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Motivation

Black holes in gravity

Attractive nature of gravity

Gravitational collapse

Formation of horizon

Black hole

picture from www.nasa.gov
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Motivation

Black hole Thermodynamics

Laws of black hole mechanics [Bardeen et al. (1973)]

Black holes are thermodynamic systems [Hawking(1973)]

Black hole entropy [Bekenstein(1973)]
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Motivation

Microscopic description of black hole entropy

Boltzmann principle

The microscopic origin of black hole entropy
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Motivation

Microstates vs. No hair theorem

No hair theorems in GR

No hair theorems [Robinson(1975), Mazur(1982), Chrusciel et al. (2012)]

Microstates ?

Expensive approaches (String theory, Fuzzballs, Loop Q.Gr, etc.)

Minimal resolution (GR compatible): Surface degrees of freedom

Black hole thermodynamics is associated to the horizon

TH =
κ

2π
, S =

Area of horizon

4GN
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Motivation

Surface degrees of freedom

Horizon as an inner boundary

Simultaneous breaking of diffeomorphism

Surface gravitons as Goldstone modes

How to detect these modes?
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Noether’s theorems [E.Noether(1918)]

Noether’s theorem [E.Noether(1918)]

Associated with each continuous symmetry of a theory, there exists a
conserved charge (given suitable boundary conditions)

Noether’s Second theorem.
Local symmetries imply Bianchi identities as strong equalities

Using both above theorems imply

global symmetries ←→ Conserved charge as a volume integral

local symmetries ←→ Conserved charge as a surface integral
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Motivation

Microstates at the horizon

Using the charges we can distinguish states at the horizon which were
previously gauge equivalent.

These states have different names in the literature:

Boundary gravitons [Brown-Henneaux (1986)]

Edge states [Balachandran et al. (1994),Carlip (2005)]

Soft gravitons [Strominger et al. (2013-2015)]

Symplectic symmetries
[ G.Compère, K.Hajian, A.S. and M. M.Sheikh-Jabbari, JHEP 1510, 093 (2015).]

Adiabatic modes [Mehrdad Mirbabayi, Marko Simonovi (2016)]
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Extremal black holes
and

Near horizon geometry
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Motivation

Extremal Rotating Black Hole

Extremal black holes

Vanishing Hawking temperature

“Minimum energy” for given value of
angular momenta M = M(Ji)

Degenerate Killing horizon

Finite entropy
TH −→ 0 =⇒ S −→ S0

Extremal black hole

Naked Singularity

J

M

Figure: Parameter space of Kerr
black hole
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Motivation

Near Horizon Geometry

Approach

In the extremal case, the near horizon
region can be decoupled using the near
horizon limit

Enhancement of symmetries in NHEG
SL(2,R)× U(1)N

Near horizon limit
picture from: Tom Hartman

ds2 = Γ(θ)
[
− r2dt2 +

dr2

r2
+ dθ2 +

d−3∑
i,j=1

γij(θ)(dϕ
i + kirdt)(dϕj + kjrdt)

]
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Dynamics in the near horizon geometry

Kerr/CFT proposal

A dynamical duality between asymptotic NHEK geometries and a two
dimensional chiral CFT [Strominger et.al.’09]

No Dynamics in NHEK [Reall et al. (2009) , Horowitz et al. (2009)]

Conclusion. The only states penetrating the near horizon geometry are the
soft states
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Phase Space of
Near Horizon Extremal Geometries
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NHEG Phase Space

Field Configurations

Start from the background metric

ḡµν : ds2 = Γ(θ)
[
− r2dt2 +

dr2

r2
+ dθ2 +

d−3∑
i,j=1

γij(θ)(dϕ
i + kirdt)(dϕj + kjrdt)

]

Soft modes are given by

g(ε)
µν = ḡµν +∇(µξν)

By some physical arguments, we fix ξ to be

ξ[ε(~ϕ)] = ε(ϕi)ki∂ϕi − (ki∂ϕiε) (
1

r
∂t + r∂r)

g
(ε)
µν is smooth at poles
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µν = ḡµν +∇(µξν)

By some physical arguments, we fix ξ to be

ξ[ε(~ϕ)] = ε(ϕi)ki∂ϕi − (ki∂ϕiε) (
1

r
∂t + r∂r)

g
(ε)
µν is smooth at poles

Ali Seraj (IPM) IPM 14 / 21



NHEG Phase Space

Field Configurations

Generic geometries in the phase space are obtained by exponentiating
the infinitesimal transformations

ϕ̄i = ϕi + kiF (~ϕ), r̄ = re−Ψ(~ϕ), t̄ = t− eΨ(~ϕ) − 1

r
,

where eΨ ≡ 1 + ~k · ~∂F . Therefore

ḡµν → gµν [Ψ(ϕi)]

NHEG phase space:

M =
{
gµν [Ψ(ϕi)], ∀ Ψ(ϕi) periodic

}
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Covariant phase space description of Gravity

Using the covariant phase space method, one can makeM a phase space

M→ Γ = (M,Ω)

Symplectic structure Ω is constructed covariantly through

Ω(δ1φ, δ2φ) =

∫
Σ

ω(φ, δ1φ, δ2φ)

where ω is constructed from the second variation of Lagrangian

Symmetries. ξ such that φ+ Lξφ ∈M, ∀φ ∈M

Conserved Charges are defined through

δQξ =

∫
Σ

ω(φ, δφ,Lξφ)
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NHEG Phase Space

Symmetry Algebra

Vectors ξ[ε(~ϕ)] are also symmetries of the phase space

Fourier expansion → ξ =
∑
~n c~n ξ~n

[ξ~n, ξ~m] = i~k · (~n− ~m) ξ~n+~m

d = 4→ Witt algebra

d = 5→ See figure

Infinitely many Virasoro sub algebras

~k ∈ Qn vs. k ∈ Q∗n

U(1) factors
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NHEG Phase Space

Algebra of Charges: The “NHEG Algebra”

There is a well defined symplectic structure on this phase space

Algebra of charges is a central extension of the algebra of symmetry
vectors

Quantized Algebra after { } → 1
i~ [ ] , H~n → ~L~n,

[L~m, L~n] = ~k · (~m− ~n)L~m+~n +
S

2π
(~k · ~m)3δ~m+~n,0

In d = 4 dimensions, it is a chiral Virasoro algebra

In d ≥ 5 we have an extended Virasoso algebra
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NHEG Phase Space

Charges

Charge H~n[Ψ] : Generator of ξ~n over the field configuration gµν [Ψ(ϕi)]

H~n =

∮
ε T [Ψ]e−i~n·~ϕ

Charges are Fourier modes of a Liouville-type stress tensor

T [Ψ] =
1

16πG

(
(Ψ′)2 − 2Ψ′′ + 2e2Ψ

)
Ψ is a “primary field of weight one” δεΨ = ε Ψ′ + ε′ ,

T [Ψ] is a “quasi-primary of weight two” δεT = ε T ′ + 2ε′ T − 1
8πGε

′′′

However Ψ = Ψ(ϕi) , Ψ′ = ~k · ~∂Ψ
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Summary and Outlook

Summary

We constructed the classical phase space of extermal black holes

We obtrained the symmetry algebra (The NHEG algebra)

We obtained the exact form of charges on the phase space

Outlook

Look for a field theory with the same charges (it should be much similar
to Liouville theory)

Is there a notion of modular invariance here?

Look for a Cardy like formula for counting of states? Is the black hole
entropy reproduced?

Ali Seraj (IPM) IPM 20 / 21



Thank you for your attention
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Details

Infinitesimal phase space transformation

χ[ε(~ϕ)] = ε(ϕi)ki∂ϕi − (ki∂ϕiε) (
b

r
∂t + r∂r) (1)

Phase space field configurations

ds2 = Γ(θ)
[
− (σ − dΨ)2 +

(dr
r

− dΨ
)2

+ dθ2 + γij(dϕ̃
i + kiσ)(dϕ̃j + kjσ)

]
(2)

where τ = t+ 1
r

and

σ = e−Ψrdτ +
dr

r
, ϕ̃i = ϕi + ki(F − Ψ) .
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