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 Facts and Goals
• Selected by ESA in 1996. 

• To measure the CMB  temperature anisotropy + 
polarizations of CMB to study the physics of early 
universe cosmology. 

                     

• Planck  is launched on 14 May 2009 with 
Herschel and reached in L2 orbit after two 
months.

• Planck had full scan of sky survey every 6 months.  
Two full sky coverage completed by November 
2010.  Four full sky coverage by Jan 2012.  

• First data released 2013.

700 million  euro for Planck
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Planck is the third generation CMB space observations

1992 2003 2013

• It has higher resolution (×3), 5-30 arc min.

• It has higher sensitivity (×10), micro Kelvin.

• It observes in 9 frequency bands rather than 
5, with the goal of improving the 
astrophysical foreground models.

WMAP

Planck
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The classifications of inflation

1- Large fields 

2- Small fields 

a)- Single field models 

b)- Multiple fields models 
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ä = −4πG

3
(ρ + 3p) > 0 → p < −ρ

3
(5)

in which ζ is the curvature perturbations .

In terms of quantum field theory, one has

ζ = ψ +
H

φ̇
δφ (6)

φ2
c > 12M2

P (7)

Mg ∼
M2

s

MP
(8)

1

V =
m2

2
φ2 , V =

λ

4
φ4 (1)

∆φ <M P (2)

∆φ >M P (3)
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quantum mechanical back-reactions are calculated and are compared to each other. Brief conclusions and discussions
are followed in section VI.

While our work was finished the work by Lyth [21] appeared which has overlaps with our results. See also [22]
which appeared shortly after our work.

II. HYBRID INFLATION

Here we study the basics of hybrid inflation [3, 4] and the background field dynamics.

A. The Potential

The potential in standard hybrid inflation has the form

V (φ, ψ) =
λ

4

(
ψ2 − M2

λ

)2

+
1
2
m2φ2 +

1
2
g2φ2ψ2 , (1)

where φ is the inflaton field, ψ is the waterfall field and λ and g are dimensionless couplings. The system has a
global minimum given by φ = 0 and ψ = M/

√
λ. Inflation takes place for φc < φ < φi where φi is the initial

value of the inflaton field and φc = M/g is the critical value of φ where the waterfall field becomes instantaneously
massless. During inflation ψ is very heavy and is stuck to its instantaneous minimum ψ # 0. For φ <φ c the waterfall
becomes tachyonic triggering an instability in the system which ends inflation abruptly. Soon after phase transition,
the systems settles down to its global minimum and inflation is followed by the (p)reheating phase.

As in Linde’s realization of hybrid inflation [3], we consider the limit where the inflation is dominated by the
vacuum. For this condition to hold one requires that

M2 $ λ

g2
m2 . (2)

To solve the flatness and the horizon problem, we assume that inflation proceeds at least for about 60 number of
e-foldings. In the vacuum dominated limit the number of e-foldings is given by
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where m2
P = 1/G with G being the Newton’s constant. We assume that φi is few times φc so one can basically neglect

the logarithmic contribution above.
To get the correct amplitude of density perturbations, one has to satisfy the COBE normalization for the curvature

perturbations PR # 2× 10−9. The power spectrum of curvature perturbations is
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where the relevant quantities are calculated at the time of Hubble radius crossing (k = aH) at 60 e-folds before the
end of inflation. In this picture, it is assumed that the curvature perturbations are frozen once the modes of interest
leave the Hubble radius, as have been treated in conventional analysis of hybrid inflation so far. Our main goal in
this paper is to examine the validity of this assumption more closely.

We are interested in the limit where the waterfall field rolls rapidly to its global minimum once the instability is
triggered. For this to happen, the absolute value of the ψ mass should be much bigger than the Hubble expansion
rate during phase transition so

M3 ' λmm2
p . (5)

B. The Background Fields Dynamics

Here we study the classical evolutions of background fields φ and ψ during inflation and phase transition, see
also [5, 23, 24] where somewhat similar analysis were carried out too. In subsection V B we study the quantum
back-reactions to the the system in the Hartree approximation.
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Inflation in the context of ever changing fundamental theory
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Constraints for inflation

Two key parameters are r and the spectral index ns.   From Planck and WP: 

The Planck data prefers models with   V’’ <0,   concave potentials
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Predictions for power law potential

Planck Collaboration: Constraints on inflation 9

HZ HZ + YP HZ + Neff ΛCDM
105Ωbh2 2296 ± 24 2296 ± 23 2285 ± 23 2205 ± 28
104Ωch2 1088 ± 13 1158 ± 20 1298 ± 43 1199 ± 27
100 θMC 1.04292 ± 0.00054 1.04439 ± 0.00063 1.04052 ± 0.00067 1.04131 ± 0.00063
τ 0.125+0.016

−0.014 0.109+0.013
−0.014 0.105+0.014

−0.013 0.089+0.012
−0.014

ln
(
1010As

)
3.133+0.032

−0.028 3.137+0.027
−0.028 3.143+0.027

−0.026 3.089+0.024
−0.027

ns — — — 0.9603 ± 0.0073
Neff — — 3.98 ± 0.19 —
YP — 0.3194 ± 0.013 — —
−2∆ ln(Lmax) 27.9 2.2 2.8 0

Table 3. Constraints on cosmological parameters and best-fit −2∆ ln(L) with respect to the standard ΛCDM model, using
Planck+WP data, testing the significance of the deviation from the HZ model.

Sampling the power spectrum parameters As, ns, and r is
not the only method for constraining slow roll inflation. Another
possibility is to sample the HFF in the analytic expressions for
the scalar and tensor power spectra (Stewart & Lyth, 1993; Gong
& Stewart, 2001; Leach et al., 2002). In the Appendix, we per-
form a comparison of slow-roll inflationary predictions by sam-
pling the HFF with Planck data, and show that the results ob-
tained in this way agree with those derived by sampling the
power spectrum parameters. This confirms similar studies with
previous data (Hamann et al., 2008c; Finelli et al., 2010).

The spectral index estimated from Planck+WP data is

ns = 0.9603 ± 0.0073. (32)

This tight bound on ns is crucial for constraining inflation. The
Planck constraint on r depends slightly on the pivot scale; we
adopt k∗ = 0.002 Mpc−1 to quote our result, with r0.002 < 0.12
at 95% CL. This bound improves on the most recent results,
including the WMAP 9-year constraint of r < 0.38 (Hinshaw
et al., 2012a), the WMAP7 + ACT limit of r < 0.28 (Sievers
et al., 2013), and the WMAP7 + SPT limit of r < 0.18 (Story
et al., 2012). The new bound from Planck is consistent with
the limit from temperature anisotropies alone (Knox & Turner,
1994). When a possible tensor component is included, the spec-
tral index from Planck+WP is not significantly changed, with
ns = 0.9624 ± 0.0075.

The Planck constraint on r corresponds to an upper bound
on the energy scale of inflation

V∗ =
3π2As

2
r M4

pl = (1.94 × 1016 GeV)4 r∗
0.12

, (33)

at 95% CL. This is equivalent to an upper bound on the Hubble
parameter during inflation of H∗/Mpl < 3.7 × 10−5. In terms of
slow-roll parameters, Planck+WP constraints imply εV < 0.008
at 95% CL, and ηV = −0.010+0.005

−0.011.
The Planck results on ns and r are robust to the addition

of external data sets (see Table 4). When the high-& CMB
ACT+SPT data are added, we obtain ns = 0.9600 ± 0.0072 and
r0.002 < 0.11 at 95% CL. Including the Planck lensing likeli-
hood gives ns = 0.9653 ± 0.0069 and r0.002 < 0.13, and adding
BAO data gives ns = 0.9643 ± 0.0059 and r0.002 < 0.12. These
bounds are robust to the small changes in the polarization likeli-
hood at low multipoles. To test this robustness, instead of using
the WMAP polarization likelihood, we impose a Gaussian prior
τ = 0.07 ± 0.013 to take into account small shifts due to un-
certainties in residual foreground contamination or instrument
systematics in the evaluation of τ, as performed in Appendix B
of Planck Collaboration XVI (2013). We find at most a reduction
of 8% for the upper bound on r.

It is useful to plot the inflationary potentials in the ns–r plane
using the first two slow-roll parameters evaluated at the pivot
scale k∗ = 0.002 Mpc−1 (Dodelson et al., 1997). Given our ig-
norance of the details of the epoch of entropy generation, we
assume that the number of e-folds N∗ to the end of inflation lies
in the interval [50, 60]. This uncertainty is plotted for those po-
tentials predicting an exit from inflation without changing the
potential.

Fig. 1 shows the Planck constraints in the ns − r plane and
indicates the predictions of a number of representative inflation-
ary potentials. The sensitivity of Planck data to high multipoles
removes the degeneracy between ns and r found using WMAP
data. Planck data favour models with a concave potential. As
shown in Fig. 1, most of the joint 95% allowed region lies be-
low the convex potential limit, and concave models with a red
tilt in the range [0.945-0.98] are allowed by Planck at 95% CL.
In the following we consider the status of several illustrative and
commonly discussed inflationary potentials in light of the Planck
observations.

Power law potential and chaotic inflation

The simplest class of inflationary models is characterized by a
single monomial potential of the form

V(φ) = λM4
pl

(
φ

Mpl

)n
. (34)

This class of potentials includes the simplest chaotic models, in
which inflation starts from large values for the inflaton, φ > Mpl.
Inflation ends by violation of the slow-roll regime, and we as-
sume this occurs at εV = 1. According to Eqs. 5, 6, and 15,
this class of potentials predicts to lowest order in slow-roll pa-
rameters ns − 1 ≈ −n(n + 2)M2

pl/φ
2
∗, r ≈ 8n2M2

pl/φ
2
∗, φ2

∗ ≈
nM2

pl(4N∗ + n)/2. The λφ4 model lies well outside of the joint
99.7% CL region in the ns − r plane. This result confirms pre-
vious findings from e.g., Hinshaw et al. (2012a) in which this
model is well outside the 95% CL for the WMAP 9-year data
and is further excluded by CMB data at smaller scales.

The model with a quadratic potential, n = 2 (Linde, 1983),
often considered the simplest example for inflation, now lies
outside the joint 95% CL for the Planck+WP+high-& data for
N∗ ! 60 e-folds, as shown in Fig. 1.

A linear potential with n = 1 (McAllister et al., 2010), mo-
tivated by axion monodromy, has ηV = 0 and lies within the
95% CL region. Inflation with n = 2/3 (Silverstein & Westphal,
2008), however, also motivated by axion monodromy, now lies
on the boundary of the joint 95% CL region. More permissive

The model with n=2 lies outside the joint Planck+WP+high L (95 % CL).

The model with n=4 lies well outside the joint 99.7 % CL.
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on the boundary of the joint 95% CL region. More permissive
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Fig. 19.— Two-dimensional joint marginalized constraint (68%
and 95% CL) on the primordial tilt, ns, and the tensor-to-scalar
ratio, r, derived from the data combination of WMAP+BAO+H0.
The symbols show the predictions from “chaotic” inflation models
whose potential is given by V (φ) ∝ φα (Linde 1983), with α =
4 (solid) and α = 2 (dashed) for single-field models, and α =
2 for multi-axion field models with β = 1/2 (dotted; Easther &
McAllister 2006).

culations of the SZ effect should be focused more on un-
derstanding the gas pressure profiles, both the amplitude
and the shape.

8. CONCLUSION

With the WMAP 7-year temperature and polarization
data, new measurements of H0 (Riess et al. 2009), and
improved large-scale structure data (Percival et al. 2009),
we have been able to rigorously test the standard cosmo-
logical model. The model continues to be an exquisite
fit to the existing data. Depending on the parameters,
we also use the other data sets such as the small-scale
CMB temperature power spectra (Brown et al. 2009; Re-
ichardt et al. 2009, for the primordial helium abundance),
the power spectrum of LRGs derived from SDSS (Reid
et al. 2009, for neutrino properties), the Type Ia super-
nova data (Hicken et al. 2009b, for dark energy), and the
time-delay distance to the lens system B1608+656 (Suyu
et al. 2009a, for dark energy and spatial curvature). The
combined data sets enable improved constraints over the
WMAP-only constraints on the cosmological parameters
presented in Larson et al. (2010) on physically-motivated
extensions of the standard model.
We summarize the most significant findings from our

analysis (also see Table 2, 3, and 4):

1. Gravitational waves and primordial power
spectrum. Our best estimate of the spectral index
of a power-law primordial power spectrum of curva-
ture perturbations is ns = 0.963±0.012 (68% CL).
We find no evidence for tensor modes: the 95% CL
limit is r < 0.24.29 There is no evidence for
the running spectral index, dns/d ln k = −0.022±
0.020 (68% CL). Given that the improvements on
ns, r, and dns/d ln k from the 5-year results are
modest, their implications for models of inflation
are similar to those discussed in Section 3.3 of Ko-
matsu et al. (2009b). Also see Kinney et al. (2008)

29 This is the 7-year WMAP+BAO+H0 limit. The 5-year
WMAP+BAO+SN limit was r < 0.22 (95% CL). For comparison,
the 7-year WMAP+BAO+SN limit is r < 0.20 (95% CL). These
limits do not include systematic errors in the supernova data.

and Finelli et al. (2009) for more recent surveys of
implications for inflation. In Figure 19, we compare
the 7-yearWMAP+BAO+H0 limits on ns and r to
the predictions from inflation models with mono-
mial potential, V (φ) ∝ φα.

2. Neutrino properties. Better determinations of
the amplitude of the third acoustic peak of the
temperature power spectrum and H0 have led to
improved limits on the total mass of neutrinos,
∑

mν < 0.58 eV (95% CL), and the effective num-
ber of neutrino species, Neff = 4.34+0.86

−0.88 (68% CL),
both of which are derived from WMAP+BAO+H0

without any information on the growth of struc-
ture. When BAO is replaced by the LRG power
spectrum, we find

∑

mν < 0.44 eV (95% CL), and
the effective number of neutrino species, Neff =
4.25+0.76

−0.80 (68% CL).

3. Primordial helium abundance. By combining
the WMAP data with the small-scale CMB data,
we have detected, by more than 3σ, a change in
the Silk damping on small angular scales (l ! 500)
due to the effect of primordial helium on the tem-
perature power spectrum. We find Yp = 0.326 ±
0.075 (68% CL). The astrophysical measurements
of helium abundance in stars or HII regions pro-
vide tight upper limits on Yp, whereas the CMB
data can be used to provide a lower limit. With
a conservative hard prior on Yp < 0.3, we find
0.23 < Yp < 0.3 (68% CL). Our detection of he-
lium at z ∼ 1000 contradicts versions of the “cold
big bang model,” where most of the cosmological
helium is produced by the first generation of stars
(Aguirre 2000).

4. Parity violation. The 7-year polarization data
have significantly improved over the 5-year data.
This has led to a significantly improved limit on
the rotation angle of the polarization plane due to
potential parity-violating effects. Our best limit is
∆α = −1.1◦± 1.3◦ (statistical)± 1.5◦ (systematic)
(68% CL).

5. Axion dark matter. The 7-year
WMAP+BAO+H0 limit on the non-adiabatic
perturbations that are uncorrelated with curvature
perturbations, α0 < 0.077 (95% CL), constrains
the parameter space of axion dark matter in
the context of the misalignment scenario. It
continues to suggest that a future detection of
tensor-to-scalar ratio, r, at the level of r = 10−2

would require a fine-tuning of parameters such as
the misalignment angle, θ < 3× 10−9, a significant
amount of entropy production between the QCD
phase transition and the big bang nucleosynthesis,
γ < 0.9 × 10−9, a super-Planckian axion decay
constant, fa > 2 × 1026 GeV, an axion contribu-
tion to the matter density of the universe being
totally sub-dominant, or a combination of all
of the above with less tuning in each (also see
Section 3.6.3 of Komatsu et al. 2009b). The 7-year
WMAP+BAO+H0 limit on correlated isocur-
vature perturbations, which is relevant to the
curvaton dark matter, is α−1 < 0.0047 (95% CL).
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quantum mechanical back-reactions are calculated and are compared to each other. Brief conclusions and discussions
are followed in section VI.

While our work was finished the work by Lyth [21] appeared which has overlaps with our results. See also [22]
which appeared shortly after our work.

II. HYBRID INFLATION

Here we study the basics of hybrid inflation [3, 4] and the background field dynamics.

A. The Potential

The potential in standard hybrid inflation has the form

V (φ, ψ) =
λ

4

(
ψ2 − M2

λ

)2

+
1
2
m2φ2 +

1
2
g2φ2ψ2 , (1)

where φ is the inflaton field, ψ is the waterfall field and λ and g are dimensionless couplings. The system has a
global minimum given by φ = 0 and ψ = M/

√
λ. Inflation takes place for φc < φ < φi where φi is the initial

value of the inflaton field and φc = M/g is the critical value of φ where the waterfall field becomes instantaneously
massless. During inflation ψ is very heavy and is stuck to its instantaneous minimum ψ # 0. For φ <φ c the waterfall
becomes tachyonic triggering an instability in the system which ends inflation abruptly. Soon after phase transition,
the systems settles down to its global minimum and inflation is followed by the (p)reheating phase.

As in Linde’s realization of hybrid inflation [3], we consider the limit where the inflation is dominated by the
vacuum. For this condition to hold one requires that

M2 $ λ

g2
m2 . (2)

To solve the flatness and the horizon problem, we assume that inflation proceeds at least for about 60 number of
e-foldings. In the vacuum dominated limit the number of e-foldings is given by

Ne #
2π M4

λm2
pm2

ln
(

φi

φc

)
, (3)

where m2
P = 1/G with G being the Newton’s constant. We assume that φi is few times φc so one can basically neglect

the logarithmic contribution above.
To get the correct amplitude of density perturbations, one has to satisfy the COBE normalization for the curvature

perturbations PR # 2× 10−9. The power spectrum of curvature perturbations is

PR =
128π

3m6
p

V 3

V 2
φ

∼ g2

λ3

M10

m6
p m4

, (4)

where the relevant quantities are calculated at the time of Hubble radius crossing (k = aH) at 60 e-folds before the
end of inflation. In this picture, it is assumed that the curvature perturbations are frozen once the modes of interest
leave the Hubble radius, as have been treated in conventional analysis of hybrid inflation so far. Our main goal in
this paper is to examine the validity of this assumption more closely.

We are interested in the limit where the waterfall field rolls rapidly to its global minimum once the instability is
triggered. For this to happen, the absolute value of the ψ mass should be much bigger than the Hubble expansion
rate during phase transition so

M3 ' λmm2
p . (5)

B. The Background Fields Dynamics

Here we study the classical evolutions of background fields φ and ψ during inflation and phase transition, see
also [5, 23, 24] where somewhat similar analysis were carried out too. In subsection V B we study the quantum
back-reactions to the the system in the Hartree approximation.

Generally predicts ns  >0 and r << 0.1.   Not in good shape with data !

Natural inflation

This model agrees with Planck + WP for f > Mp .

R   inflation
2
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joint 95% CL region for Planck+WP+BAO data; the case with
p = 4 is also in tension with Planck+WP+BAO, but allowed
within the joint 95% CL region for N∗ ! 50. For larger values of
r these models provide a better fit to the Planck+WP+BAO data.

A simple symmetry breaking potential

The symmetry-breaking potential (Olive, 1990)

V(φ) = Λ4
(
1 − φ

2

µ2

)2
, (38)

can be considered as a self-consistent completion of the hill-top
model with p = 2 (although it has a different limiting large-
field branch for non-zero r). This potential leads to predictions
in agreement with Planck + WP + BAO joint 95% CL contours
for super-Planckian value of µ, i.e. µ ! 13 Mpl.

Natural inflation

Another interesting class of potentials is natural inflation
(Freese et al., 1990; Adams et al., 1993), initially motivated by
its origin in symmetry-breaking in an attempt to naturally give
rise to the extremely flat potentials required for inflationary cos-
mology. In natural inflation the effective one-dimensional po-
tential takes the form

V(φ) = Λ4
[
1 + cos

(
φ

f

)]
, (39)

where f is a scale which determines the slope of the potential.
Depending on the value of f , the model falls into the large field
( f ! 1.5 Mpl) or small field ( f " 1.5 Mpl) classification scheme.
Therefore, ns ≈ 1 − M2

pl/ f 2 holds for small f and ns ≈ 1 − 2/N,
r ≈ 8/N holds for large f , approximating the m2φ2 potential in
the latter case (with N∗ ≈ (2 f 2/M2

pl) ln[sin(φe/ f )/ sin(φ∗/ f )]).
This model agrees with Planck+WP data for f ! 5 Mpl.

Hybrid inflation

In hybrid inflationary models a second field, χ, coupled to the
inflaton, undergoes symmetry breaking. The simplest example
of this class is

V(φ, χ) = Λ4
(
1 − χ

2

µ2

)2
+ U(φ) +

g2

2
φ2χ2 . (40)

For most of their parameter space, these models can be consid-
ered effectively as single field models for the inflaton φ. The
second field χ is close to the origin during the slow-roll regime
for φ, and inflation ends either by breakdown of slow roll for
the inflaton at εφ ≈ M2

pl(dU/dφ)2/(Λ4 + U(φ))2 ≈ 1 or by the
waterfall transition of χ. The simplest models with

U(φ) =
m2

2
φ2 (41)

are disfavoured for most of the parameter space (Cortês &
Liddle, 2009). Models with m2φ2/2 ∼ Λ4 are disfavoured due to
a high tensor-to-scalar ratio, and models with U(φ) % Λ4 predict
a spectral index ns > 1, also disfavoured by the Planck data.

We discuss hybrid inflationary models predicting ns < 1 sep-
arately. As an example, the spontaneously broken SUSY model
(Dvali et al., 1994)

U(φ) = αhΛ
4 ln
(
φ

µ

)
, (42)

predicts ns − 1 ≈ −(1 + 3αh/2)/N∗ and r ≈ 8αh/N∗. For αh % 1
and N∗ & 50, ns & 0.98 is disfavoured by Planck+WP+BAO
data at more than 95% CL. However, more permissive reheating
priors allowing N∗ < 50 or a non-negligible αh give models that
are consistent with the Planck data.

R2 inflation

Inflationary models can also be accommodated within extended
theories of gravity. These theories can be analysed either in the
original (Jordan) frame or in the conformally-related Einstein
frame with a Klein-Gordon scalar field. Due to the invariance of
curvature and tensor perturbation power spectra with respect to
this conformal transformation, we can use the same methodol-
ogy described earlier.

The first inflationary model proposed was of this type
and based on higher order gravitational terms in the action
(Starobinsky, 1980)

S =
∫

d4x
√−g

M2
pl

2

(
R +

R2

6M2

)
, (43)

with the motivation to include semi-classical quantum effects.
The predictions for R2 inflation were first studied in Mukhanov
& Chibisov (1981); Starobinsky (1983) and can be summarized
as: ns−1 ≈ −8(4N∗+9)/(4N∗+3) and r ≈ 192/(4N∗+3)2. Since r
is suppressed by another 1/N∗ with respect to the scalar tilt, this
model predicts a tiny amount of gravitational waves. This model
predicts ns = 0.963 for N∗ = 55 and is fully consistent with the
Planck constraints.

Non-minimally coupled inflaton

A non-minimal coupling of the inflaton to gravity with the action

S =
∫

d4x
√−g




M2
pl + ξφ

2

2
R − 1

2
gµν∂µφ∂νφ −

λ

4

(
φ2 − φ2

0

)2

 ,

(44)
leads to several interesting consequences such as a lowering of
the tensor-to-scalar ratio.

The case of a massless self-interacting inflaton (φ0 = 0)
agrees with the Planck+WP data for ξ ! 0. Within the range
50 < N∗ < 60, this model is within the Planck+WP joint
95% CL region for ξ > 0.0019, improving previous bounds
(Okada et al., 2010).

The amplitude of scalar perturbations is proportional to λ/ξ2
for ξ ( 1, and therefore the problem of tiny values for the in-
flaton self-coupling λ can be alleviated (Salopek et al., 1989;
Fakir & Unruh, 1990). The regime φ0 % Mpl is allowed and φ
could be the Standard Model Higgs as proposed in Bezrukov &
Shaposhnikov (2009). The Higgs case with ξ ( 1 has the same
predictions as the R2 model in terms of ns and r as a function
of N∗. The reheating mechanism in the Higgs case can be more
efficient than in R2 case and therefore predicts a slightly larger
ns. This model is fully consistent with Planck constraints.

The case with ξ < 0 and | ξ | φ2
0/M

2
pl ∼ 1 was also recently

emphasized in Linde et al. (2011). With the symmetry breaking
potential in Eq. 44, the large field case with inflaton φ >φ 0 is
disfavoured by Planck data, whereas the small field case φ < φ0
is in agreement with the data.

This model predicts a small value of r with ns = 0.963

Power law inflation
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Model Parameter Planck+WP Planck+WP+lensing Planck + WP+high-! Planck+WP+BAO

ΛCDM + tensor ns 0.9624 ± 0.0075 0.9653 ± 0.0069 0.9600 ± 0.0071 0.9643 + 0.0059
r0.002 < 0.12 < 0.13 < 0.11 < 0.12

−2∆ lnLmax 0 0 0 -0.31

Table 4. Constraints on the primordial perturbation parameters in the ΛCDM+r model from Planck combined with other data sets.
The constraints are given at the pivot scale k∗ = 0.002 Mpc−1.

Fig. 1. Marginalized joint 68% and 95% CL regions for ns and r0.002 from Planck in combination with other data sets compared to
the theoretical predictions of selected inflationary models.

reheating priors allowing N∗ < 50 could reconcile this model
with the Planck data.

Exponential potential and power law inflation

Inflation with an exponential potential

V(φ) = Λ4 exp
(
−λ φ

Mpl

)
(35)

is called power law inflation (Lucchin & Matarrese, 1985),
because the exact solution for the scale factor is given by
a(t) ∝ t2/λ2 . This model is incomplete, since inflation would
not end without an additional mechanism to stop it. Assuming
such a mechanism exists and leaves predictions for cosmo-
logical perturbations unmodified, this class of models predicts
r = −8(ns − 1) and is now outside the joint 99.7% CL contour.

Inverse power law potential

Intermediate models (Barrow, 1990; Muslimov, 1990) with in-
verse power law potentials

V(φ) = Λ4
(
φ

Mpl

)−β
(36)

lead to inflation with a(t) ∝ exp(At f ), with A > 0 and 0 < f < 1,
where f = 4/(4 + β) and β > 0. In intermediate inflation there
is no natural end to inflation, but if the exit mechanism leaves
the inflationary predictions on cosmological perturbations un-
modified, this class of models predicts r ≈ −8β(ns − 1)/(β − 2)
(Barrow & Liddle, 1993). It is disfavoured, being outside the
joint 95% CL contour for any β.

Hill-top models

In another interesting class of potentials, the inflaton rolls away
from an unstable equilibrium as in the first new inflationary mod-
els (Albrecht & Steinhardt, 1982; Linde, 1982). We consider

V(φ) ≈ Λ4
(
1 − φ

p

µp + ...

)
, (37)

where the ellipsis indicates higher order terms negligible during
inflation, but needed to ensure the positiveness of the potential
later on. An exponent of p = 2 is allowed only as a large field
inflationary model and predicts ns − 1 ≈ −4M2

pl/µ
2 + 3r/8 and

r ≈ 32φ2
∗M2

pl/µ
4. This potential leads to predictions in agree-

ment with Planck+WP+BAO joint 95% CL contours for super-
Planckian values of µ, i.e., µ ! 9 Mpl.

Models with p ≥ 3 predict ns − 1 ≈ −(2/N)(p − 1)/(p − 2)
when r ∼ 0. The hill-top potential with p = 3 lies outside the

This model can be solved exactly but is outside the joint 
99.7% CL.
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because the exact solution for the scale factor is given by
a(t) ∝ t2/λ2 . This model is incomplete, since inflation would
not end without an additional mechanism to stop it. Assuming
such a mechanism exists and leaves predictions for cosmo-
logical perturbations unmodified, this class of models predicts
r = −8(ns − 1) and is now outside the joint 99.7% CL contour.
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is no natural end to inflation, but if the exit mechanism leaves
the inflationary predictions on cosmological perturbations un-
modified, this class of models predicts r ≈ −8β(ns − 1)/(β − 2)
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Hill-top models

In another interesting class of potentials, the inflaton rolls away
from an unstable equilibrium as in the first new inflationary mod-
els (Albrecht & Steinhardt, 1982; Linde, 1982). We consider

V(φ) ≈ Λ4
(
1 − φ

p

µp + ...

)
, (37)
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inflation, but needed to ensure the positiveness of the potential
later on. An exponent of p = 2 is allowed only as a large field
inflationary model and predicts ns − 1 ≈ −4M2
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Running of Spectral Index

Allowing for the running of ns has

A negative running at 1.5 sigma. However, many 
models of inflation predict running < 0.001.
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Deviations from Scale Invariance: Scale-invariance is ruled out near 6 sigma CL.

The degeneracy between ns and Yp and Neff :

Both these parameters affect the damping tail of the power spectrum. However if we set ns=1, we obtain 
too much baryon density and a large value of Yp which is in contradiction with other observations.
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The Universe is flat better than 1%.

This is consistent with basic predictions of inflation in which 
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Model Parameter Planck+WP Planck+WP+lensing Planck+WP+high-! Planck+WP+BAO

ΛCDM + dns/d ln k

ns 0.9561 ± 0.0080 0.9615 ± 0.0072 0.9548 ± 0.0073 0.9596 ± 0.0063
dns/d ln k −0.0134 ± 0.0090 −0.0094 ± 0.0085 −0.0149 ± 0.0085 −0.0130 ± 0.0090

−2∆ lnLmax -1.50 -0.77 -2.95 -1.45

+ d2ns/d ln k2

ns 0.9514+0.087
−0.090 0.9573+0.077

−0.079 0.9476+0.086
−0.088 0.9568+0.068

−0.063
ΛCDM + dns/d ln k dns/d ln k 0.001+0.016

−0.014 0.006+0.015
−0.014 0.001+0.013

−0.014 0.000+0.016
−0.013

d2ns/d ln k2 0.020+0.016
−0.015 0.019+0.018

−0.014 0.022+0.016
−0.013 0.017+0.016

−0.014

−2∆ lnLmax -2.65 -2.14 -5.42 -2.40

ΛCDM + r + dns/d ln k

ns 0.9583 ± 0.0081 0.9633 ± 0.0072 0.9570 ± 0.0075 0.9607 ± 0.0063
r < 0.25 < 0.26 < 0.23 < 0.25

dns/d ln k 0.021 ± 0.012 0.017 ± 0.012 −0.022+0.011
−0.010 −0.021+0.012

+0.010

−2∆ lnLmax -1.53 -0.26 -3.25 -1.5

Table 5. Constraints on the primordial perturbation parameters for ΛCDM+dns/d ln k, ΛCDM+dns/d ln k+r and
ΛCDM+dns/d ln k+d2ns/d ln k2 models from Planck combined with other data sets. Constraints on the spectral index and its de-
pendence on the wavelength are given at the pivot scale of k∗ = 0.05 Mpc−1.

Fig. 3. Marginalized joint 68% and 95% CL regions for
(d2ns/d ln k2 , dns/d ln k) using Planck+WP+BAO.

count (McAllister et al., 2010) giving the potential

V(φ) = µ3φ + Λ4 cos
(
φ

f

)
. (46)

4.4. Open inflation

Most models of inflation predict a nearly flat spatial geome-
try with small deviations from perfect spatial flatness of order
|ΩK | ∼ 10−5. Curvature fluctuations may be regarded as local
fluctuations in the spatial curvature, and even in models of infla-
tion where the perturbations are calculated about a spatially flat
background, the spatial curvature on the largest scales accessible
to observation now are subject to fluctuations from perfect spa-
tial flatness (i.e., ΩK = 0). This prediction for this fluctuation is
calculated by simply extrapolating the power law spectrum to the
largest scale accessible today, so that ΩK as probed by the CMB
roughly represents the local curvature fluctuation averaged over
our (causal) horizon volume. Although it has sometimes been
claimed that spatial flatness is a firm prediction of inflation, it

Fig. 4. Marginalized joint 68% and 95% CL regions for (r , ns),
using Planck+WP+BAO with and without a running spectral in-
dex.

was realized early on that spatial flatness is not an inexorable
consequence of inflation, and large amounts of spatial curvature
(i.e., large compared to the above prediction) can be introduced
in a precise way while retaining all the advantages of inflation
(Gott, 1982; Gott & Statler, 1984) through bubble nucleation by
false vacuum decay (Coleman & De Luccia, 1980). This pro-
posal gained credence when it was shown how to calculate the
perturbations in this model around and beyond the curvature
scale (Bucher et al., 1995; Bucher & Turok, 1995; Yamamoto
et al., 1995; Tanaka & Sasaki, 1994). See also (Ratra & Peebles,
1995, 1994; Lyth & Stewart, 1990). For more refined later cal-
culations see for example Garriga et al. (1998, 1999); Gratton &
Turok (1999) and references therein. For predictions of the ten-
sor perturbations see for example Bucher & Cohn (1997); Sasaki
et al. (1997); Hertog & Turok (2000).

An interesting proposal using singular instantons and not
requiring a false vaccum may be found in Hawking & Turok
(1998), and for calculations of the resulting perturbation spectra
see (Hertog & Turok, 2000; Gratton et al., 2000). Models of this
sort have been studied more recently in the context of the string
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Search for feature during inflation

Inflation dynamics may have localized features.  Examples: 
phase transition,  particle production, tachyonic instability ,... 

Planck team has considered three phenomenological potentials 
with features

On the other hand Planck and  WMAP have detected shortage of 
power on l =20 - 30

Planck Collaboration: Cosmological parameters
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Fig. 39. Left: Planck TT spectrum at low multipoles with 68% ranges on the posteriors. The “rainbow” band show the best fits to
the entire Planck+WP likelihood for the base ΛCDM cosmology, colour-coded according to the value of the scalar spectral index
ns. Right: Limits (68% and 95%) on the relative amplitude of the base ΛCDM fits to the Planck+WP likelihood fitted only to the
Planck TT likelihood over the multipole range 2 ≤ ! ≤ !max.

We find the following notable results using CMB data alone:

– The deviation of the scalar spectral index from unity is ro-
bust to the addition of tensor modes and to changes in the
matter content of the Universe. For example, adding a tensor
component we find ns = 0.9600 ± 0.0072, a 5.5σ departure
from ns = 1.

– A 95% upper limit on the tensor-to-scalar ratio of r0.002 <
0.11. The combined contraints on ns and r0.002 are on the
borderline of compatibility with single-field inflation with a
quadratic potential (Fig. 23).

– A 95% upper limit on the summed neutrino mass of
∑

mν <
0.66 eV.

– A determination of the effective number of neutrino-like rel-
ativistic degrees of freedom of Neff = 3.36±0.34, compatible
with the standard value of 3.046.

– The results from Planck are consistent with the results of
standard big bang nucleosynthesis. In fact, combining the
CMB data with the most recent results on the deuterium
abundance, leads to the constraint Neff = 3.02 ± 0.27, again
compatible with the standard value of 3.046.

– New limits on a possible variation of the fine-structure
constant, dark matter annihilation and primordial magnetic
fields.

We also find a number of marginal (around 2σ) results,
perhaps indicative of internal tension within the Planck data.
Examples include the preference of the (phenomenological)
lensing parameter for values greater than unity (AL = 1.23±0.11;
Eq. 44) and for negative running (dns/d ln k = −0.015±0.09; Eq.
62b). In Planck Collaboration XXII (2013), the Planck data indi-
cate a preference for anti-correlated isocurvature modes and for
models with a truncated power spectrum on large scales. None
of these results have a decisive level of statistical significance,
but they can all be traced to an unusual aspect of the tempera-
ture power spectrum at low multipoles. As can be seen in Fig.
1, and on an expanded scale in the left-hand panel of Fig. 39,
the measured power spectrum shows a dip relative to the best-fit
base ΛCDM cosmology in the multipole range 20 <∼ ! <∼ 30 and
an excess at ! = 40. The existence of “glitches” in the power
spectrum at low multipoles was noted by the WMAP team in the

first-year papers (Hinshaw et al. 2003; Spergel et al. 2003) and
acted as motivation to fit an inflation model with a step-like fea-
ture (Peiris et al. 2003). Similar investigations have been carried
out by a number of authors, (see e.g., Mortonson et al. 2009, and
references therein). At these low multipoles, the Planck spec-
trum is in excellent agreement with the WMAP nine-year spec-
trum (Planck Collaboration XV 2013), so it is unlikely that any
of the features such as the low quadrupole or “dip” in the multi-
pole range 20–30 are caused by instrumental effects or Galactic
foregrounds. These are real features of the CMB anisotropies.

The Planck data, however, constrain the parameters of the
base ΛCDM model to such high precision that there is little re-
maining flexibility to fit the low-multipole part of the spectrum.
To illustrate this point, the right-hand panel of Fig. 39 shows the
68% and 95% limits on the relative amplitude of the baseΛCDM
model (sampling the chains constrained by the full likelihood)
fitted only to the Planck TT likelihood over the multipole range
2 ≤ ! ≤ !max. From multipoles !max ≈ 25 to multipoles !max ≈
35, we see more than a 2σ departure from values of unity. (The
maximum deviation from unity is 2.7σ at ! = 30.) It is difficult
to know what to make of this result, and we present it here as a
“curiosity” that needs further investigation. The Planck temper-
ature data are remarkably consistent with the predictions of the
base ΛCDM model at high multipoles, but it is also conceivable
that the ΛCDM cosmology fails at low multipoles. There are
other indications, from both WMAP and Planck data for “anoma-
lies” at low multipoles (Planck Collaboration XXIII 2013), that
may be indicative of new physics operating on the largest scales
in our Universe. Interpretation of large-scale anomalies (includ-
ing the results shown in Fig. 39) is difficult in the absence of a
theoretical framework. The problem here is assessing the role of
a posteriori choices, i.e., that inconsistencies attract our atten-
tion and influence our choice of statistical test. Nevertheless, we
know so little about the physics of the early Universe that we
should be open to the possibility that there is new physics be-
yond that assumed in the base ΛCDM model. Irrespective of the
interpretation, the unusual shape of the low multipole spectrum
is at least partly responsible for some of the 2σ effects seen in
the analysis of extensions to theΛCDM model discussed in Sect.
6.
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Fig. 39. Left: Planck TT spectrum at low multipoles with 68% ranges on the posteriors. The “rainbow” band show the best fits to
the entire Planck+WP likelihood for the base ΛCDM cosmology, colour-coded according to the value of the scalar spectral index
ns. Right: Limits (68% and 95%) on the relative amplitude of the base ΛCDM fits to the Planck+WP likelihood fitted only to the
Planck TT likelihood over the multipole range 2 ≤ ! ≤ !max.

We find the following notable results using CMB data alone:

– The deviation of the scalar spectral index from unity is ro-
bust to the addition of tensor modes and to changes in the
matter content of the Universe. For example, adding a tensor
component we find ns = 0.9600 ± 0.0072, a 5.5σ departure
from ns = 1.

– A 95% upper limit on the tensor-to-scalar ratio of r0.002 <
0.11. The combined contraints on ns and r0.002 are on the
borderline of compatibility with single-field inflation with a
quadratic potential (Fig. 23).

– A 95% upper limit on the summed neutrino mass of
∑

mν <
0.66 eV.

– A determination of the effective number of neutrino-like rel-
ativistic degrees of freedom of Neff = 3.36±0.34, compatible
with the standard value of 3.046.

– The results from Planck are consistent with the results of
standard big bang nucleosynthesis. In fact, combining the
CMB data with the most recent results on the deuterium
abundance, leads to the constraint Neff = 3.02 ± 0.27, again
compatible with the standard value of 3.046.

– New limits on a possible variation of the fine-structure
constant, dark matter annihilation and primordial magnetic
fields.

We also find a number of marginal (around 2σ) results,
perhaps indicative of internal tension within the Planck data.
Examples include the preference of the (phenomenological)
lensing parameter for values greater than unity (AL = 1.23±0.11;
Eq. 44) and for negative running (dns/d ln k = −0.015±0.09; Eq.
62b). In Planck Collaboration XXII (2013), the Planck data indi-
cate a preference for anti-correlated isocurvature modes and for
models with a truncated power spectrum on large scales. None
of these results have a decisive level of statistical significance,
but they can all be traced to an unusual aspect of the tempera-
ture power spectrum at low multipoles. As can be seen in Fig.
1, and on an expanded scale in the left-hand panel of Fig. 39,
the measured power spectrum shows a dip relative to the best-fit
base ΛCDM cosmology in the multipole range 20 <∼ ! <∼ 30 and
an excess at ! = 40. The existence of “glitches” in the power
spectrum at low multipoles was noted by the WMAP team in the

first-year papers (Hinshaw et al. 2003; Spergel et al. 2003) and
acted as motivation to fit an inflation model with a step-like fea-
ture (Peiris et al. 2003). Similar investigations have been carried
out by a number of authors, (see e.g., Mortonson et al. 2009, and
references therein). At these low multipoles, the Planck spec-
trum is in excellent agreement with the WMAP nine-year spec-
trum (Planck Collaboration XV 2013), so it is unlikely that any
of the features such as the low quadrupole or “dip” in the multi-
pole range 20–30 are caused by instrumental effects or Galactic
foregrounds. These are real features of the CMB anisotropies.

The Planck data, however, constrain the parameters of the
base ΛCDM model to such high precision that there is little re-
maining flexibility to fit the low-multipole part of the spectrum.
To illustrate this point, the right-hand panel of Fig. 39 shows the
68% and 95% limits on the relative amplitude of the baseΛCDM
model (sampling the chains constrained by the full likelihood)
fitted only to the Planck TT likelihood over the multipole range
2 ≤ ! ≤ !max. From multipoles !max ≈ 25 to multipoles !max ≈
35, we see more than a 2σ departure from values of unity. (The
maximum deviation from unity is 2.7σ at ! = 30.) It is difficult
to know what to make of this result, and we present it here as a
“curiosity” that needs further investigation. The Planck temper-
ature data are remarkably consistent with the predictions of the
base ΛCDM model at high multipoles, but it is also conceivable
that the ΛCDM cosmology fails at low multipoles. There are
other indications, from both WMAP and Planck data for “anoma-
lies” at low multipoles (Planck Collaboration XXIII 2013), that
may be indicative of new physics operating on the largest scales
in our Universe. Interpretation of large-scale anomalies (includ-
ing the results shown in Fig. 39) is difficult in the absence of a
theoretical framework. The problem here is assessing the role of
a posteriori choices, i.e., that inconsistencies attract our atten-
tion and influence our choice of statistical test. Nevertheless, we
know so little about the physics of the early Universe that we
should be open to the possibility that there is new physics be-
yond that assumed in the base ΛCDM model. Irrespective of the
interpretation, the unusual shape of the low multipole spectrum
is at least partly responsible for some of the 2σ effects seen in
the analysis of extensions to theΛCDM model discussed in Sect.
6.
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This motivate to construct models of inflation with local features 
in potential or power spectrum

1- Wiggles models 
This feature can happens when the initial state in not vacuum
or in models where there are periodically recurring events such 
as in axion Monodromy inflation
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tests where carried out both with and without test features. It can
be argued that foregrounds are unlikely to explain the observed
feature because all the foreground models involve smooth power
law templates whereas this feature is localized in multipole num-
ber. It is important to assess by means of a more extensive set of
simulations whether the statistical significance assigned to this
result is accurate.

We investigate which CMB angular multipoles correspond
to this apparent feature. Fig. 16 shows the C! residual from
the reconstructed power spectrum with the best fit power law
power spectrum subtracted together with the data for each fre-
quency map correlation combinations used in the CamSpec
likelihood. We observe a smooth dip around ! ≈ 1800, which
is significant compared to the error bars, in particular for the
217 GHz map. To determine whether this dip is in fact responsi-
ble for large deviation in the reconstruction, we take the λ = 103

best fit reconstruction and set f (k) = 0 everywhere except for
0.1 Mpc−1 < k < 0.15 Mpc−1—the region where the large devi-
ation is located—and calculated the corresponding C! spectrum.
Fig. 17 plots the C! residuals of this test feature, which show a
large dip at around ! ≈ 1800, thus demonstrating that the dip
in the C! residual of the data centred at ! ≈ 1800 is responsible
for the large excursions in the primordial power spectrum recon-
structions. The features in the temperature power spectrum, par-
ticularly the broad dip at ! ≈ 1800, cannot be explained at this
level by any of the known systematics that have been propagated
through the the full data analysis pipeline (Planck Collaboration
VI, 2013). Nevertheless, we caution the reader that these (and
other small) departures from the best fit ΛCDM spectrum may
possibly be due to unknown systematic effects, or inaccurate
propagation of known systematics, into the final power spectra.
This possibility will be investigated intensively over the coming
year using the data from the full mission.

8. Parametric searches for primordial power
spectrum features

In this section we continue to investigate deviations of the pri-
mordial power spectrum from a smooth, featureless function, in
this case by testing a set of theoretically motivated models.

8.1. Models and priors

We consider three models describing features in the primordial
power spectrum, adding a global oscillation, a localized oscilla-
tion, or a cutoff to the large scale power spectrum.

8.1.1. Wiggles model

Due to the exponential growth of the scale factor during in-
flation, a periodically recurring event in proper time which af-
fects the amplitude of curvature perturbations would produce
features that are periodic in ln k. This occurs, for instance,
for non-Bunch-Davies initial conditions (Easther et al., 2001;
Danielsson, 2002; Martin & Brandenberger, 2003; Bozza et al.,
2003), or, e.g., in the axion monodromy model (Silverstein &
Westphal, 2008), as a consequence of instanton-induced correc-
tions to the potential (Flauger et al., 2010). In these scenarios
the primordial spectrum has an oscillation superimposed on an
underlying smooth spectrum.

Here we consider the following parameterization of the pri-
mordial spectrum (referred to as the wiggles model):

PR(k) = P0(k)
{

1 + αw sin
[
ω ln
(

k
k∗

)
+ ϕ

]}
, (50)

with amplitude αw, frequency ω, and phase ϕ to quantify the
superimposed oscillations. The underlying smooth spectrum has
the standard power law form

P0(k) = As

(
k
k∗

)ns−1

. (51)

The prior ranges for the wiggles model parameters are given
in Table 10. The obvious prior for the phase ϕ is uniform over
the interval (0, 2π). We choose a uniform prior on αw (a loga-
rithmic prior on αw introduces considerable dependence of the
resulting marginalized posteriors on the lower limit and does not
contain the smooth spectrum as a limiting case). The sensitiv-
ity to primordial wiggles is limited at high frequencies by the
width of the transfer function (Hamann et al., 2008a) and at low
frequencies by the requirement of at least one full oscillation in
the observable part of the power spectrum. Since Planck data
are sensitive to wavenumbers over a range of roughly six orders
of magnitude, this condition implies ω ! 0.5. Here we restrict
the analysis to ω < 100 and assume a uniform prior. Larger
values of the frequency are theoretically possible, e.g., in axion
monodromy models (Flauger et al., 2010), but the amplitude of
the oscillations in the C!s will be suppressed with respect to the
primordial one. A comprehensive search for higher frequency
oscillations is currently underway.

8.1.2. Step-inflation model

If the slow roll of inflation is briefly interrupted, for instance by
a phase transition (Starobinsky, 1998; Hunt & Sarkar, 2004), a
burst of resonant particle production (Chung et al., 2000), a sud-
den turn in field space (Achúcarro et al., 2011) or a step in the in-
flaton potential (Adams et al., 2001), a localized oscillatory fea-
ture is superimposed on the scalar primordial power spectrum.
We adopt the approximate parameterization for such a feature
from a step in the potential, introduced by Adshead et al. (2012),
with

PR(k) = exp
[
lnP0(k) +

Af

3
kηf/xd

sinh(kηf/xd)
W ′(kηf )

]
, (52)

where

W ′(x) =
(
−3 +

9
x2

)
cos 2x +

(
15 − 9

x2

)
sin 2x

2x
. (53)

As in the wiggles model, we choose a uniform prior on the am-
plitude parameter Af (see Table 10). The parameter ηf deter-
mines both the frequency of the feature and its location, which
is required to lie in the observable range. The damping envelope
of the feature is set by the ratio ηf/xd. We impose uniform priors
on the logarithms of ηf and xd.

8.1.3. Cutoff model

A number of models were suggested to explain the apparent lack
of power in the quadrupole and octupole of the WMAP tem-
perature power spectrum. Typically in these models, the onset
of a slow-roll phase coincides with the time when the largest
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tests where carried out both with and without test features. It can
be argued that foregrounds are unlikely to explain the observed
feature because all the foreground models involve smooth power
law templates whereas this feature is localized in multipole num-
ber. It is important to assess by means of a more extensive set of
simulations whether the statistical significance assigned to this
result is accurate.

We investigate which CMB angular multipoles correspond
to this apparent feature. Fig. 16 shows the C! residual from
the reconstructed power spectrum with the best fit power law
power spectrum subtracted together with the data for each fre-
quency map correlation combinations used in the CamSpec
likelihood. We observe a smooth dip around ! ≈ 1800, which
is significant compared to the error bars, in particular for the
217 GHz map. To determine whether this dip is in fact responsi-
ble for large deviation in the reconstruction, we take the λ = 103

best fit reconstruction and set f (k) = 0 everywhere except for
0.1 Mpc−1 < k < 0.15 Mpc−1—the region where the large devi-
ation is located—and calculated the corresponding C! spectrum.
Fig. 17 plots the C! residuals of this test feature, which show a
large dip at around ! ≈ 1800, thus demonstrating that the dip
in the C! residual of the data centred at ! ≈ 1800 is responsible
for the large excursions in the primordial power spectrum recon-
structions. The features in the temperature power spectrum, par-
ticularly the broad dip at ! ≈ 1800, cannot be explained at this
level by any of the known systematics that have been propagated
through the the full data analysis pipeline (Planck Collaboration
VI, 2013). Nevertheless, we caution the reader that these (and
other small) departures from the best fit ΛCDM spectrum may
possibly be due to unknown systematic effects, or inaccurate
propagation of known systematics, into the final power spectra.
This possibility will be investigated intensively over the coming
year using the data from the full mission.

8. Parametric searches for primordial power
spectrum features

In this section we continue to investigate deviations of the pri-
mordial power spectrum from a smooth, featureless function, in
this case by testing a set of theoretically motivated models.

8.1. Models and priors

We consider three models describing features in the primordial
power spectrum, adding a global oscillation, a localized oscilla-
tion, or a cutoff to the large scale power spectrum.

8.1.1. Wiggles model

Due to the exponential growth of the scale factor during in-
flation, a periodically recurring event in proper time which af-
fects the amplitude of curvature perturbations would produce
features that are periodic in ln k. This occurs, for instance,
for non-Bunch-Davies initial conditions (Easther et al., 2001;
Danielsson, 2002; Martin & Brandenberger, 2003; Bozza et al.,
2003), or, e.g., in the axion monodromy model (Silverstein &
Westphal, 2008), as a consequence of instanton-induced correc-
tions to the potential (Flauger et al., 2010). In these scenarios
the primordial spectrum has an oscillation superimposed on an
underlying smooth spectrum.

Here we consider the following parameterization of the pri-
mordial spectrum (referred to as the wiggles model):

PR(k) = P0(k)
{

1 + αw sin
[
ω ln
(

k
k∗

)
+ ϕ

]}
, (50)

with amplitude αw, frequency ω, and phase ϕ to quantify the
superimposed oscillations. The underlying smooth spectrum has
the standard power law form

P0(k) = As

(
k
k∗

)ns−1

. (51)

The prior ranges for the wiggles model parameters are given
in Table 10. The obvious prior for the phase ϕ is uniform over
the interval (0, 2π). We choose a uniform prior on αw (a loga-
rithmic prior on αw introduces considerable dependence of the
resulting marginalized posteriors on the lower limit and does not
contain the smooth spectrum as a limiting case). The sensitiv-
ity to primordial wiggles is limited at high frequencies by the
width of the transfer function (Hamann et al., 2008a) and at low
frequencies by the requirement of at least one full oscillation in
the observable part of the power spectrum. Since Planck data
are sensitive to wavenumbers over a range of roughly six orders
of magnitude, this condition implies ω ! 0.5. Here we restrict
the analysis to ω < 100 and assume a uniform prior. Larger
values of the frequency are theoretically possible, e.g., in axion
monodromy models (Flauger et al., 2010), but the amplitude of
the oscillations in the C!s will be suppressed with respect to the
primordial one. A comprehensive search for higher frequency
oscillations is currently underway.

8.1.2. Step-inflation model

If the slow roll of inflation is briefly interrupted, for instance by
a phase transition (Starobinsky, 1998; Hunt & Sarkar, 2004), a
burst of resonant particle production (Chung et al., 2000), a sud-
den turn in field space (Achúcarro et al., 2011) or a step in the in-
flaton potential (Adams et al., 2001), a localized oscillatory fea-
ture is superimposed on the scalar primordial power spectrum.
We adopt the approximate parameterization for such a feature
from a step in the potential, introduced by Adshead et al. (2012),
with

PR(k) = exp
[
lnP0(k) +

Af

3
kηf/xd

sinh(kηf/xd)
W ′(kηf )

]
, (52)

where

W ′(x) =
(
−3 +

9
x2

)
cos 2x +

(
15 − 9

x2

)
sin 2x

2x
. (53)

As in the wiggles model, we choose a uniform prior on the am-
plitude parameter Af (see Table 10). The parameter ηf deter-
mines both the frequency of the feature and its location, which
is required to lie in the observable range. The damping envelope
of the feature is set by the ratio ηf/xd. We impose uniform priors
on the logarithms of ηf and xd.

8.1.3. Cutoff model

A number of models were suggested to explain the apparent lack
of power in the quadrupole and octupole of the WMAP tem-
perature power spectrum. Typically in these models, the onset
of a slow-roll phase coincides with the time when the largest

2- Step inflation models

This happens when there is a sudden change in potential or a 
sharp turn in field space or fro phase transition and particle 
creations 

3- Cut off model
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Model Parameter Prior range

Wiggles
αw [0, 0.2]
ω [0.5, 100]
ϕ [0,2π]

Step-inflation
Af [0, 0.2]
ln
(
ηf/Mpc

)
[0, 12]

ln xd [-1, 5]

Cutoff ln
(
kc/Mpc−1

)
[-12, -4]

λc [0, 15]

Table 10. Prior ranges imposed for the wiggles, step-inflation,
and cutoff model parameters.

observable scales exited the horizon during inflation. This nat-
urally suppresses the primordial power spectrum at large scales
(see, e.g., Sinha & Souradeep, 2006). We consider a phenomeno-
logical parameterization of a cutoff proposed in Contaldi et al.
(2003), given by

PR(k) = P0(k)


1 − exp


−
(

k
kc

)λc




 . (54)

We apply uniform priors on λc, which determines the steepness
of the cutoff, and on the logarithm of the cutoff scale kc.

8.2. Method

To achieve the necessary numerical precision for models with
features in the primordial spectra, we modify the standard set-
tings of the CAMB numerical code in order to calculate C' at
each ' rather than interpolating and refine the grid in wavenum-
ber for the numerical integration. These changes significantly
slow down the computation. In the models considered here,
the likelihood function has characteristics that make sampling
difficult, such as extended plateaus and multiple isolated max-
ima, rendering the Metropolis-Hastings algorithm inefficient.
We therefore use the nested sampling algorithm implemented in
the MultiNest add-on (Feroz & Hobson, 2008; Feroz et al.,
2009) to CosmoMC (Lewis & Bridle, 2002), which is also able
to calculate the Bayesian evidence and likelihood profiles.

The signatures of the feature models under investigation are
rather unique and generally cannot be mimicked by other param-
eters, which only lead to smooth variations of the power spec-
trum (with an exception of highly tuned very low-frequency os-
cillations that can change the acoustic peak structure). We thus
restrict ourselves to varying only the parameters describing the
features and keep all remaining cosmological and nuisance pa-
rameters fixed to their ΛCDM best-fit values.14

8.3. Results

For all three models we find that including these additional fea-
tures improves the quality of the fit with respect to a pure power
law spectrum. For the Planck+WP data, we show the best-fit pri-
mordial curvature power spectra and temperature angular power

14 An a-posteriori maximization of the likelihood in a narrow parame-
ter range around the best-fit feature model parameters, including a varia-
tion of all remaining cosmological and nuisance parameters, shows that
the change in the best-fit χ2

eff is merely O(1) and hence does not affect
our conclusions.
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Fig. 18. Top: Best fit primordial spectrum of curvature pertur-
bations for the power law (black), wiggles (red), step-inflation
(green), and cutoff (blue) models. Bottom: Residuals of the tem-
perature angular power spectrum. Note that the scale of the ver-
tical axis changes at ' = 50. Inset: Zoom on the region of the
first acoustic peak.

spectrum residuals in Fig. 18, and report the best fit parameter
values in Table 11. Since in all three cases the likelihood func-
tions do not tend to zero in all directions of the respective param-
eter spaces, the Bayesian quantities (i.e., posterior distributions
and Bayes factors) depend considerably on the choice of prior.
For this reason, we also quote two prior-independent quantities,
the effective χ2 (i.e., −2∆ lnLmax = 2 lnLmax − 2 lnLΛCDM

max ) and
the profile −2∆ lnLmax as a function of selected model param-
eters plotted alongside the marginalized posteriors in Fig. 19,
which illustrates the unconventional shape of the likelihood
functions.

For the wiggles model, oscillations around the first acous-
tic peak and in the 700 < ' < 900 range improve the fit to the
data, whereas for the best fit step-inflation model the spectrum
between the Sachs-Wolfe plateau and the first acoustic peak is
fit better. Quantitatively, the cutoff model improves the fit only
modestly, with ∆χ2

eff ≈ 3, but both the wiggles and step-inflation
models lead to a larger improvement, with ∆χ2

eff ≈ 10, at the cost
of three new parameters. Already for pre-Planck data, improve-
ments of ∆χ2

eff ≈ 10 have been reported in related analyses (e.g.,
Peiris et al. 2003; Martin & Ringeval 2004; Elgarøy et al. 2003;
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For Wiggles model the oscillation around the first acoustic 
peak and in 700 < l < 900 improve the fit.

For the Step inflation model the fit is improved between 
the Sachs-Wolf plateau and the first acoustic peak.

Statistical significance?

For all three models, including the local features improves the 
quality of the fit with respect to a pure power law spectrum.

Results for Features

The cut off model improves the fit moderately 

“Whether or not these findings can be considered 
statistically significant or arise simply from over-fitting noisy 
data is not a trivial question.’’ 
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Non-Gaussianities on CMB

Simple models of slow-roll inflation predicts almost Gaussian perturbations

However, models like DBI inflation predicts large non-Gaussian perturbations

What is non-Gaussianity?

In slow-roll inflation there is not much interaction, 
Hint ~ 0,  so there is no significant non-Gaussinities  

Defining non-Gaussianity parameter fNL via

Simple models of slow roll inflation predict

R ∼ H

φ̇
δφ (1)

〈RkR′
k〉 =

1

2k3
δ3(k + k′)

(
H2

φ̇

)2

(2)

PR ∼ 10−9 kns−1 (3)

fNL ∼ ns − 1 ∼ 0.01 (4)

γ =
1

√
1− f φ̇2

=
1

c2
s

(5)

φ2
c > 12M2

P , εψ % 1 , β > 1 (6)

φ < φc (7)

ns − 1 = −4κψ ln(k/kc) (8)

PR & 2× 10−9 (9)

〈δχ2〉 (10)

m2
+ = m2 + g2〈ψ2〉 (11)

V =
m2

2
φ2 +

1

2
g2φ2ψ2 +

λ

4

(

ψ2 − M2

λ

)2

(12)

m2
ψ = ∂2

ψV = g2(φ2 − φ2
c) (13)

1

Maldacena, 2002

k1

k2 k3
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The action is

where                  from the throat geometry and AdS/CFT considerations

R ∼ H

φ̇
δφ (1)

〈RkR′
k〉 =

1

2k3
δ3(k + k′)

(
H2

φ̇

)2

(2)

PR ∼ 10−9 kns−1 (3)

PR ∼ 2× 10−9 (4)

γ =
1
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1− f φ̇2

=
1

c2
s

(5)

φ2
c > 12M2

P , εψ & 1 , β > 1 (6)

φ < φc (7)

ns − 1 = −4κψ ln(k/kc) (8)

PR ' 2× 10−9 (9)

〈δχ2〉 (10)
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4

(
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)2

(12)

m2
ψ = ∂2

ψV = g2(φ2 − φ2
c) (13)

1

Non-Gaussianities in DBI Inflation

The level of non-Gaussianity predicted in this model is

R ∼ H

φ̇
δφ (1)

〈RkR′
k〉 =

1

2k3
δ3(k + k′)

(
H2

φ̇

)2

(2)

PR ∼ 10−9 kns−1 (3)
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1

c2
s

(4)

Σ =
H2ε

c2
s

= −Ḣ

c2
s

(5)

γ =
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√
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=
1

c2
s

(6)

φ2
c > 12M2

P , εψ % 1 , β > 1 (7)

φ < φc (8)

ns − 1 = −4κψ ln(k/kc) (9)

PR & 2× 10−9 (10)

1

in which cs   is the sound speed of cosmological perturbations 

One can obtain fNL  as big as 100, which is easily observable by PLANCK.

This should be compared to slow-roll calculation in which 

R ∼ H

φ̇
δφ (1)
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1

Maldacena, 2002
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The Shapes of  Non-Gaussianities

Consider the three-point function as

so   A   determines the shapes of the non-Gaussianity 

Shape  in DBI inflation Shape in multiple-field models
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Planck Results for non-Gaussianity

Implications for particular models

UV DBI inflation

IR DBI inflation

Curvaton model

“ The paradigm of standard single field slow-roll  inflation has survived its stringent test to date”

No detection of non-Gaussianity. 

V =
m2

2
φ2 , V =

λ

4
φ4 (1)

V = V0 −
β

2
H2φ2 (2)

∆φ <M P (3)

∆φ >M P (4)

ä = −4πG

3
(ρ + 3p) > 0 → p < −ρ

3
(5)

in which ζ is the curvature perturbations .

In terms of quantum field theory, one has

ζ = ψ +
H

φ̇
δφ (6)

φ2
c > 12M2

P (7)

Mg ∼
M2

s

MP
(8)

1
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Planck and Inflation

• We are in the golden age of cosmology.

• Exact scale invariance is ruled out with 6 sigma CL.

• Simple single field models of inflation are well consistent with data.

• There was no detection of local type non-Gaussianity. This will have 
important implications for multiple fields scenarios .

• There is shortage of power on large scales, l =20-30. Does this 
imply a local feature in power spectrum? 

• Detection of hemispherical asymmetry in Sky.  Does it hint towards 
statistical anisotropy from models beyond scalar fields, such as  
vector or U(1) gauge fields? Does it indicate that our universe is 
located inside a big “Mega Universe”?

Papers from IPM cited in Planck reports: Alishahiha  et al :  DBI inflation

Chen, H.F., Namjoo, Sasaki:  2012
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