$$Q^a=\int d^3x\; j^a_0(x)=\int d^3x\; ar{\Psi}\; \gamma_0rac{ au^a}{2}\Psi$$

- For $a = 0 \longrightarrow Q^0$ is the $U_V(1)$ baryon charge
- For $a = 1, 2, 3 \rightarrow Q^a$ is the $SU_V(N_f = 2)$ isospin charge

Lagrangian density

$$\mathcal{L} = \bar{\Psi}^a \left(i \mathcal{D} \right) \Psi^a - \frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu}$$

is invariant under

Global Axial Vector Symmetries $SU_A(2) \times U_A(1)$:

$$\Psi \to \exp\left(-i\gamma_5\alpha^a\tau^a/2\right)\Psi, \qquad \bar{\Psi} \to \bar{\Psi}\exp\left(-i\gamma_5\alpha^a\tau^a/2\right)$$

Conserved global Noether axial vector currents

$$j^{a}_{\mu,5} = \bar{\Psi} \gamma_{\mu} \gamma_{5} \frac{\tau^{a}}{2} \Psi, \qquad a = 0, 1, 2, 3$$

Conserved charges

$$Q_5^a = \int d^3x \; j_{0,5}^a(x) = \int d^3x \; \bar{\Psi} \; \gamma_0 \gamma_5 \frac{\tau^a}{2} \Psi$$

Canonical Commutation Relations:

Canonical ETC relations of the quantum fields \Longrightarrow Charge algebra

 $[Q^a, Q^b] = [Q_5^a, Q_5^b] = i\varepsilon^{abc}Q^c, \quad \text{and} \quad [Q_5^a, Q^b] = i\varepsilon^{abc}Q_5^c \quad \text{for} \quad a = 1, 2, 3$

Chiral Representation:

Aim:

$$SU_V(2) \times SU_A(2) \times U_V(1) \times U_A(1) \longrightarrow SU_L(2) \times SU_R(2) \times U_V(1) \times U_A(1)$$

To do this, define

$$\Psi_{L,R} \equiv P_{L,R} \Psi, \qquad \qquad P_{L,R} \equiv \frac{1}{2} \left(1 \mp \gamma_5 \right)$$

The Lagrangian density (in the chiral limit $m_u = m_d = 0$)

$$\mathcal{L} = \bar{\Psi}_{L} \left(i \mathcal{D} \right) \Psi_{L} + \bar{\Psi}_{R} \left(i \mathcal{D} \right) \Psi_{R}$$

which is invariant under $SU_{\boldsymbol{L}}(2) \times SU_{\boldsymbol{R}}(2)$ transformation

$$\psi_{L,R} \to U_{L,R} \psi_{L,R}, \quad \text{with} \quad U_{L,R} = e^{-i\alpha^a_{L,R}T^a_{L,R}}, \quad T^a_{L,R} = T^a \otimes P_{L,R}$$

Further define

$$Q^{a}_{L,R} \equiv \frac{1}{2} \left(Q^{a} \mp Q^{a}_{5} \right), \qquad a = 1, 2, 3$$

with the new chiral charge algebra

$$[Q^a_L, Q^b_L] = i\varepsilon^{abc}Q^c_L, \qquad [Q^a_R, Q^b_R] = i\varepsilon^{abc}Q^c_R, \qquad [Q^a_R, Q^b_L] = 0, \qquad \text{for} \qquad a = 1, 2, 3$$

(II) Spontaneous Symmetry Breaking (SSB) of Continuous Global Symmetries

Various Symmetry Breaking Mechanisms:

- Spontaneous symmetry breaking:
 Symmetry of the Lagrangian is not shared with the ground state solution
- Anomalous symmetry breaking:
 - \mathcal{L} is invariant under certain sym. transformation \Longrightarrow Classical conservation law $\partial_{\mu}j^{\mu} = 0$, but $\langle \partial_{\mu}j^{\mu} \rangle = \mathcal{A} \neq 0$ \mathcal{A} is the so called Quantum Anomaly

Example 1: Abelian U(1) global symmetry

$$\mathcal{L} = \partial_{\mu}\varphi^{\star} \; \partial^{\mu}\varphi - V\left(\varphi,\varphi^{\star}\right) \qquad \text{with} \qquad V\left(\varphi,\varphi^{\star}\right) \equiv m^{2}\varphi^{\star}\varphi + \lambda\left(\varphi^{\star}\varphi\right)^{2}$$

 ${\cal L}$ is invariant under global U(1) transformation:

$$\varphi(x) \to e^{i\alpha}\varphi(x)$$

Find the Ground state by minimizing the potential

(a) $m^2 > 0$: $\varphi = \varphi^* = 0$ (b) $m^2 < 0$: $|\varphi|^2 = -\frac{m^2}{2\lambda} \equiv a^2$

Minima of $V(\varphi)$ lie along the circle $|\varphi| = a$ forming a set of degenerate vacua

 $|\langle 0|\varphi|0\rangle|^2 = a^2$

Polar Coordinates

$$\varphi(x) = \rho(x)e^{i\theta(x)}$$

Then $\langle \varphi \rangle = a$ leads to

 $\langle 0|\rho(x)|0
angle=a$ and $\langle 0|\vartheta(x)|0
angle=0$

• Choose only one vacuum among the set of degenerate vacua

• Expand \mathcal{L} around $\rho' = \rho - a$ with

 $\langle 0|\rho'(x)|0\rangle = 0$ and $\langle 0|\vartheta(x)|0\rangle = 0$

We get

$$\mathcal{L} = \partial_{\mu}\rho'\partial^{\mu}\rho' + (\rho'+a)^2 \ \partial_{\mu}\theta\partial^{\mu}\theta - \lambda\rho'^4 - 4a\lambda\rho'^3 - 4\lambda a^2\rho'^2 + \lambda a^4$$

There is no mass term for $\vartheta(x)$

 φ and φ^* are massive \xrightarrow{SSB}

artheta is the massless Goldstone boson and ho' is massive with $m_{
ho'}^2 = 4\lambda a^2$

Example 2: Non-Abelian SO(3) global symmetry

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \varphi_i \partial^{\mu} \varphi_i - \frac{1}{2} m^2 \varphi_i \varphi_i - \lambda \left(\varphi_i \varphi_i\right)^2, \qquad i = 1, 2, 3$$

 \mathcal{L} is invariant under global SO(3) transformation:

$$G = SO(3): \qquad \varphi_i \to \left(e^{-iT_k\alpha_k}\right)_{ij}\varphi_j = \left[U(g)\varphi\right]_i$$

Find the Ground state by minimizing the potential

(a) $m^2 > 0$: $|\vec{\varphi}| = 0$ (b) $m^2 < 0$: $|\vec{\varphi_0}|^2 \equiv \langle \sum_{i=1}^3 \varphi_i^2 \rangle = -\frac{m^2}{4\lambda} \equiv |\vec{a}|^2$

There are infinitely many degenerate vacua We choose only one of them

$$\vec{\varphi_0} \equiv \left\langle \vec{\varphi} \right\rangle = a\hat{e}_3,$$

and break the symmetry spontaneously

• It exists $g \in G$ under which $\vec{\varphi'}_0 = U(g)\vec{\varphi_0} \neq \vec{\varphi_0}$ or

$$\vec{\varphi'}_0 = U(h)\vec{\varphi_0} = \vec{\varphi_0} \qquad \forall h \in H \subset G$$

• But the potential is invariant under the whole group G

$$V(\vec{\varphi'}) = V(\vec{\varphi}), \qquad \vec{\varphi'} = U(g)\vec{\varphi}, \qquad \forall g \in G$$

The Number of Goldstone Bosons

 ${\cal L}$ can be evaluated around the new vacuum $ec{arphi}=ec{arphi}_0+ec{\chi}$

$$V = \frac{m^2}{2} \left(\varphi_1^2 + \varphi_2^2 + (\chi + a)^2\right) + \lambda \left(\varphi_1^2 + \varphi_2^2 + (\chi + a)^2\right)^2$$

= $4\lambda a^2 \chi^2 + 4a\lambda \chi \left(\varphi_1^2 + \varphi_2^2 + \chi^2\right) + \lambda \left(\varphi_1^2 + \varphi_2^2 + \chi^2\right)^2 - \lambda a^4$

Therefore

$$\begin{cases} \varphi_1 \\ \varphi_2 \\ \varphi_3 \end{cases} \text{ with } m_{\varphi_i}^2 = -m^2, \qquad \xrightarrow{SSB} \begin{cases} \varphi_1 \text{ Goldstone boson } m_{\varphi_1} = 0, \\ \varphi_2 \text{ Goldstone boson } m_{\varphi_2} = 0, \\ \chi \text{ massive } m_{\chi}^2 = 8\lambda a^2 \end{cases}$$

Goldstone Theorem: The Classical Proof

<u>STEP 1:</u> Expanding $V(\varphi)$ about its minimum, $\frac{\partial V}{\partial \varphi}|_{\vec{\varphi_0}} = 0$

$$V(\vec{\varphi}) = V(\vec{\varphi}_0) + \underbrace{\frac{\partial V(\vec{\varphi})}{\partial \varphi_i}\Big|_{\vec{\varphi}_0} \chi^i}_{=0} + \frac{1}{2!} \frac{\partial^2 V(\vec{\varphi})}{\partial \varphi_i \partial \varphi_j}\Big|_{\vec{\varphi}_0} \chi^i \chi^j$$

Since minimum \Longrightarrow the mass matrix ≥ 0

$$M_{ij} \equiv rac{\partial^2 V(ec{arphi})}{\partial arphi_i \partial arphi_j}\Big|_{ec{arphi_0}} \geq 0$$

of zeros of $M_{ij}=\#$ of massless Goldstone bosons

<u>STEP 2</u>: Use the invariance of $V(\vec{\varphi})$

$$V\left(\vec{\varphi'}_{0}\right) = V\left(U(g)\vec{\varphi}_{0}\right) = V\left(\vec{\varphi}_{0} + \delta\vec{\varphi}_{0}\right)$$
$$= V\left(\vec{\varphi}_{0}\right) + \underbrace{\frac{\partial V\left(\vec{\varphi}\right)}{\partial \varphi_{i}}\Big|_{\vec{\varphi}_{0}}}_{=0} \delta\varphi_{0}^{i} + \frac{1}{2!} \frac{\partial^{2} V\left(\vec{\varphi}\right)}{\partial \varphi_{i} \partial \varphi_{j}}\Big|_{\vec{\varphi}_{0}} \delta\varphi_{0}^{i} \delta\varphi_{0}^{j} = V\left(\vec{\varphi}_{0}\right)$$

leading to

$$\frac{\partial^2 V(\vec{\varphi})}{\partial \varphi_i \partial \varphi_j}\Big|_{\vec{\varphi_0}} \,\delta \varphi_0^i \delta \varphi_0^j = 0$$

- If g = h ∈ H, with U(h)φ₀ = φ₀ we have δφ₀ⁱ = 0 and the above relation vanishes trivially. This is only satisfied for one direction (direction which we have chosen for the vacuum, here the ê₃-direction)
- If $g \in G/H$, we have $\delta \varphi_0^i \neq 0$ and to satisfy $\frac{\partial^2 V(\vec{\varphi})}{\partial \varphi_i \partial \varphi_j}\Big|_{\vec{\varphi}_0} \delta \varphi_0^i \delta \varphi_0^j = 0$, the mass matrix M_{ij} must vanishes, *i.e.*

$$\frac{\partial^2 V(\vec{\varphi})}{\partial \varphi_i \partial \varphi_j}\Big|_{\vec{\varphi_0}} = 0$$

We conclude:

of Goldstone bosons = dimension of the coset space G/H= dim G - dim H.

What about Quantum Effects?

Effective action and effective potential:

Generating functional for connected Feynman diagrams

$$W[J] \equiv -i \ln \mathcal{Z}[J], \quad \text{with} \quad \mathcal{Z}[J] \equiv \frac{1}{\mathcal{Z}[0]} \int \mathcal{D}\varphi \ e^{iS[\varphi] + i \int d^4x \ J(x)\varphi(x)}$$

• Define classical field φ_c

$$\varphi_c(x) \equiv \frac{\delta W[J]}{\delta J}, \quad \text{with} \quad \lim_{J \to 0} \varphi_c \equiv \langle \varphi \rangle$$

• Perform a Legendre transformation on $W[J] \rightarrow$ Effective action

$$\Gamma[\varphi_c] \equiv W[J] - \int d^4x J(x) \varphi_c(x) \qquad \text{obeying} \qquad \frac{\delta \Gamma[\varphi_c]}{\delta \varphi_c(x)} = -J(x)$$

• For $J \rightarrow 0$

$$\left. rac{d\Gamma[arphi_c]}{darphi_c}
ight|_{\langle arphi
angle} = 0, \qquad \textit{i.e.} \ \left. \langle arphi
angle \ \text{is min. of } \Gamma[arphi_c]
ight|$$

• Expansion of $\Gamma[\varphi_c]$

$$\Gamma[\varphi_c] = \sum_n \frac{1}{n!} \int dp_1 \cdots dp_n \,\delta\left(p_1 + \cdots + p_n\right) \underbrace{\Gamma^{(n)}\left(p_1, \cdots, p_n\right)}_{\text{1PI-diagrams}} \varphi_c(p_1) \cdots \varphi_c(p_n).$$

• $\Gamma[\varphi_c]$ is the generating functional of connected 1PIs

• Alternatively:

Eff. action $[\varphi_c] = \int_{\Omega} (\text{ effective kinetic}[\varphi_c] + \text{ effective potential terms}[\varphi_c])$

- If vacuum is translational invariant then $\varphi_c = \langle \varphi \rangle \equiv \bar{\varphi} = \text{const.}$ and eff. kin. term vanishes
- We are left with

$$\Gamma[\bar{\varphi}] = -\Omega \ U(\bar{\varphi})$$

- $U(\bar{\varphi}) =$ the effective potential
- Expansion in $\bar{\varphi}$

$$U(\bar{\varphi}) = -\sum_{n=0}^{\infty} \frac{1}{n!} \Gamma^{(n)}(p_i = 0) \ \bar{\varphi}^n$$

Goldstone Theorem: Proof using the effective potential

Assumption: Two properties for the transformation

$$\varphi_n(x) \to \varphi_n(x) + i\varepsilon^{\alpha} \sum_m (t^{\alpha})_{nm} \varphi_m(x),$$
 (with generator t^{α})

- Continuous and global linear transformation
- Path integral measure remains invariant under this transformation (otherwise \rightarrow Anomaly)

Use a theorem (which can be proved):

• For linear symmetry transformations the symmetries of the original action $S[\varphi]$ are automatically also symmetries of the effective action $\Gamma[\bar{\varphi}]$

Proof:

• Use the invariance of $\Gamma[\bar{\varphi}]$:

$$0 = \frac{\delta\Gamma[\varphi_c]}{\delta(\delta\varphi_c)} \equiv \sum_n \int d^4x \; \frac{\delta\Gamma[\varphi_c]}{\delta\varphi_c^n(x)} \; \delta\varphi_c^n(x) = i\varepsilon^\alpha \sum_{n,m} \int d^4x \frac{\delta\Gamma[\varphi_c]}{\delta\varphi_c^n(x)} (t^\alpha)_{nm} \varphi_c^m(x)$$

• Taking the special case of $\bar{\varphi}$ =const., we had $\Gamma[\bar{\varphi}] = -\Omega \ U(\bar{\varphi})$ and

$$\sum_{n} \int d^{4}x \; \frac{\delta \Gamma[\varphi_{c}]}{\delta \varphi_{c}^{n}(x)} \; \delta \varphi_{c}^{n}(x) = 0 \qquad \Longrightarrow \qquad \frac{dU(\varphi)}{d\varphi}\Big|_{\bar{\varphi}} = 0 \tag{1}$$

i.e.

$$\sum_{n,m} \frac{\partial U(\varphi)}{\partial \varphi_n(x)} t_{nm} \varphi_m(x) \Big|_{\bar{\varphi}} = 0$$
⁽²⁾

• Differentiate (2) with respect to $\bar{\varphi}_\ell$ and use (1), we get

$$\sum_{n,m} \frac{\partial^2 U(\varphi)}{\partial \varphi_n(x) \partial \varphi_\ell(x)} \Big|_{\bar{\varphi}} (t^{\alpha})_{nm} \bar{\varphi}_m = 0$$

• Question: What is $\frac{\partial^2 U(\varphi)}{\partial \varphi_n(x) \partial \varphi_\ell(x)}$?

Claim: $\frac{\partial^2 U(\varphi)}{\partial \varphi_n(x) \partial \varphi_\ell(x)} =$ inverse of the full propagator for zero external momentum p

Proof:

- $\Gamma[\varphi]$ is the generating functional of all connected 1PI Graphs
- Defining the full propagator (two-point function) by

$$\Delta(x,y) = -i\frac{\delta^2 W[J]}{\delta J(x)\delta J(y)}$$

and the vertex function by

$$\Gamma(x,y) = \frac{\delta^2 \Gamma[\varphi]}{\delta \varphi(x) \delta \varphi(y)}$$

• We can verify

$$\int d^4 z \ \Delta(x,z) \Gamma(z,y) = i \delta^4(x-y)$$

Thus

$$\frac{\partial^2 U(\varphi)}{\partial \varphi_n(x) \partial \varphi_\ell(x)} \Big|_{\bar{\varphi}} = \widetilde{\Delta}_{nm}^{-1}(p=0)$$

Using this notation

$$\sum_{n,m} \frac{\partial^2 U(\varphi)}{\partial \varphi_n(x) \partial \varphi_\ell(x)} \Big|_{\bar{\varphi}} (t^{\alpha})_{nm} \bar{\varphi}_m = 0 \qquad \Longrightarrow \qquad \sum_{n,m} \widetilde{\Delta}_{\ell n}^{-1}(0) (t^{\alpha})_{nm} \bar{\varphi}_m = 0$$

• If the symmetry is broken (min. of the effective pot. is not invariant), *i.e.*

$$\delta \bar{\varphi}_n = \sum_m (t^\alpha)_{nm} \bar{\varphi}_m \neq 0$$

then the only possibility to satisfy the above equation is

$$\widetilde{\Delta}_{\ell n}^{-1}(0)v_n = 0$$

where v_n are the eigenvectors of $\widetilde{\Delta}_{\ell n}^{-1}(0)$ with zero eigenvalue

- This means that $\widetilde{\Delta}_{\ell n}(p)$ must have a pole at $p^2 = 0$ and these are the massless Goldstone bosons
- We conclude
 - Goldstone bosons are eigenvectors of the mass matrix
 - Goldstone bosons are poles of the full Green's function
 - # Goldstone bosons = the dimensionality of the space of eigenvectors with zero eigenvalues

(III) Spontaneously Broken Approximate Symmetries; Vacuum Alignment

Question:

What happens if we add a small (explicit) symmetry breaking term to the action?

 $(\longrightarrow pseudo - Goldstone bosons)$

Example: Non-Abelian SO(3) case + additional term

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \vec{\varphi} \cdot \partial^{\mu} \vec{\varphi} - V(\varphi), \qquad V(\vec{\varphi}) \equiv V_0 + V_1 = \frac{m^2}{2} \vec{\varphi} \cdot \vec{\varphi} + \lambda \left(\vec{\varphi} \cdot \vec{\varphi} \right)^2 + \vec{u} \cdot \vec{\varphi}$$

Claim: Vacuum alignment, *i.e.*, it automatically chooses the direction of \vec{u}

 $ec{arphi}_0 \| ec{m{u}},$ where $ec{arphi}_0$ was the minimum of $V_0(arphi)$

Proof: Use perturbation theory

$$U(\varphi) = U_0(\varphi) + U_1(\varphi)$$
, with U_1 a small perturbation

• The small perturbation will shift the minimum of U_0 , *i.e.* $\bar{\varphi}_0$

$$\frac{\partial U(\varphi)}{\partial \varphi_n}\Big|_{\bar{\varphi}=\bar{\varphi}_0+\bar{\varphi}_1}=0 \qquad i.e. \qquad \bar{\varphi}=\min. \text{ of } U(\varphi)$$

• Expand $U(\varphi)$ in the first order of $\bar{\varphi}_1$

$$0 = \frac{\partial \left(U_0 + \boldsymbol{U}_1\right)}{\partial \varphi_n} \Big|_{\bar{\varphi} \equiv \bar{\varphi}_0 + \bar{\varphi}_1} \Longrightarrow \sum_m \frac{\partial^2 U_0(\varphi)}{\partial \varphi_n \varphi_m} \Big|_{\bar{\varphi}_0} \bar{\varphi}_{1m} + \frac{\partial \boldsymbol{U}_1(\varphi)}{\partial \varphi_n} \Big|_{\bar{\varphi}_0} = 0$$

• Multiply this equation with $(t^{lpha})_{n\ell} \ ar{arphi}_{\ell}^0$ and add over n and ℓ

$$0 = \sum_{m} \left(\sum_{n,\ell} \frac{\partial^2 U_0(\varphi)}{\partial \varphi_m \partial \varphi_n} \Big|_{\bar{\varphi}_0} (t^{\alpha})_{n\ell} \bar{\varphi}_{\ell}^0 \right) \bar{\varphi}_{1m} + \sum_{n,\ell} \frac{\partial U_1(\varphi)}{\partial \varphi_n} \Big|_{\bar{\varphi}_0} (t^{\alpha}_{n\ell}) \bar{\varphi}_{\ell}^0$$

• The first term vanishes using the invariance of U_0 and we get

$$0 = \sum_{n,\ell} \frac{\partial U_1(\varphi)}{\partial \varphi_n} \Big|_{\bar{\varphi}_0} \delta \bar{\varphi}_n^0$$

Vacuum Alignment

iii) Spontaneously Broken Approximate Symmetries; Vacuum Alignment

Question:

What happens if we add a small (explicit) symmetry breaking term to the action?

 $(\longrightarrow pseudo - Goldstone bosons)$

Example: Non-Abelian SO(3) case + additional term

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \vec{\varphi} \cdot \partial^{\mu} \vec{\varphi} - V(\varphi), \qquad V(\vec{\varphi}) \equiv V_0 + V_1 = \frac{m^2}{2} \vec{\varphi} \cdot \vec{\varphi} + \lambda \left(\vec{\varphi} \cdot \vec{\varphi} \right)^2 + \vec{u} \cdot \vec{\varphi}$$

Claim: Vacuum alignment, *i.e.*, it automatically chooses the direction of \vec{u}

 $ec{arphi_0} \| ec{m{u}}, \qquad$ where $ec{arphi_0}$ was the minimum of $V_0(arphi)$

To show this build $\frac{\partial V_1(\varphi)}{\partial \varphi_n} = u_n \Longrightarrow$

$$0 = \sum_{n,\ell} \frac{\partial V_1(\varphi)}{\partial \varphi_n} \Big|_{\bar{\varphi}_0} \delta \bar{\varphi}_n^0 = u_n (t^\alpha)_{n\ell} \bar{\varphi}_\ell^0 = u_n \epsilon^{\alpha n\ell} \bar{\varphi}_\ell^0 = (\vec{u} \times \bar{\varphi}_0)^\alpha \Longrightarrow \bar{\varphi}_0 \| \vec{u} \|_{\ell^2}$$

The vacuum is aligned

(IV) Hypothesis of Spontaneous Chiral Symmetry Breaking in Strong Interaction

- In chiral limit $m_u = m_d = 0$, \mathcal{L}_{QCD} exhibits $SU_L(2) \times SU_R(2)$ symmetry
- Claim: This symmetry must be broken spontaneously, *i.e.*

 $Q_R^a|0
angle
eq 0, \quad Q_L^a|0
angle
eq 0, \qquad \text{or} \qquad Q_1^a|0
angle = 0, \quad Q_5^a|0
angle
eq 0, \qquad a = 1, 2, 3$

• The physical vacuum $|0\rangle$ is defined by minimizing the Hamiltonian H

• To prove: let us assume the invariance of the vacuum and see what goes wrong, *i.e.*

$$Q_R^a|0
angle = Q_L^a|0
angle = 0$$
 or $Q^a|0
angle = Q_5^a|0
angle = 0$

• On the other hand:

$$[Q_L, H] = [Q_R, H] = 0$$

• Take an eigenstate of the Hamiltonian which is simultaneously eigenstate of the parity operator

$$H|\Psi
angle=E|\Psi
angle$$
 and $P|\Psi
angle=+|\Psi
angle$

•
$$[Q_{L,R}^a, H]|\Psi\rangle = 0 \Longrightarrow Q_{L,R}^a H|\Psi\rangle = H\left(Q_{L,R}^a|\Psi\rangle\right) = E\left(Q_{L,R}^a|\Psi\rangle\right).$$

• Define new eigenstate of H and $P | \Psi' \rangle$

$$P|\Psi\rangle = +|\Psi\rangle,$$
 then $|\Psi'\rangle \equiv \frac{1}{\sqrt{2}} \left(Q_R - Q_L\right)|\Psi\rangle$ $P|\Psi'\rangle = -|\Psi'\rangle$

- We conclude: If Hamiltonian and the vacuum are symmetric under global chiral transformation, then two states |Ψ⟩ and |Ψ'⟩ arise which are simultaneous eigenstates of the Hamiltonian (true particles) and parity (with opposite parity)
- But: No such states exist in the spectrum of particles

• Hence: The chiral symmetry of QCD $SU_L(2) \times SU_R(2)$ is spontaneously broken into isospin symmetry SU(2), *i.e.*

 $Q_R^a|0
angle \neq 0, \quad Q_L^a|0
angle \neq 0, \qquad \text{or} \qquad Q^a|0
angle = 0, \quad Q_5^a|0
angle \neq 0, \qquad a = 1, 2, 3$

• Remember: According to Goldstone theorem

If a theory has a global symmetry of the Lagrangian which is not a symmetry of the vacuum, there must be a massless Goldstone boson, scalar or pseudoscalar, corresponding to each generator which does not leave the vacuum invariant

- Question: What are the Goldstone boson associated with this SSB
- In the SU_L(2) × SU_R(2) case:
 3 generator of broken invariance ⇒ 3 pseudoscalar mesons: 3 pions

$$\pi^{+}, \pi^{0}, \pi^{-}$$

- In the $SU_L(3) \times SU_R(3)$ case: There are also η mesons and K associated with PCAC
- Question: What about $U_A(1)$ symmetry? \rightarrow Anomalous breaking of symmetry \implies leading to pion decay, etc.

• Tomorrow: QCD under extreme conditions:

Phase diagram of QCD