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Outline

▶ Introduction:
1. Some Measures of Quantum Entanglement:

1.1 Entanglement Entropy
1.2 Mutual Information
1.3 n-Partite Information

2. Holographic approach: Ryu-Takayanagi formula
3. How can geometrical singularities affect Entanglement Entropy?

▶ Effects of geometrical singularities on
1. Holographic Mutual Information (HMI)
2. Holographic n-Partite Information

For a 3d CFT with a gravity dual.

▶ What would happen to HMI when singular entangling regions
have/not have common boundaries?

▶ Generalization to Higher dimensions CFTd≥4

▶ Summary
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How to Quantify Quantum Entanglement:

Consider a quantum mechanical system whose Hilbert space is H. Devide it
into two subsystems

H = HA ⊗HB

A

B

Figure: A 2d Ising Model which is divided into two subsystems A and B

How can one measure the amount of quantum entanglement?

Answer: by Entanglement Entropy!
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Entanglement Entropy in Quantum Mechanics:

One can define a reduced density matrix ρA for the subsystem A, by
tracing out of the states of the subsystem B.

ρA = TrB (ρtotal) =
∑

i∈HB

⟨i|ρtotal|i⟩

Entanglement Entropy of A is defined as the Von-Neumann entropy for ρA

SA = −Tr (ρA log ρA)

If SA = 0, there is no quantum entanglement between the degrees of
freedom of A and B. For example for a two-electron system we have:

Entangled: |Ψ1⟩ =
1√
2
(| ↑⟩A ⊗ | ↓⟩B − | ↓⟩A ⊗ | ↑⟩B) SA = log 2

Unentangled: |Ψ2⟩ =
1

2
(| ↑⟩A + | ↓⟩A)⊗ (↑⟩B + | ↓⟩B) SA = 0

Hence, E.E. is a good quantity to measure Quantum
Entanglement.

5 / 20



Entanglement Entropy in QFT:

If one has a quantum field theory on a manifold, one can consider a
constant time slice of the manifold, and divide it into two spatial parts A
and B. If one can decompose the whole Hilbert space as

H = HA ⊗HB

E.E. can be defined in the same manner as in quantum mechanics.

A

B

▶ Consider a smooth (i.e. without any geometrical singularities)
entangling surface like a sphere, strip,... in a relativistic QFT,
generally EE behaves as :

SA =
gd−2

ϵd−2
+ · · ·+ g1

ϵ
+ g0log ϵ+ S0

▶ ϵ is the short distance cut off. gi’s depends on the geometry of the
boundary of the entangling region A.

▶ g0 is universal, in the sense that it is independent of the short distance
cut off ϵ.

▶ EE suffers from UV and IR divergences. 6 / 20



Mutual Information

It is better to use quantities which are independent of the UV cut off such
as Mutual and n-partite information. For two disjoint subsystems A1 and
A2, Mutual Information (MI) is defined by:

I(A1, A2) = SA1 + SA2 − SA1∪A2 ,

A1 A2

It has several interesting properties:

1. It is written in terms of four-point functions of ”Twist Operators”, so
it can give some information about the field content of the CFT.

2. Its behavior depends on both the geometry of the entangling region and
dimension of the CFT . Usually, it is independent of the UV cut off.

one can generalize this definition to n-sectors: and define n-partite
information. For n = 3:

I [3](A1, A2, A3) = SA1 + SA2 + SA3 − SA1∪A2 − SA1∪A3 − SA2∪A3 + SA1∪A2∪A3 ,
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Holographic Entanglement Entropy (HEE):

Computation of EE in Quantum Field Theories is very difficult!
AdS/CFT duality: For a strongly coupled CFTd with a large central
charge, the gravity dual is a classical Einstein gravity on an asymptotically
AdSd+1 space time.
If the QFT has a dual gravity, there is a spacelike, codimension two,
minimal surface in the bulk whose area gives the EE (Ryu-Takayanagi 2006)

SA =
Area(γA)

4Gd+1
N

Figure: The minimal surface γA in the bulk M is shown in blue, the boundary of
the bulk is shown by the green plane.

This works in Einstein Gravity, otherwise one should use FPS’s or Dong’s
proposal (see the talk by Mohammad Hassan). 8 / 20



Holographic Mutual Information (HMI):

To compute MI one can use holography: For simplicity, just consider a 2d
CFT, then A1 and A2 can be two separated intervals.
One can use the RT prescription to read MI. SA1 and SA2 are simply given
by:

SAi =
Area(mi)

4GN
i = 1, 2

There are always two configurations which contribute to SA1∪A2 :
Connected and disconnected.

Sdis. : Scon. :
A1 A2 A1 A2

One should choose the minimum of Sdis and Scon.

SA1∪A2 = min{Sdis, Scon}

The minimum depends on the length of A1,2 as well as the distance
between them. HMI shows a first order phase transition (Headrick ’10).
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Singular Entangling Regions:

Question: what happens to EE, MI, and n-partite information when there
are some geometrical singularities in the boundary of the entangling regions.

Ω Ω

Geometrical singularities leads to new terms like log( l
ϵ
) and

(
log( l

ϵ
)
)2
, in

EE. For example in a 3d CFT in its vacuum state, one has (Casini, Huerta
’06 - Hirata, Takayanagi ’06 - Myers, Singh ’12)

S(Ω) =
L2

2GN

H

ϵ
− a(Ω) log

H

ϵ
+O

( ϵ

H

)
,

in the Smooth Limit (Ω → π):

a(Ω) |Ω→π= σ(π − Ω)2 + · · · ,

σ is related to the central charge of the CFT. (Bueno, Myers,
Witczack-Krempa ’15)
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HMI for two Slices of a Cake in a 3d CFT:

For two smooth and disjoint entangling regions in a 3d CFT, HMI is
independent of the UV-cutoff. Can the presence of corners change this
behavior? To answer the question we have considered a configuration in the
shape of cake slices. We restrict ourselves to a CFTd which is in its vacuum
state and has a gravity dual on AdSd+1. For the moment we set d = 3.

Ω1

ω
Ω2

I(Ω1,Ω2) = SΩ1 + SΩ2 − SΩ1∪Ω2

...

.

..

.

.

Ω2

.

Ω1

...

.

..

.

.

Ω1 + ω +Ω2

.

ω

Figure: RT surfaces corresponding to SΩ1∪Ω2 for disconnected (left) and
connected (right) configurations.

where
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The area law terms cancel each others, but the new log-terms remains.
Hence, HMI depends on the UV- cut off ϵ logarithmically.

I = aI log
H

ϵ
+O(ϵ0)

This behavior is in contrast to that of HMI for smooth entangling regions.

0.5 1.0 1.5 2.0 2.5
Ω

1

2

3

4

aI

If the separation angle ω becomes large enough, there is a first order phase
transition in MI:

▶ Disconnected configurations dominates the connected one, and MI
vanishes.

▶ Although MI is a continuous function of ω, its first order derivative
w.r.t to ω becomes discontinuous.

The same behavior happens for smooth entangling regions.
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Holographic 3-partite

We have generalized the cake-slice configuration to n = 3, 4 and calculated
the n-partite information. For n = 3
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There are more RT surfaces. For example for SΩ1∪Ω2∪Ω3 there are five
configurations:
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Holographic n-partite information is UV divergent:

I [n](Ω ∼ 0, ω ∼ 0) =

{
(−1)n 2κ

n(n−1)(n−2)Ω
log H

ϵ
ω ≪ Ω

0 ω ≫ Ω
.

This behavior is in contrast to the one for smooth entangling regions (which
are independent of the UV cut off).
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Moreover, In the presence of corners, n-partite information is positive
(negative) for even (odd) n.
For smooth entangling surfaces (in some limiting cases) the same behavior
had been observed. (Hayden, Headrick, Maloney ’11 - Alishahiha, Mozaffar,
Tanhayi ’14 - Mirabi, Tanhayi- Vazirian ’16)
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Common Boundary Between Entangling Regions:

Question: What happens to HMI when there is no common boundary
between the two entangling regions?

A
B R−

R+ δ

δ

δ

δ

The bulk metric is

ds2 =
1

z2
(
dz2 − dt2 + dρ2 + ρ2dϕ2) ,

the boundary of the entangling regions are parametrized by:

t = const. , ρ = ρ±(ϕ) , 0 ≤ ϕ < 2π.

such that
ρ±(ϕ)

R±
=

{
1− δ sin (ϕ) 0 ≤ ϕ < π

1 + δ sin (ϕ) π ≤ ϕ < 2π

On the minimal surfaces ρ = ρ(z, ϕ), and the area functional is given by

A =

∫
dzdϕ

1

z2

√
ρ2
(
1 + ρ′2

)
+ ρ̇2
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Profile of RT surfaces and HMI:

One has to apply perturbation in δ to derive the eom’s of the RT surfaces.

ρ(z, ϕ) = ρ0(z) + δ ρ1(z) sinϕ+ δ2 [ρ20(z) + ρ22(z) cos (2ϕ)] ,

HMI can be computed numerically. It is independent of the UV cut-off to
95%. It is in contrast to the cake-slice configuration in which the regions
had a contact point in the center of the cake.

Figure: Left: Perturbed minimal surfaces versus unperturbed surfaces. The blue
dashed curve represents the connected minimal surface and the dashed green ones
represent the disconnected minimal surface for δ = 0. The red and orange curves
represent the connected and disconnected minimal surfaces for δ = 0.05. Right:
The mutual information as a function of ϵ. The dashed green line represents the
mean value for mutual information. We have set R− = 0.8, R+ = 1, ϕ = π/2 and
δ = 0.05. 16 / 20



Higher Dimensions

One can generalize the cake-slice geometry to higher dimensional (d > 4)
CFT’s. The bulk metric is an AdSd+1

ds2 =
L2

z2

(
dz2 − dt2 + dρ2 + ρ2dθ2 +

d−3∑
i=1

dx2
i

)
For an entangling region of the form

t = const. , 0 < ρ < H , −Ω

2
≤ θ ≤ Ω

2
, 0 < xi < H̃,

Using the RT formula, for each of the entangling regions the HEE is given
by

S =
Ld−1H̃d−3

2GN

[
H

(d− 2)ϵd−2
+

j(Ω)

(d− 3)ϵd−3

]
+O(ϵ),
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Figure: Left : Ω/π as a function of the turning point h∗ in different dimensions.
Right : j as a function of the opening angle Ω in different dimensions.
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Figure: Holographic mutual (left) and tripartite (right) information in various
spatial dimensions for Ω = π
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.

Again the 3-partite information is a negative quantity.
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Conclusion

Geometrical singularities on the boundary of the entangling regions (i.e.
entangling surfaces) lead to some interesting properties:

▶ HMI shows a first order phase transition, the same as smooth
entangling surfaces.

▶ HMI depends on the UV cut-off, when the singular entangling regions
share some boundaries together.

▶ when there is no common boundary, HMI is an almost independent of
UV-cut off.

For Holographic n-partite information one has:

▶ n-partite information have definite sign (−1)n for n = 3, 4.

▶ In contrast to the case of smooth entangling surfaces, 3- and 4-partite
information depend on the UV cut off of the CFT and are not finite
quantities.
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Thank you very much
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