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The theory is expected to have Eg g-symmetry (like maximal
supergravity in 5 dimensions), the chiral 2-forms being in the 27
and the scalars parametrizing the coset Eg g/ USp(8), which has
dimension 78 — 36 = 42.

However, only the equations of motion of that theory are known,
and only in the free case. Furthermore, there is no known
Lagrangian, even in the absence of interactions.

4/28



Introduction

Remarks on
exotic theories of
gravityin 6
dimensions

Marc Henneaux

Introduction




Introduction

Remarks on
exotic theories of
gravityin 6
dimensions

Marc Henneaux

Introduction

The purpose of this talk is to :

5/28



Introduction

Remarks on
exotic theories of
gravityin 6
dimensions

Marc Henneaux

Introduction

The purpose of this talk is to :
o Explain further this theory;

5/28



Introduction

Remarks on
exotic theories of
gravityin 6
dimensions

Marc Henneaux

Introduction

The purpose of this talk is to :

o Explain further this theory;
o Review the work on chiral 2-forms;

5/28



Introduction

Remarks on
exotic theories of
gravity

dimensions
Marc Henneaux
Introduction

The purpose of this talk is to :

o Explain further this theory;
o Review the work on chiral 2-forms;

o Explain why a chiral tensor of mixed

gravity;

symmetry contains

5/28



Introduction

Remarks on
exotic theories of

gravity
dimensions

Marc Henneaux

Introduction

The purpose of this talk is to :

o Explain further this theory;
o Review the work on chiral 2-forms;

o Explain why a chiral tensor of mixed symmetry contains

gravity;
e and explain the construction of an explicit Lagrangian

5/28



Introduction

Remarks on
exotic theories of
gravity
dimensions
Marc Henneaux

Introduction

The purpose of this talk is to :

o Explain further this theory;
o Review the work on chiral 2-forms;

o Explain why a chiral tensor of mixed

gravity;

symmetry contains

e and explain the construction of an explicit Lagrangian
(Work in collaboration with Victor Lekeu and Amaury Leonard).
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(Quite generally, there seems to be a clash between manifest
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We will see that the equations of motion for a chiral (2,2)-tensor
can also be derived from a similar variational principle.

There are, however, subtleties with respect to the 2-form case.
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The magnetic field contains the components of the curvature
tensor with only one index equal to 0,

1
Bijk1 = 31t ,-j“bcf abekl-

One has @/ = Uk = 0 and 3,87 = 0.

On-shell, the magnetic field has the (2,2) Young symmetry.
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because it does not involve the time derivatives of Tjjys.

There is no analogous constraint in the p-form case.

The number of equations is now equal to the number of

components Tjjys.
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emnijkak (éal] TS _ 93;']' rs) =0
eliminating thereby the gauge components Tpjys.

Together with the trace condition & = 0, this equation is
completely equivalent to &Y — Y™ = 0.

[One recovers &9 — 284" = 0 up to a term that can be absorbed
in a redefinition of Tpjps.]
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The gauge transformations are
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0Zjj=0ij+0i¢;+ Adjj

(linearized diffeomorphisms + linearized Weyl rescalings).
The question is to build a complete set of gauge invariant objects.

Three dimensions is very special from the point of view of
conformal geometry.
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but not every three-dimensional geometry is conformally flat.
(not every Z;; is “pure gauge").

What plays the role of the Weyl tensor is the Cotton tensor, which
contains 3 derivatives of the spin-2 field.
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The field Z is pure gauge if and only if its Cotton tensor vanishes.
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which contains three derivatives of the field Zjj;,,

and which is transverse and traceless,

61'Dijrs =0= Dijrs5js.

. One can show that conversely, any } tensor which is

transverse and traceless
can be written as the Cotton tensor of some prepotential Zjy.

In particular, the constraint on the electric field of the (2, 2)-gauge
field T implies that one can express T in terms of a prepotential Z
so that &¥7[T[Z]] = G¥™[T[Z]] = DY5[Z]. The relationship

T =TI[Z] =“0Z" can be easily written down.
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which is of first order in the time derivatives (and of fourth order
in all derivatives).

This is the searched-for action for a chiral (2, 2)-tensor in six
dimensions.
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Connection with graviton in dual form.

gravity

The duality condition equates the two types of gravitons.
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A similar construction can be achieved for the (3, 1) theory, which

involves a | tensor with self-dual field strength.
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