Exact ground state of quantum spin systems

Abdollah Langari

Department of Physics, Sharif University of Technology

langari@sharif.edu

http://spin.cscm.ir/langari/

June 21, 2011, IPM, Tehran
Lecture 1

- Some General introduction to spin systems
- Exact factorized ground state for a pair of spins
- Generalization of factorized state to arbitrary spins, lattices and interactions
- Proof of the factorized state to be the ground state

Lecture 2

- The factorized ground state for frustrated spin models
- The spin wave theory
- Application of spin wave theory close to factorized state

Motivation

Why spin models are important?

- They are basic models in quantum magnetism, Ex: Ising model and Heisenberg model, ...
- Many novel phenomena and exotic phases, Ex: connection to High T_c superconductivity, magnetic monopoles
- Important for quantum information science and computation models
- Spin models are incorporated in many other disciplines, Biophysics, ...
- Fundamental theory for magnetic models, Ex: Marshal theorem
Some examples

Exotic effects in spin models

- **Haldane’s Conjecture**: (for spin S Anti-Ferromagnetic Heisenberg (AFH) chain)

<table>
<thead>
<tr>
<th>S</th>
<th>Spectrum</th>
<th>Correlation functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integer</td>
<td>Gapful</td>
<td>Exponential decay</td>
</tr>
<tr>
<td>Half integer</td>
<td>Gapless</td>
<td>Algebraic decay</td>
</tr>
</tbody>
</table>

- **Bond Alternation** (Affleck, et.al PRB36 (1987))
 Spin-1/2 dimerized ($\gamma \neq 0$) AFH is **gapful**.

 \[J(1+\gamma) \quad J(1+\gamma) \quad J(1-\gamma) \]
Some examples

Exotic effects in spin models

- **Ladders** (Coupled chains, Ex: spin-1/2 AFH \(n \)-leg ladder)

<table>
<thead>
<tr>
<th>(n)</th>
<th>Spectrum</th>
<th>Correlation functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Even</td>
<td>Gapful</td>
<td>Exponential decay</td>
</tr>
<tr>
<td>Odd</td>
<td>Gapless</td>
<td>Algebraic decay</td>
</tr>
</tbody>
</table>

- **Bond Alternation** *(Martin-Delgado, et.al PRL77, (1996))*

The staggered bond-alternation \(s=1/2 \) AFH ladder has two gapful phases which are separated by a **gapless line** and depends on the bond-alternation parameter.

![Diagram](image)
Some examples

Single Molecule Magnets (SMM)

- A giant molecule composed of some tens of atoms

\[\text{Mn}_{12} : 4 \times \text{Mn}^{4+} \text{ each with } S = \frac{3}{2} \text{ and } 8 \times \text{Mn}^{3+} \text{ with } S = 2 \]

\[\text{Fe}_8 : 8 \times \text{Fe}^{3+} \text{ each with } S = \frac{5}{2} \]
Why ground state is important?

Quantum phase transitions (QPT)

It is a phase transition at $T = 0$ due quantum fluctuations by change of a parameter in Hamiltonian, like pressure, magnetic field, impurity concentration, ...

\[
\lim_{T \to 0} \langle A \rangle_T = \lim_{T \to 0} \frac{\sum_i \langle \psi_i | A | \psi_i \rangle e^{-E_i}}{Z} = \frac{\langle \psi_0 | A | \psi_0 \rangle e^{-E_0}}{e^{-E_0} + \sum_{i \neq 0} \langle \psi_i | A | \psi_i \rangle e^{-(E_i - E_0)}} = \langle \psi_0 | A | \psi_0 \rangle
\]

$|\psi_0\rangle \equiv$ ground state, $E_0 < E_1 < E_2...$
Why ground state is important?

Fermi temperature is typically, \(T_f = 10^4 \)

Most of properties can be captured via the ground state.

Low temperature behaviours are affected by the nature of ground state.
Two spins model

Fully anisotropic Heisenberg model in a magnetic field

\[H' = J^x \sigma^x \rho^x + J^y \sigma^y \rho^y + J^z \sigma^z \rho^z + h' (\sigma^z + \rho^z), \]
(1)

\(J^\mu, \mu = x, y, z \) are the exchange couplings in different directions
\(h' \) is proportional to the magnetic field
\(\sigma \) and \(\rho \) are spin operators

Factorized eigenstate

We are looking for a factorized state which is satisfied by

\[|\psi\rangle = |\sigma\rangle |\rho\rangle \implies H'|\psi\rangle = \epsilon |\psi\rangle \]
(2)

\(|\rho\rangle \) and \(|\sigma\rangle \) are the single particle states
The single particle kets

\[\sigma = \frac{1}{2}, \quad \rho = 1 \]

\[
|\sigma\rangle = a_+|+\rangle + \frac{1}{2} + a_-|-\frac{1}{2}\rangle, \quad |\rho\rangle = b_+|+1\rangle + b_0|0\rangle + b_-|-1\rangle.
\]

(3)

Parametrization of the coefficients

The coefficients \(a_{\pm}\) and \(b_{\pm,0}\) are defined such that the single particle states \(|\sigma\rangle\) and \(|\rho\rangle\) are the eigenstates of \(\vec{\sigma} \cdot \hat{n}'\) and \(\vec{\rho} \cdot \hat{n}''\) with eigenvalues \(+\frac{1}{2}\) and \(+1\); respectively. The unit vectors \(\hat{n}'\) and \(\hat{n}''\) are defined by spherical angles \((\theta, \varphi)\) and \((\beta, \alpha)\), respectively.

\[
a_+ = \cos \frac{\theta}{2} \exp \left(-i \frac{\varphi}{2}\right), \quad a_- = \sin \frac{\theta}{2} \exp \left(i \frac{\varphi}{2}\right),
\]

(4)

\[
b_+ = \frac{1}{2} (1 + \cos \beta) \exp (-i \alpha), \quad b_0 = \frac{1}{\sqrt{2}} \sin \beta, \quad b_- = \frac{1}{2} (1 - \cos \beta) \exp (i \alpha).
\]
Solving a set of linear coupled equations

\[H' = J^x \sigma^x \rho^x + J^y \sigma^y \rho^y + J^z \sigma^z \rho^z + h'(\sigma^z + \rho^z), \]

\[|\psi\rangle = |\sigma\rangle |\rho\rangle \implies H'|\psi\rangle = \epsilon |\psi\rangle \]

\[h' = h'_f = \frac{\sqrt{4J^x J^y + 5J^z J^z + J^z C_1}}{2\sqrt{2}}, \]

\[C_1 \equiv \sqrt{8(2J^x + J^y)(J^x + 2J^y) + 9J^z J^z}, \]

\[\epsilon = \frac{J^x J^y}{2J^z} - \frac{h'^2}{J^z}. \]

(5)
Parameters of the factorized eigenstate

\[\theta = 2 \tan^{-1} \sqrt{\frac{|A_1|}{|A_2|}}, \quad \phi = \arg A_1 + \frac{1}{2} \arg A_3, \]

\[\beta = \cos^{-1} \frac{|A_3| - 1}{|A_3| + 1}, \quad \alpha = -\frac{1}{2} \arg A_3, \quad (6) \]

where

\[A_1 = \frac{(a_-)(b_0)}{(a_+)(b_-)} = \frac{\sqrt{2} (J^z + h'_f + 2\epsilon)}{J^x + J^y}, \]

\[A_2 = \frac{(a_+)(b_0)}{(a_-)(b_-)} = \frac{\sqrt{2} (-J^z + 3h'_f + 2\epsilon)}{J^x - J^y}, \]

\[A_3 = \frac{b_+}{b_-} = \frac{A_1 (J^y - J^x)}{\sqrt{2} (J^z + 3h'_f - 2\epsilon)}. \]
Different choices

The above expressions justify that A_1 and A_3 are real values which imply that their arguments be either 0 or π. Thus, there are four possible choices for α and ϕ,

(I) $\alpha = 0, \ \varphi = 0$

(II) $\alpha = 0, \ \varphi = \pi$

(III) $\alpha = \frac{\pi}{2}, \ \varphi = -\frac{\pi}{2}$

(IV) $\alpha = \frac{\pi}{2}, \ \varphi = \frac{\pi}{2}$

• Spins are located in the xz-plane for choices I and II
• Spins are located in the yz-plane for III and IV
• yz-plane spins are mapped to xz-plane by interchange of $J^x \leftrightarrow J^y$.
• $(\theta, \varphi = 0) \equiv (-\theta, \varphi = \pi)$

Therefore, we only consider (I): $\alpha = 0, \varphi = 0$, as a general case.
Extension to \((1/2, 1)\) ferrimagnetic chain

The factorized state is:
\[
|\psi\rangle = \bigotimes_{i=1}^{N_c} |\sigma_i(\theta)\rangle |\rho_i(\beta)\rangle.
\]

Is the factorized state a ground state?

The Hamiltonian is the sum of two-body terms, each term is in its minimum energy, thus the sum is in its minimum energy.

\[
H_i' = J^x \sigma_i^x \rho_i^x + J^y \sigma_i^y \rho_i^y + J^z \sigma_i^z \rho_i^z + h'(\sigma_i^z + \rho_i^z),
\]

\[
H = \sum_{i}^{N_c} H_i'
\]
Generalization to arbitrary spin model

General \((\sigma, \rho)\) Hamiltonian on arbitrary lattice and interactions

\[
H = \sum_{i, r} \left[\zeta_i \hat{\zeta}_{i+r} (J^x_r \sigma^x_i \rho^x_{i+r} + J^y_r \sigma^y_i \rho^y_{i+r} + J^z_r \sigma^z_i \rho^z_{i+r}) \right] + h \sum_i (\sigma^z_i + \rho^z_i), \quad (7)
\]

The Hamiltonian is again a sum of bond terms: \(H = \sum_{i, r} H'_{i, r}\)

General procedure

- Rotation on different spins to get a ferromagnetic state

The rotation operator is \(D = D^\sigma(0, \theta, 0)D^\rho(0, \beta, 0)\) where

\[
D^\rho(0, \beta, 0) = D(\alpha = 0, \beta, \gamma = 0) = D_z(\alpha)D_y(\beta)D_z(\gamma),
\]

\[
D_y(\beta) = \exp\left(\frac{-i \hat{J}^y_\beta}{\hbar}\right), \quad [\hat{J}^x_\rho, \hat{J}^y_\rho] = i\hbar \hat{J}^z_\rho, \quad \text{(Angular momentums)}
\]
General procedure

Asking for ferromagnetic eigenstate

\[D^\dagger H' D = \tilde{H}' = (J^z \cos \beta \cos \theta + J^x \sin \beta \sin \theta)\sigma^{z'}\rho^{z''} + (J^x \cos \beta \cos \theta + J^z \sin \beta \sin \theta)\sigma^{x'}\rho^{x''} + J^y \sigma^y \rho^y + (-J^z \sin \beta \cos \theta + J^x \cos \beta \sin \theta)\sigma^{z'}\rho^{x''} \\
+ (J^x \sin \beta \cos \theta - J^z \cos \beta \sin \theta)\sigma^{x'}\rho^{z''} + h'(\cos \beta \rho^{z''} - \sin \beta \rho^{x''} + \cos \theta \sigma^{z'} - \sin \theta \sigma^{x'}) \]

(8)

By defining the ladder operators:

\[\sigma^\pm = \frac{\sigma^{x'} \pm i\sigma^{y'}}{2}, \quad \rho^\pm = \frac{\rho^{x'} \pm i\rho^{y'}}{2} \]

(9)
General procedure

Solution

\[\cos \theta = - \frac{h'_f J^y + J^x (J^z^2 - J^y^2) \rho \sigma + h'_f J^z (J^y \rho + J^x \sigma)}{h'_f J^x + J^y (J^z^2 - J^x^2) \rho \sigma + h'_f J^z (J^x \rho + J^y \sigma)} , \]

\[\cos \beta = - \frac{h'_f J^y + J^x (J^z^2 - J^y^2) \rho \sigma + h'_f J^z (J^y \sigma + J^x \rho)}{h'_f J^x + J^y (J^z^2 - J^x^2) \rho \sigma + h'_f J^z (J^x \sigma + J^y \rho)} , \]

\[h'_f = \sqrt{\frac{1}{2} (2 J^x J^y \rho \sigma + (\rho^2 + \sigma^2) J^z^2 + J^z C_2)} , \]

\[C_2 \equiv \sqrt{4 \rho \sigma (\rho J^x + \sigma J^y)(\sigma J^x + \rho J^y) + (\rho^2 - \sigma^2)^2 J^z^2} , \]

\[\epsilon = \frac{J^x J^y}{J^z} \sigma \rho - \frac{h'_f^2}{J^z} . \]
The same angle is necessary for each pair

\[J_\mu^\mu = \lambda(r)J_\mu^\mu, \quad \mu = x, y, z, \quad \lambda(r) > 0. \] \hspace{1cm} (11)

The above condition guarantees a unique pair of \((\theta, \beta)\) as a solution of Eq.(10).
Proof

Simple proof for each spin magnitude

Check out if the energy of the factorized state is the ground state energy of each pairs of spins. **Note: Managable for small spins.**

General proof

- Implementing the spin wave theory where nonzero gap validates the minimum energy of the factorized state, see lecture 2 and

- A general proof is also given in

An extended version is available in persian by Masoud Mardani (pdf).
Acknowledgment

The sets of lectures are based on collaborations in our group http://spin.cscm.ir/

- Jahanfar Abouie
- Mohammad-Zhian Asadzadeh
- Taher Ghasim-Akbari
- Masoud Mardani
- Mohammad Rezai