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This talk I1s about:

 Exact conserved correlators
e UV and IR limit

» Effective action tomography
» Higher spin fields

* Tensionless strings

 SFT tomography (?)
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Why are CFTs important?
B

at very high energies masses should become unimportant, thus at
such energies the relevant field theory should be scale invariant —
conformal invariant.

CFTs are the interface of gravity in AdS/CFT correspondence
CFTs are relevant to strongly correlated systems

from a theoretical point of view, CFTs can be solved (even if they are
not supersymmetric and or not Lagrangian)

CFTs say a lot about gravity

—-o 1M



In particular why are e.m. tensor correlators
SO Important?

Because the source of the e.m. tensor Is the
metric (or, better, the metric fluctuations).
Thus the e.m. tensor correlators can be
Interpreted as scattering amplitudes for

gravitons in the framework of AdS/CFT.
(C.Closset,D.Dumitrescu,G.Festuccia,
Z.Komargodski,N.Seiberg,X.Camanho,J.Edelstein,
J.Maldacena, G.Pimentel, A.Zhiboedov,...)



...but this consideration can be generalized
to any current!

Not only that. Not only conformal
correlators are important and interesting.
See below



The conformal Lie algebra

‘ The Lie algebra generators of the conformal group

Commutators (extra Poincarée)

P, = —idy
D = —izt 8,

Lyv = i(2p0y — 20 0y)

Ky = —i(2z,2" 8y — 228,)

[PH, D] = iP*

[KH, D] = —iKH

[PH, KY] = 2in"¥ D + 2iLF
[KH,K¥] =0

[L* D] =0

[LEv, KA = in*FKY — ip*v K#
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Representations of the conformal Lie algebra

‘ For a generic tensor field O(x) of weight A \

i[Pu, O(z)] = 8,0(x)

i[Lyw, O(x)] = (2p 8y — 20,0, )O(x) + 154, 0(z)

i[D, O(z)] = (A + 2#8,)0(z)

i[Ku,O(z)] = (2Azy + 22,278y, — 228, — 2i2*E,,)0(z)

For the e.m. tensor, in particolar,

i[D, Ty (2)] = (d+ 2783 ) Tw (2)
i[Ky, Tuw] = (2Az) + 2z -8 — 228)) Ty
+ 2 {EaTctvﬂAp + -TﬂTpctT}'Av — mpTAv — -'I"I-"T;..!-}ﬁ}
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Free massive fermion model in 3d
|7Actic-n T

S = fd% [ipy" Dyt — mapap], D, =8y, + A,

where A, = A/ (z)I'" and T are the generators of a gauge algebra. The
generators are antihermitean, [T, T?] = f**°T, with normalization
tr(T%T") = nd®®. The current

Jy(z) = Py, T
Is (classically) covariantly conserved on shell
(DJ)* = (8#5% + f**°A"™)J5 =0

(see also Dunne,Babu,Das, Panigrahi)

Also Vuorio, Giombi, Minwalla, Prakash, Trivedi, Yin, Wadia
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Free massive fermion model in 3d (cont.)

The effective action is given by

=0 n—|—1
wiA] —

~ / Hd3 (AT (1) L AR (2 ) (O[T T3 (1) - .. T (z0)|0)
n=1

We will consider 2-pt and 3-pt current correlators,
(O[T Jg () ()|0), and (0|T Jj(x)Jz(y)J5(2)|0) M

whose Fourier fransform are J; jab (k) and J“ 5 (k1, k2). The one-loop conservation law in
momentum space is

ktJa0 (k) =0
—igh J35 (1, ko) + F224T55 (ko) + f24 T (k1) = 0

where g = k1 + ko.
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Free massive fermion model:2-pt

. o

he 2-pt function is

Jab(o n  a o M k
Japledd) (k) = 59 Ye ok — arctan o—

where k = vVk? = E. The IR and UV limit correspond to Z — oo and 0O,
respectively. We get

1
jﬂ-ﬁ{ﬂdd}(k) _ iﬁabE”ygka 5 IR
g 27 Im UV

Fourier anti-transforming and substituting in W (A) one gets

]d?‘:rf“”:" AL O, AN

L o
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E.m. tensor correlators

‘ MNext come the e.m. tensor correlator. It is naturally coupled to the metric. The action in the \
massive model is

_ _ 1 1
S = / d*ze [{PELY Yt —mby], Yy =8 + swubeS', TP = o [Tb,'fc] .

The mass term breaks parity!
The energy-momentum tensor

THY — i'{‘f_) (Eg"}‘u EU + b H) .
Is covariantly conserved (on shell): V,TH" = 0.
At quantum level (the Fourier trasform of) the 2-pt correlator is

2 2
=(odd) _ m ke kuky k4 4m k|
pv A p {k’] = 9567 Eoup k7 lgm (TF;LA — 12 ) + ('ﬁ'p}. + 2 Ikl arctan E -

‘ In the effective action the e.m. tensor couples to hy,.., where gy = Nuw + hpe + .. .. \



Gravitational CS
N

n the IR and UV limit this corresponds to the action term

-

Sroodd — z €gyp WY 07 (9,05 — nuall) B (1)

1927

This is nothing but the lowest order expansion in k,, of the gravitational
Chern-Simons action in 3d.

_ i 3 A b 2 b
CS = —50= fd T etV (8#.::.:1‘} Wxba + FWpna wybcm;.,cﬂ)

® [n the IR limit we find k = 1 (the action is well defined)

# Inthe UV iimit k = Ikl So again the limit vanishes unless we
consider N ﬂavuurs in which case we can take the scaling limit that

\_ leaves A = N 72 fixed. J



Higher spin currents

‘ In the massive fermion model in 3d we have other conserved currents. The next after the em \
tensor is the third order current

_ 5 _ 1 _ m2 _
Jurpaps = UV, OuzOuq) ¥ — Eﬂtﬂ1mﬂzﬂﬂ3}w + gﬂ{#lnzﬂgmns}ﬂﬂb - ?ﬂ{#1ﬂzwﬂaiw

This is conserved (on-shell). We consider the external source B#¥* and couple it to the
theory via the action term

f d*z.J .5 BH

Due to current conservation this coupling is invariant under the (infinitesimal) transformations
0Buuyx = O Ayy

In the limit m — 0 we have also invariance under the transformation
6Buux = Ay

‘ which induces the tracelessness of J,,, 5 inany couple of indices. \



2-pt B correlator

‘ We can construct the effective action for B,,,» with \
= intl = N
W[E] — Z ﬂl H damiB“.:F‘A: {:El }{DlTJ;lelhl {'1.1) e Jﬂnvnhn {ER)ID}‘
n=1 ' i=1

by computing the n-pt functions. For instance, the 2-pt comrelator (after subtraction), in the IR

IS
F(odd, IR 1 14 8 4
Jffﬂﬂzﬂzb::lvzva (k) = 55#11’15'}35[%& Npzpa Tvavs — ﬁk NMpzrzMparg
1, 16 23
— Ek (KvoKuaMuopa + KuzKuaMeaes ) + Ek Rps kv Mpava — Ekﬂzkﬂﬂkvz kva]
and in the UV
F(odd, UV 1 m 1 2 5
Jﬁ‘ﬁﬂz;&avimva(k] — Em l‘5#‘51If"1'1?r‘i;‘:ﬂ- [Ekﬂz k#zki’zki’a e Ek k#a ki’a L TR
k2 1.4 1.4
+E (Kvg kvsTuaps + KpuskpaTvavs ) + Ek Mpzrs Mpary — ﬁk ﬂ#z#aﬁb‘zvs] .

|
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Odd effective action

‘ The UV expression corresponds to the effective action term \

s fdam Eprvio [3?3#1#2#35”2 ﬂuaﬁvzﬂvg BY1Vz2V3 __ 53”3#1#2#3@p33p33”1”3”2

+207 E”l"‘;ﬁljﬂyzﬂva Bvivzva 4 487 BR1BzZBE3[2 BY1 10044
_EEBFII}'-A EPBFIPP]

where by, n = Buoa + ...

This is a slight generalization of an action proposed by Pope and Townsend (1989)

[ 25

—~— fd3m €prvio [%Eﬂhpl”2”33#33p35UESU3-’1v1F2v3 — AHT RH1LHZH3 Dauaﬁvahplva

4287 pr1E2R3 2 pzus]
‘ one can see that they are equal if we set B#*, =0 \

— A



YM in effective action

. -

he IR limit of the 2pt current correlator is given by
i 1

jﬂbﬁeven} k) —
He (k) 47 3|m|

5@(’1‘3# ky, — kzr’?ﬂv}

which is local. Fourier anti-transforming it and inserting it in
the formula for the EA

S~ — [ &z (A%0ro” A* — A°DA™)

T
which is the lowest term in the expansion of the YM action

SYM p— l/dEQITI' (F”UFH”)
g

Lwhere g ~ m. J

_—pif



EH in the effective action

‘ MNow let us go to the IR limit of the even part of the 2pt e.m. tensor comelator. \

ilm| [ 1
96w [ 2

(Tpw (k)T ap (—k))ten = ((Bpkamp + A p) +p —v) —

kﬂ
— (kpkumap + ka kofuw) — = (MpA e + NupTua ) + kﬂnuump] :

This is a local expression multiplied by |m|. Fourier anti-transforming it gives rise to the
action

S ~ |m| /dﬁ*m (—20,hH* 8, B — 218, 8, h*” — W Olhy,,, + KA
This is the lowest order term in the expansion of the EH action:
1 3
SEH = —_— /d b 1 H
2K

where K ~ 1%[

|
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...and for spin 3

‘ For instance, for the field B one can extract from the even 2-pt function the following action \

1 1
Sg ~ / ((SF,BMF,EM}E — 3(8-Buypu,)? — 38-0-B* =0-8-By — ﬂv&vﬂvﬂﬁﬂ-ﬂ-ﬂ-.!:?)

This gives the equation of motion

1

P Op 0, 0,0-8-0-B =0

1
OBuyx — 8u0-Bya + =0,0,0-0-By —

Now take the trace with respect to any two indices of this eqguation and you will get

1

0-8-By = 0B} —0:0-B' + =

8,8-8.8.B

Upon replacing this into the third term above one gets precisely the nonlocal Fronsdal
equation for massless spin 3.

| o
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Fronsdal eqs for higher spins

‘ The Fronsdal equation of motion for a (completely symmetric) spin 3 field \
wuv 1S the following:

Fuvx = Upuva — 0p0-pua + 0pOppy = 0
where 9,0 ¢y, = 0,0-pux + perm.,. Under 6,5 = 0, A, + perm.
6?;_“;.1 — 35’_;51;5‘}“11!

So covariance requires tracelessness A’ = 0. Unnatural!
D.Francia and A.Sagnotti (2002) proposed a way out via nonlocality.

1

F,uul — 12

8,8,0,0-F' =0

This is invariant, but nonlocal. However nonlocality is irrelevant (a gauge
‘ artifact). This can be seen via a compensator. \

_—pif



The compensator

Cw

e can rewrite the non-local Fronsdal equation as
Fuvr = Oppur — ﬁhﬁ-fpﬂ + EE&E@"E = 0,0,0

where
3
L]

2

d-p" — BE

9-8-9-p

iy =

The field « is called compensator, because its transformation property
under épp = 39\ is

da = 3N\’ — 5F = 383N\

It allows to write a local Lagrangian. So, the nonlocality of the initial
equation is only a gauge tail which serves to gaurantee covariance.

| -
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For HS theories, see:

Vasiliev, Prokushkin, Metsaev,...
Bekaert, Young, Mourad, Francia,
lazeolla, Sagnhotti, Campoleoni,
Fredenhagen, Fotopoulos, Tsulaia,
Taronna,...



So what happens?

In the effective action of a massive 3d fermion we have
found all the local action for spin 1, 2, 3: YM, CS, EH,
Fronsdal, Pope-Townsend,....

Is there more?

Yes. Fortunately we can compute the effective action of a
3d fermion exactly for any current.



Davydychev et al. method
=

For 2pt functions, we have to compute

d® -
(2) - . — p Py Pupg
T (BB = [ oya G = m2)a((p— k)2 — m2)P

The first step is to reduce it to scalar integrals (Davydychev,
Boos-Davydychev, 1991-92)

J(2) (d; o, B;m) = Z (_1)A{4 }M—A{[ A K1 Ko
p-.par (5 @ B3 5) (n n* [a:]™ [a2]™ }

A,H-l,ﬁg
2A4+S mi=M

X () y (B)ra 1P (d + 2(M — A); & + k1, B + rg; m).

(TS P Iy

| o
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Davydychev et al. method (cont.)
|7Letu5{:all _‘

dep 1
(2m)d {pi _ mi}ﬂ{:{p — k]i — mﬂ']_ﬁ = I{E}{d;ﬂ,ﬁ]

then, for instance, the 2pt function for 1-currents is

B 7
—_ —{EW}E‘F‘E T er

4 16
{EW}E+5

(4m)?

(2)(6+6:1.1)+8
(6+46;1,1) + 2 )E s

Juw(k) = kyk, I'?(8 + 6;1,3)

yky, 12 (6 4 6;1,2) + Rk, I3 (44 6;1,1)

{2ﬂ14+5
If we want to know the behaviour in the IR these integrals are given by:

1'% (d; o, B)
il—d(_mﬂ}dfﬂ—a—ﬁrfﬂﬂLﬁ—dfi} EFE( a,f,a+ B3 —df2 k2 )

(]]=8

= T

T(a+B) (@ + B)/2, (a + B+ 1)/2! 4m?

| .
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Spin S currents

-

he spin s current has the form \

T e = PO By

We couple it to an external source a*:---#= through the term

[ d3z a#r#=(2) IS .. (x), compute the 2-pt function (|7 J55) .. 55 ..10),
and insert into the generating function

W[ﬂ,j S] — Z n! fHd T ﬂ-”llu.”lp(Il} . ..lf-"-ln---f-"-sn {Eﬂ.}
n—1 i—1
< OIT TG, (1) - T2 (2)]0).
to obtain the effective action. In particular a, = A,,, a,, = h,, and

Gpearr = Bparn-
| o

_—pif



Exact 2pt correlator for the e.m. tensor

‘ The correlator i1s \

1 4 _1 {2my 3 23 a4 —1 [ 2m (k) :
192ﬂk((gﬂm coth (T) A8km 4k“m — 6k~ coth ( T )) (n1 i ng)

+ (45m4 coth—1 (%ﬁ‘) — 24km?® — 24k2m2 coth—1! (2%”) 10k3m

2
—I—Sk4 coth—1 (%)) {ﬂ.l-i'r'[k:"-ﬂﬂ{ﬂg-ﬂ{k}-ﬂ.g))

where we use the projector w(*) and the compact notation:

kyk
ms = o = BT (1w ma) — mmtmg
after subtracting
g, . im° 2
O(m=) : T ((ny1-m2)* + (ny-n1) (no-na))

| o

which is not conserved, but local. —pr



Correlator tomography

- -

Expanding in powers of m

O(m?) : 0
: 2 (k). (k).
O(m) : 12?1' ((nl 7l ng) (nq-7'\% -nq)(ng-m ng))
O(m?) : 0
~1y. __t ga 72 )2 — L, . (B
O(m™ ) : SUﬂ'mk ((nl T ng) 3(?11 % ny)(ng-mw\* -7
O(m™?) : 0

These terms are all conserved. The O(m) term is the
linearized version of the EH equation of motion. All the
other terms differ only by pure gauge parts.

| -
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Correlator tomography for spin s

‘ For spin s the 2-pt correlators can be calculated exactly. After subtracting \
some local terms, their structure is a generalization of the one for the e.m.
tensor. It is a superposition with k&, m-dependent coefficient of

[s/2]
E@ (k,n1,n2) = > aiAl? (k,n1,n2)
=0
where a; are numbers, and
1
{E}{k ni,ng) = T (ﬂl'ﬂ[k}-ﬂg}‘g
-~ 1 _
A (k,ny,mg) = (s1)2 (n1-7" 1) 2 (ng - 7™ ny ) (ng- 7 ny)
i 1 -
A (k,na,ma) = (n1-7™ 1)~ (n1- 7™ -11)! (g - ™ -n5)’

. -



General eom’s

|7We can represent the eom symbolically as j

[s/2]
kzz a;ﬁgsj(k,nhng) =0 (1)
=0
But one can show that only the term [ = s/2] matters, so in fact the
eom can be reduced to

kg(nl (k) n2)® =0 (2)

This is the nonlocal Fronsdal equation for spin s.

Therefore the 2-pt function of spin s currents contains in particular
the information of the spin s Fronsdal equation, or, ccrrespcndingly,J
its Lagrangian.

_—pir



Example 1n 4d

‘ In 4d (in any even dimension) one has an additional problem of regularization. The way out \
Is to do the calculations for d = 4 + &. For instance in the case of the e.m. tensor the 2pt
function in the IR takes the form

L]

i n 1 3 1 A1
M= (2Nuu e + MuaMep + MupMer) 1 + 6 = ’T‘I‘lﬂgﬁ ;

- 16(2m)2

i 5 [1
“TenE " [E ((kpkamvp +A < p) +p e v) —

Tnvhp{k} —

;;.‘2
— {k;.nk'vﬂ.hp + Ea kpﬂpv} Y {ﬂ;&.h'fh-p + ﬁ#pﬂvh} + kiﬂpvﬁhp}

111 .
- (E + = — Ly +logam —logm :r)

The term proportional to m* is clearly not conserved, but is local and can be subtracted. The
term proportional to 2 comresponds to the lowest order term of the Einstein-Hilbert action,
with a coupling

i ,/1 1 1 ) )
L _ log 4 — 1
‘ 16(2m)2 (5.5 + 13 — 137+ logdm — logm?) \

_—pAS




lemporary conclusion:

Free field theories generate one-loop effective actions
which contain information (action, eom,...) about a very

large spectrum of (if not all) local field theories physicists
have been able to invent.

This may be thought of as a form of duality:

Free field theory X4 Higher spin field theories



But the higher spin theories so far are in
linearized form. Is the correspondence
only valid for free higher spin theories?

The answer is: no! The correspondence
extends also to interactions.

Let us consider some examples



Free massive fermion model:3-pt

|7‘I’he 3-pt function is more complicated T

d3p ( 1 b 1 1
Tr | v, T —~, T T'* )
(27)3 op—m p—Fk —m A p—d—m

The result is a generalized Lauricella function (Boos,Davydychev). In the
IR we find

TNk, ko) =i

= (VE\ "
71,abe(odd) . 1 abe 7(2n)
J.LHJ'J'L (kl:- 'IGE) ~ ?'3211_ gﬂ ( ™ ) f I;_.::.-'}-. (kl:l ki}

and, in particular,

I (k1 ko) = —6euwa

‘ which corresponds to the action term

~ / BB e prve A% AD A






Lauricella hypergeometric function

Basic integral \

d%p 1
(2m)4 (p2 — m?)*((p — k1)? —m?)P((p — q)* — m?)?

Ja(a, B,y;im) =

This can be transformed into

j1—d d_q g Tla+B+v—9
Ja(a, B, y;m) = 7 (—m*) 27 T — -
(4m) % (x+B+7)
By |2TBTY ﬁﬁ'r‘ q? k3
ﬂ+ﬁ+’r‘ 'm?’ m?

where &3 is a generalized Lauricella function ({a]n =TI'(a+n) fI‘(n}):

aj, ap, as, a4
dq 21, 29,23
C

— 31' jo! 33* (€)241+242+27a

:-r1="3 JE_D Jz
- 1M



Free massive fermion model:3-pt (cnt.)

e -

utting things together we find the effective CS action

cs = == dE:cTr(AﬂdA—kEAﬂAﬂﬂ)
Ly 3

# Inthe IR k =1, so the CS action is invariant also under large gauge
transformation.

# s Inthe UV things are more complicated. Eventually we get the
same action with K = w2*. So, the UV limit is 0.

# |f1y carries aflavourindex: =1,..., N, the previous result is

multiplied by N, and x = 7N 7. So we can consider the scaling

limit N — oo, = — 0 and « fixed and finite.

Important! Both 2-pt and 3-pt correlator satisfy the Wl's of CFT (and they
re pure contact term)!



A note on conservation

‘ For the 3-pt correlator of the massive theory we have \

but

- i 2m 2m
p jabe (. L = ——fabee, k9 ——arccot (—)

i abe o 2m 2m
—— € ki ——arccot | — 0
AT .f AL e ;-’.‘2 ( ;-’.‘2 3&

_ﬁq# ji?’id} abe “i'?l ko ] + fﬂhd jliidd]dﬂ {L’.‘Q} + facd j.iiddjdh (kl }

1 2m 2m 2m 2m
— —E_f”hce;mg (kf k—larccc-t (k_1) + k3 Ea;rcmt (E))

1 2m 2m 2m 2m
-I—E_fﬂbﬂEAyg (kf Ea.rccﬂt (Fl) -+ .I’f-g k—garccﬂt (k_g)) =0

In the IR and UV limit the last equality is not conserved and, to preserve covariance, one has
to subtract counterterms.

[
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Gravitational CS (cont.)
=

‘ The expansion for CS 1s

CSy =k f d?x et (ﬂ“w::bu,wu + gwﬁfuybfwm) =S + oSy + ...,

where
csi? — %fﬂ!ﬂm €ovp BMP (Bﬁﬂhﬂbhb"’ _ aﬁl:lh.g)
and
cst3) | @Bz (28, k103 hE 8,07 — 28, h? 8°hy, 8%h 2 8., h® 85 hE Bh2
g =E I E (Eﬂyb}ﬁﬂ'ﬂ _21].;_1, b EA_EE;_LbyC},,

—28,,8°h2 (hSB,hpx — hEBohay) + 8, 8Phe (hS B hpe — OahS hpe)
+8u0°hE (Bph§hac — hSOphac) — Ky hg 8y (Chay — 8adbhl ) ).

This term is understandably more complicated, but it can be reconstructed from the 3pt
function of the e.m. tensor.

—pAr



Interaction in HS theories

‘ In general higher spin theones the reconstruction of the full action kinetic term + interaction \
Is more complicated. In particular we have to introduce the generalized Christoffel symbols
(de Wit-Freedman), whose lowest term is, for instance,

1 1
Fﬂ1ﬂrz;ﬁ1ﬁzﬁ3 = E {ﬂﬂlﬂﬁz Bﬁlﬁzﬁa - E {Sﬂlaﬁl B&zﬁzﬁz + aﬂiﬂﬁzﬂﬂzﬁ1ﬁ3

+5&13ﬁ3 Eﬂfzﬁlﬁz + ﬂﬂzﬂﬁl Bﬂlﬁzﬁa + 3&2 ﬂﬁz Bﬂuﬁlﬁa + ﬂﬂzﬁﬁa Bﬁlﬁl -"32}

+‘aﬁ1 ‘aﬁz Bﬂu azfz T 5.51 5.53 Bﬂti&zﬁz + ‘aﬁz‘aﬁa Bﬂ1ﬂrz.l'31 } (1

This may be a very important test for the consistency of HS theories.

(work in progress)

—pAr



In any case we seem to be able to reconstruct not
only the linearized part of the actions, but also
(perturbatively) the interactions.

If this is true the previous correspondence will be:
Free field theory <> Interacting AS field theories

AS= any spin

(also interacting?)



We have indications that in order to describe quantum
gravitational effect we need a theory with infinite many

fields. (Camanho-Edelstein-Maldacena-Zhiboedoy,
2014)

But what is this theory: string theory, HS theories, or
what else? We don’t know.

It would be interesting to apply the previous duality also
to string theory.



Tensionless strings

—

In the tensionless limit (o’ — oc) of the free string spectrum becomes
massless. This limit is well defined. Recalling that ay; = v 2a'p"* and

P — —i% and redefining the Virasoro generators as follows:
1 1
Ll:} — _,LU'J L.li: 4 L-Ii:! 'I": 7’4_ 0
(8 Dy’

one obtains the reduced generators
Lo — lp = p?, L — lx = p - ag, k#0
which satisfy the reduced Virasoro algebra

[Eﬁ:: Iﬂ-] =k El:} 5k+n1l}

[ o
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Tensionless strings (cont.)

‘ Rescaling also the ghost oscillators ., B, as follows \
1
Cr — ¢ = V20/'Cy, By — by =Fﬂk: k+#0
L]
Co —co=a’Co, By — by=—Bo
L

in the " — oo one finds a reduced BRST charge

= k
= . — =bpc_
Q2 E (ﬂk k — 7boc kﬂk>

k=—mo

There is no central charge. @2 = 0 in any dimension and QT = Q.
The SFT action reduces to the free action (BEonelli, 2003)

S = (2|Q|®)

It is invanant under the BRST transformation é|®) = Q|A).

| o
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Tensionless string (cont.)

‘ The states of this theory have been analyzed by Francia-Sagnotti-Tsulala. The simplest \
states are the so-called triplets:

|®) = |¢0) + colP1), |A) = |[Ao} + co|A1),
where
=1
|P0) = Z S ¥u1...ps {m]ﬁil ool €10}
5—0 &
o0
+ ;Dﬂ o o (@)t .. ol %e_1]0)
e (s—2) T - B
and
-
61} = Z = 1). o (@)l ol 0)
‘ where |k) = |0)etkT  Satisfying the eom Q|®) = 0 implies \
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Tensionless strings (cont.)

- o

[k = 8C,
8¢ —0D=C
1D =8-C

Now take the gradient of the second and replace into the first. Then take the trace of the first,
and insert the result into the previous equation. The end result is (in unnormalized notation)

r a° r
DP;.LU}. — 80-p + 80¢" = EEG (1)

This is the Fronsdal equation written in terms of a ‘'compensator o field

C!
0= —

L1

This is actually general for all the tensionless strings. This reduces tensionless string theory

‘ to a particular HS theory. \
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Effective SFT?

|7The tensionless SFT should be the UV limit of SFT. But we have learnt j
that the UV limit tells us a lot about the whole theory.
This suggests us to treat free SFT as the previous free theories and try to
compute the corresponding effective action. The appropriate action is

f(@#Q'I'—I— @a}c'i'*‘-lf) (1)
" 2g,

where @ is the original string field of SFT and ¥ represents the string field
of external sources.

The resulting effective theory in terms of ¥ should tell us a lot about SFT
itself and its relation to HS theories. (work in progress)
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