pp-Waves and AdS-Plane Waves in Null Aether Theory

ÇETİN ŞENTÜRK
DEPARTMENT OF PHYSICS
BILKENT UNIVERSITY

MAY 24-27, 2016
IPM, IRAN

WORK WITH
M. GÜRSESİ
(arXiv:1604.02266)
Outline

- Null Aether Theory (NAT)
- \textit{pp}-Wave & Plane Wave Spacetimes
- \textit{pp}-Waves & Plane Waves in NAT
- Kerr-Schild-Kundt (KSK) Class of Metrics
- KSK Metrics in NAT
- AdS-Plane Waves in NAT
- Conclusion
 - Explicit Solution in $D = 3$
 - Special Solution in $D > 3$
Null Aether Theory (NAT)

- NAT is described by

\[
I = \frac{1}{16\pi G} \int d^D x \sqrt{-g} [R - 2\Lambda - K_{\mu\nu}^{\alpha\beta} \nabla_\alpha u^\mu \nabla_\beta u^\nu + \lambda (u^\mu u_\mu + \epsilon)],
\]

\[
K^{\mu\nu}_{\alpha\beta} = c_1 g^{\mu\nu} g_{\alpha\beta} + c_2 \delta^\mu_\alpha \delta^\nu_\beta + c_3 \delta^\mu_\beta \delta^\nu_\alpha - c_4 u^\mu u^\nu g_{\alpha\beta}.
\]
NAT is described by

\[I = \frac{1}{16\pi G} \int d^D x \sqrt{-g} \left[R - 2\Lambda - K^{\alpha\beta}_{\mu\nu} \nabla_\alpha v^\mu \nabla_\beta v^\nu + \lambda (v^\mu v_\mu + \varepsilon) \right], \]

\[K^{\mu\nu}_{\alpha\beta} = c_1 g^{\mu\nu} g_{\alpha\beta} + c_2 \delta^\mu_\alpha \delta^\nu_\beta + c_3 \delta^\mu_\beta \delta^\nu_\alpha - c_4 v^\mu v^\nu g_{\alpha\beta}. \]
Null Aether Theory (NAT)

- NAT is described by

\[
I = \frac{1}{16\pi G} \int d^D x \sqrt{-g} \left[R - 2\Lambda - K_{\mu\nu}^{\alpha\beta} \nabla_\alpha v^\mu \nabla_\beta v^\nu + \lambda (v^\mu v_\mu + \varepsilon) \right],
\]

\[
K_{\mu\nu}^{\alpha\beta} = c_1 g^{\mu\nu} g_{\alpha\beta} + c_2 \delta_{\alpha}^{\mu} \delta_{\beta}^{\nu} + c_3 \delta_{\beta}^{\mu} \delta_{\alpha}^{\nu} - c_4 v^\mu v^\nu g_{\alpha\beta}.
\]

- The aether field has the fixed-norm constraint

\[
\text{[sign} = (-, +)] \quad v^\mu v_\mu = -\varepsilon, \quad (\varepsilon = 0, \pm 1)
\]

- \(\varepsilon = +1 \Rightarrow \text{Einstein-Aether theory.} \quad \text{[Jacobson & Mattingly (2001)]}\)
The eqns. of motion are

\[
G_{\mu\nu} + \Lambda g_{\mu\nu} = \nabla_\alpha \left[J^\alpha_{(\mu \nu)} - J_{(\mu} J^{\alpha \nu)} + J_{(\mu\nu)} v^\alpha \right] \\
+ c_1 (\nabla_\mu v_\alpha \nabla_\nu v^\alpha - \nabla_\alpha v_\mu \nabla^\alpha v_\nu) \\
+ c_4 \dot{v}_\mu \dot{v}_\nu + \lambda v_\mu v_\nu - \frac{1}{2} L g_{\mu\nu},
\]

\[
c_4 \dot{v}^\alpha \nabla_\mu v_\alpha + \nabla_\alpha J^\alpha_{\mu} + \lambda v_\mu = 0,
\]

where \(\dot{v}^\mu \equiv v^\alpha \nabla_\alpha v^\mu \) and

\[
J_{\mu \nu} \equiv K^{\mu\alpha}_{\nu\beta} \nabla_\alpha v^\beta, \\
L \equiv J^\mu_{\nu} \nabla_\mu v^\nu.
\]

From now on, \(\varepsilon = 0 \Rightarrow \text{NAT.} \)
pp-Wave Spacetimes

- *pp*-waves (plane-fronted waves with parallel rays) are defined by

\[
\nabla_\mu l_\nu = 0, \quad l_\mu l^\mu = 0.
\]

which immediately implies that

\[
\begin{align*}
l^\mu \nabla_\mu l_\nu &= 0, \\
\nabla_\mu l_\nu + \nabla_\nu l_\mu &= 0, \\
\nabla_\mu l_\nu - \nabla_\nu l_\mu &= 0.
\end{align*}
\]

\((\text{covariantly const. null vector field}) \)

\((\text{geodesic with } l^\mu = \frac{dx^\mu}{dv}) \)

\((\text{automatically a Killing vector}) \)

\((l_\mu = \partial_\mu u) \)
Consider Kerr-Schild class of pp-waves:

$$g_{\mu\nu} = \eta_{\mu\nu} + 2V(x)l_{\mu}l_{\nu},$$

In the coord. sys. $x^{\mu} = (u, v, x^{i})$,

$$ds^2 = 2dudv + 2V(u, x^{i})du^2 + dx_{i}dx^{i}.$$

For such metrics,

$$R_{\mu\nu} = -(\nabla_{\perp}^2 V)l_{\mu}l_{\nu} \Rightarrow R = 0,$$

$$\nabla_{\perp}^2 \equiv \partial_{i}\partial^{i}$$
Plane Waves

- Plane waves are **subclass** of *pp*-waves for which

\[V(u, x^i) = h_{ij}(u)x^i x^j, \]

\[R_{\mu\nu} = -2\text{Tr}(h)l_\mu l_\nu, \]

- In Einstein gravity,

\[R_{\mu\nu} = 0 \implies \text{Tr}(h) = 0 \]

\[\text{in } D = 4, \]

\[x^i = (x, y) \]

\[ds^2 = 2du dv + 2[h_{11}(u)(x^2 - y^2) + 2h_{12}(u)xy]du^2 + dx^2 + dy^2 \]
pp-Waves in NAT

- *pp*-Waves constitute exact solutions to NAT.

- To show this, take the null aether field as

 \[v^\mu = \phi(x) l^\mu, \quad l_\mu l^\mu = 0 \]

 and assume that

 \[\nabla_\mu l_\nu = 0, \quad l^\mu \partial_\mu \phi = 0. \]

 so that

 \[l^\mu \nabla_\mu l_\nu = 0, \quad l^\mu \nabla_\nu l_\mu = 0, \quad \dot{v}_\mu = 0, \]

 (scalar spin–0 aether field)
Then the field eqns. of NAT become

\[G_{\mu\nu} + \Lambda g_{\mu\nu} = -c_3 \left[\nabla_\alpha \phi \nabla^\alpha \phi - \frac{\lambda}{c_1} \phi^2 \right] l_\mu l_\nu, \]

\[(c_1 \Box \phi + \lambda \phi) l_\mu = 0, \]

\[\Box \phi - m^2 \phi = 0 \]

\[m^2 \equiv -\frac{\lambda}{c_1} \geq 0 \]

\[T_{\mu\nu} = \varepsilon l_\mu l_\nu \]

\[\varepsilon \geq 0 \Rightarrow c_3 \leq 0 \& \frac{\lambda}{c_1} \leq 0 \]

null dust
pp-Waves in NAT

- For *pp*-waves spacetimes,

\[
\nabla_\bot^2 V = c_3 \left[\partial_i \phi \partial^i \phi + m^2 \phi^2 \right],
\]

\[
\nabla_\bot^2 \phi - m^2 \phi = 0, \quad \Lambda = 0.
\]

(with the ansatz)

\[
V(u, x^i) = V_0(u, x^i) + \alpha \phi(u, x^i)^2,
\]

(they decouple)

\[
\nabla_\bot^2 V_0 = 0 \quad \text{for} \quad \alpha = \frac{c_3}{2}.
\]

- Thus, *pp*-waves are solutions if the Laplace eqn. for \(V_0\), and the Klein-Gordon eqn. for \(\phi\) are satisfied.
Plane Waves in NAT

- Plane waves \(V(u, x^i) = h_{ij}(u)x^ix^j \) can also be constructed:

 - when \(c_3 = 0 \implies V = V_0 : \)
 \[
 \nabla^2 V = 0 \implies \text{Tr}(h) = 0 \quad \& \quad \nabla^2 \phi - m^2 \phi = 0
 \]
 \[
 ds^2 = 2du dv + 2[h_{11}(u)(x^2 - y^2) + 2h_{12}(u)xy]du^2 + dx^2 + dy^2 \quad (D = 4)
 \]

 - when \(c_3 \neq 0 \), but \(V_0 = t_{ij}(u)x^ix^j : \)
 \[
 V = V_0 + \frac{c_3}{2} \phi^2,
 \]
 \[
 \nabla^2 V_0 = 0 \implies \text{Tr}(t) = 0, \quad \text{zero}
 \]
 \[
 [h_{jk}(h_{ij} - t_{ij}) - (h_{ki} - t_{ki})(h_{kj} - t_{kj})]x^ix^j - m^2[(h_{ij} - t_{ij})x^ix^j] = 0. \quad \text{zero}
 \]
Kerr-Schild-Kundt (KSK) Class of Metrics

- KSK class of metrics are defined by [Gürses, Şişman, Tekin (2012)]

\[
g_{\mu\nu} = \bar{g}_{\mu\nu} + 2Vl_{\mu}l_{\nu},
\]

(Generalized KS form)

\[
\begin{align*}
l_{\mu}l^{\mu} &= 0, \\
\nabla_{\mu}l_{\nu} &= \frac{1}{2}(l_{\mu}\xi_{\nu} + l_{\nu}\xi_{\mu}), \\
l_{\mu}\xi^{\mu} &= 0, \\
l^{\mu}\partial_{\mu}V &= 0.
\end{align*}
\]
Kerr-Schild-Kundt (KSK) Class of Metrics

- **KSK class of metrics** are defined by [Gürses, Şişman, Tekin (2012)]

\[g_{\mu \nu} = \bar{g}_{\mu \nu} + 2V l_\mu l_\nu, \]

\[(\text{generalized KS form}) \]

\[l_\mu l^\mu = 0, \quad \nabla_\mu l_\nu = \frac{1}{2}(l_\mu \xi_\nu + l_\nu \xi_\mu), \]

\[l_\mu \xi^\mu = 0, \quad l^\mu \partial_\mu V = 0. \]

\[\bar{R}_{\mu \alpha \nu \beta} = K(\bar{g}_{\mu \nu} \bar{g}_{\alpha \beta} - \bar{g}_{\mu \beta} \bar{g}_{\nu \alpha}) \]

\[K = \frac{\bar{R}}{D(D-1)} = \text{const.} \]

- **Kundt class**

\[K > 0 \quad dS \]

\[K = 0 \quad M \]

\[K < 0 \quad \text{AdS} \]
Again assume that

but with

so that

\(\nabla_\mu l_\nu = \frac{1}{2}(l_\mu \xi_\nu + l_\nu \xi_\mu), \quad l_\mu \xi_\mu = 0, \quad l_\mu \partial_\mu \phi = 0, \)

\(l^\mu \nabla_\mu l_\nu = 0, \quad l^\mu \nabla_\nu l_\mu = 0, \quad \nabla_\mu l^\mu = 0, \quad \dot{v}_\mu = 0, \)
• Then the field eqns. of NAT become

\[G_{\mu\nu} + \Lambda g_{\mu\nu} = \left[-c_3 \nabla_\alpha \phi \nabla^\alpha \phi + (c_1 - c_3) \phi \Box \phi - 2c_3 \phi \xi^\alpha \partial_\alpha \phi \\
+ \left(\lambda - \frac{c_1 + c_3}{4} \xi_\alpha \xi^\alpha \right) \phi^2 \right] l_\mu l_\nu - (c_1 + c_3) \phi^2 R_{\mu\alpha\nu\beta} l^\alpha l^\beta, \]

\[[c_1 (\Box \phi + \xi^\alpha \partial_\alpha \phi) + \lambda \phi] l_\mu + (c_1 + c_3) \phi R_{\mu\nu} l^\nu = 0, \]

• For the KSK metrics, we have

\[G_{\mu\nu} = -\frac{(D - 1)(D - 2)}{2} K \bar{g}_{\mu\nu} - \rho l_\mu l_\nu, \]

\[\rho \equiv \Box V + 2\xi^\alpha \partial_\alpha V + \left[\frac{1}{2} \xi_\alpha \xi^\alpha + (D + 1)(D - 2) K \right] V, \]
Then we obtain

\[\Lambda = \frac{(D - 1)(D - 2)}{2} K, \]

\[\Box V + 2\xi^\alpha \partial_\alpha V + \left[\frac{1}{2} \xi_\alpha \xi^\alpha + 2(D - 2)K \right] V = c_3 \left[\overrightarrow{\nabla}_\alpha \phi \overrightarrow{\nabla}^\alpha \phi - \frac{\lambda}{c_1} \phi^2 \right] + (c_1 + c_3) \phi \xi^\alpha \partial_\alpha \phi + \frac{c_1 + c_3}{c_1} \left\{ [c_1(D - 2) - c_3(D - 1)] K + \frac{c_1}{4} \xi_\alpha \xi^\alpha \right\} \phi^2, \]

\[c_1(\Box \phi + \xi^\alpha \partial_\alpha \phi) + [\lambda + (c_1 + c_3)(D - 1)K] \phi = 0, \]

\[(\Box + \xi^\alpha \partial_\alpha) \phi - m^2 \phi = 0, \]

\[m^2 \equiv -\frac{1}{c_1} [\lambda + (c_1 + c_3)(D - 1)K] \]

\(\text{For } K = 0 \text{ and } \xi^\mu = 0, \quad (\text{we recover the pp-wave case!}) \)
• Let us assume the ansatz

\[V(x) = V_0(x) + \alpha \phi(x)^2, \]

• There are two possible choices for \(\alpha \):

\[
\Box V_0 + 2\xi^\alpha \partial_\alpha V_0 + \left[\frac{1}{2} \xi_{\alpha} \xi^\alpha + 2(D - 2)K \right] V_0 \\
= c_1 \left\{ \phi \xi^\alpha \partial_\alpha \phi + \left[(D - 2)K + \frac{1}{4} \xi_\alpha \xi^\alpha \right] \phi^2 \right\},
\]

\[
\Box V_0 + 2\xi^\alpha \partial_\alpha V_0 + \left[\frac{1}{2} \xi_{\alpha} \xi^\alpha + 2(D - 2)K \right] V_0 \\
= -c_1 \left[\nabla_\alpha \phi \nabla^\alpha \phi + m^2 \phi^2 \right].
\]

\[
\text{for } \alpha = \frac{c_3}{2}
\]

\[
\text{for } \alpha = \frac{c_1 + c_3}{2}
\]

• Thus, exact wave solutions propagating in nonflat backgrounds can be constructed in NAT.
Now assume that the background is AdS; i.e.,

$$d\bar{s}^2 = \bar{g}_{\mu\nu} dx^\mu dx^\nu = \frac{\ell^2}{z^2} (2du dv + dx^i dx^i + dz^2),$$

Then taking $l_\mu = \delta_\mu^u$, one can show that

$$l^\mu = g^{\mu\nu} l_\nu = \bar{g}^{\mu\nu} l_\nu = \frac{z^2}{\ell^2} \delta_\nu^u \implies l^\alpha \partial_\alpha V = \frac{z^2}{\ell^2} \frac{\partial V}{\partial v} = 0 \quad \& \quad l^\alpha \partial_\alpha \phi = \frac{z^2}{\ell^2} \frac{\partial \phi}{\partial v} = 0,$$

$$\nabla_\mu l_\nu = \tilde{\nabla}_\mu l_\nu = \frac{1}{z} (l_\mu \delta_\nu^z + l_\nu \delta_\mu^z),$$

$$\begin{aligned}
\xi_\mu &= \frac{2}{z} \delta_\mu^z, \\
\xi^\mu &= \frac{2z}{\ell^2} \delta_\mu^z,
\end{aligned}
\implies \xi_\mu \xi^\mu = \frac{4}{\ell^2},$$

$z = 0$ represents the AdS boundary.
Therefore, AdS-plane waves can be constructed as follows:

\[ds^2 = [\bar{g}_{\mu\nu} + 2V(u, x^i, z)l_\mu l_\nu]dx^\mu dx^\nu = \bar{ds}^2 + 2V(u, x^i, z)du^2, \]

\[V(u, x^i, z) = V_0(u, x^i, z) + \alpha \phi(u, x^i, z)^2 \]

\[z^2 \hat{\phi}^2 + (4 - D)z \partial_z \phi - m^2 \ell^2 \phi = 0, \]

\[z^2 \hat{\phi}^2 (6 - D)z \partial_z V_0 + 2(3 - D)V_0 = c_1[2z\phi \partial_z \phi + (3 - D)\phi^2], \]
\[(\text{for } \alpha = \frac{c_3}{2}) \]

\[z^2 \hat{\phi}^2 (6 - D)z \partial_z V_0 + 2(3 - D)V_0 = -c_1[z^2(\hat{\phi})^2 + m^2 \ell^2 \phi^2], \]
\[(\text{for } \alpha = \frac{c_1 + c_3}{2}) \]

where \(\hat{\phi}^2 \equiv \partial_i \partial^i + \partial_z^2 \) and \((\hat{\phi})^2 \equiv \partial_i \phi \partial^i \phi + (\partial_z \phi)^2 \).
AdS-Plane Waves in 3D

• The field eqns. can be solved exactly in 3D because

\[x^\mu = (u, v, z) \quad \Rightarrow \quad V_0 = V_0(u, z) \quad \& \quad \phi = \phi(u, z) \]

• The solution of the aether eqn. is

\[z^2 \partial_z^2 \phi + z \partial_z \phi - m^2 \ell^2 \phi = 0 \]

\[\phi(u, z) = a_1(u) z^{m\ell} + a_2(u) z^{-m\ell} \quad (\text{for } m \neq 0) \]

\[\phi(u, z) = a_1(u) + a_2(u) \ln z \quad (\text{for } m = 0) \]

where

\[m^2 \equiv -\frac{1}{c_1} \left[\lambda - \frac{2(c_1 + c_3)}{\ell^2} \right] \]

\[(a_{1,2} \text{ are arbitrary funcs.}) \]
And the Einstein-Aether eqns. become

\[z^2 \partial_z^2 V_0 + 3z \partial_z V_0 = E_1(u) z^{2m \ell} + E_2(u) z^{-2m \ell}, \]

\[
\begin{align*}
E_1(u) &\equiv 2c_1 m \ell a_1(u)^2, \\
E_2(u) &\equiv -2c_1 m \ell a_2(u)^2, \\
\end{align*}
\]

\[
\begin{align*}
E_1(u) &\equiv -2c_1 m^2 \ell^2 a_1(u)^2, \\
E_2(u) &\equiv -2c_1 m^2 \ell^2 a_2(u)^2, \\
\end{align*}
\]

for \(\alpha = \frac{c_3}{2} \),

for \(\alpha = \frac{c_1 + c_3}{2} \).

\[
V_0(u, z) = b_1(u) + b_2(u) z^{-2} + \frac{1}{4m \ell} \left[\frac{E_1(u)}{m \ell + 1} z^{2m \ell} + \frac{E_2(u)}{m \ell - 1} z^{-2m \ell} \right],
\]

when \(m \ell \pm 1 \neq 0 \). (can be absorbed into AdS)
AdS-Plane Waves in 3D

- When \(m\ell + 1 = 0 \),

\[
V_0(u, z) = b_1(u) + b_2(u)z^{-2} - \frac{E_1(u)}{2} z^{-2} \ln z + \frac{E_2(u)}{8} z^2,
\]

- When \(m\ell - 1 = 0 \),

\[
V_0(u, z) = b_1(u) + b_2(u)z^{-2} + \frac{E_1(u)}{8} z^2 - \frac{E_2(u)}{2} z^{-2} \ln z.
\]
AdS-Plane Waves in 3D

- When \(m = 0 \),

\[
z^2 \partial_z^2 V_0 + 3z \partial_z V_0 = E_1(u) + E_2(u) \ln z,
\]

\[
\begin{align*}
E_1(u) &\equiv 2c_1a_1(u)a_2(u), \\
E_2(u) &\equiv 2c_1a_2(u)^2,
\end{align*}
\]

for \(\alpha = \frac{c_3}{2} \),

\[
\begin{align*}
E_1(u) &\equiv -c_1a_2(u)^2, \\
E_2(u) &\equiv 0,
\end{align*}
\]

for \(\alpha = \frac{c_1 + c_3}{2} \).

\[
V_0(u, z) = b_1(u) + b_2(u)z^{-2} + \frac{E_1(u)}{2} \ln z + \frac{E_2(u)}{4} \ln z(\ln z - 1).
\]
AdS-Plane Waves in 3D

• For a valid behavior as $z \to 0$,

\[-1 < m\ell < 1 \Rightarrow 0 < m < \sqrt{|\Lambda|},\]

\[(c_1 + 2c_3)|\Lambda| < \lambda < 2(c_1 + c_3)|\Lambda| \quad \text{if } c_1 > 0,
\]

\[2(c_1 + c_3)|\Lambda| < \lambda < (c_1 + 2c_3)|\Lambda| \quad \text{if } c_1 < 0.
\]

• Thus, the AdS-plane wave solution is

\[ds^2 = g_{\mu\nu}dx^\mu dx^\nu = \frac{\ell^2}{z^2}(2dudv + dz^2) + 2V(u, z)du^2,
\]

\[V(u, z) = V_0(u, z) + \alpha\phi(u, z)^2\]
AdS-Plane Waves in Higher D>3

- In dimensions D>3, generic solution is not possible!

- However, solutions can be obtained if we assume the wave is **homogeneous** along the transverse coords.:

 \[x^\mu = (u, v, x^i, z) \Rightarrow V_0 = V_0(u, z) \ & \ \phi = \phi(u, z) \]

- In this case,

 \[z^2 \partial_z^2 \phi + (4 - D)z \partial_z \phi - m^2 \ell^2 \phi = 0 \ \Rightarrow \ \phi(u, z) = a_1(u) z^{r_+} + a_2(u) z^{r_-} \]

 where

 \[r_{\pm} = \frac{1}{2} \left[D - 3 \pm \sqrt{(D - 3)^2 + 4m^2 \ell^2} \right]. \]
And

\[z^2 \partial_z^2 V_0 + (6 - D)z \partial_z V_0 + 2(3 - D)V_0 = E_1(u)z^{2r_+} + E_2(u)z^{2r_-}, \]

\[
\begin{align*}
E_1(u) & \equiv c_1(2r_+ + 3 - D)a_1(u)^2, \\
E_2(u) & \equiv c_1(2r_- + 3 - D)a_2(u)^2,
\end{align*}
\]

for \(\alpha = \frac{c_3}{2} \),

\[
\begin{align*}
E_1(u) & \equiv -c_1(r_+^2 + m^2 \ell^2)a_1(u)^2, \\
E_2(u) & \equiv -c_1(r_-^2 + m^2 \ell^2)a_2(u)^2,
\end{align*}
\]

for \(\alpha = \frac{c_1 + c_3}{2} \).

whose general solution is

\[V_0(u, z) = b_1(u)z^{D-3} + b_2(u)z^{-2} + \frac{E_1(u)}{d_+} z^{2r_+} + \frac{E_2(u)}{d_-} z^{2r_-}, \]

\[
\begin{align*}
d_+ & \equiv 4r_+^2 + 2(5 - D)r_+ + 2(3 - D) \neq 0, \\
d_- & \equiv 4r_-^2 + 2(5 - D)r_- + 2(3 - D) \neq 0.
\end{align*}
\]
• On the other hand, when $d_+ = 0$,

\[V_0(u, z) = b_1(u)z^{D-3} + b_2(u)z^{-2} + \frac{E_1(u)}{4r_+ + 5 - D} z^{2r_+ \ln z} + \frac{E_2(u)}{d_-} z^{2r_-}, \]

or, when $d_- = 0$,

\[V_0(u, z) = b_1(u)z^{D-3} + b_2(u)z^{-2} + \frac{E_1(u)}{d_+} z^{2r_+} + \frac{E_2(u)}{4r_- + 5 - D} z^{2r_- \ln z}. \]

• All these mean that

\[r_- > -1 \implies m < \sqrt{\frac{2|\Lambda|}{D - 1}} \implies m < 10^{-42} \text{ GeV} \]

\[[D = 4 \& |\Lambda| < 10^{-52} \text{ m}^{-2} \approx 10^{-84} (\text{GeV})^2] \]
Then the solution is

\[ds^2 = g_{\mu\nu} dx^\mu dx^\nu = \frac{\ell^2}{z^2} (2dudv + dx_1 dx_2 + dz^2) + 2V(u, z) du^2, \]

\[V(u, z) = V_0(u, z) + \alpha \phi(u, z)^2 \]

(exact plane wave propagating in D−dim. AdS background in NAT)
We constructed exact plane wave solutions in NAT.

These are important in that they are exact solutions.

Waves propagating in dS backgrounds can also be constructed! (In progress)