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Why is it important to study the strongly coupled systems? 

→The nature has many examples of strongly coupled systems: 
QGP, high-T superconductors, big bang 

→Traditional tools (perturbation theory, l-QCD) break down 

→The AdS/CFT has built a bridge between problems from the 
Quantum world and methods from General Relativity. 
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Motivation and Introduction

What are the approaches to study the dynamics?
& What is the role of holography?

1-Small excitations of a uniform static system: 

2-Full time evolution of a given initial configuration

→Collective modes/QNMs (in Asymp-AdS are the poles of 
retarded Green’s function of dual operators  

→Solving the time dependent Einstein EoMs

→ reading the data corresponds to the dual FT from 
near boundary expansion(like 1-pt functions) 

→Linearized Einstein EoMs for gauge invariant perturbations 
identifies the dispersion relation ω(k) =?
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Gravity Setup dual to non-CFT

Approaches:

1- Top-down:   (example: deform N = 4 SYM to N = 2*)

2-Bottom-up: (a bit of engineering)

→Assuming AdS/CFT works

→Model the gravity+matter with a potential V(φ)

→We may choose V(φ) such that it reproduces the 
physics of interest 

(like l-QCD EoS, 1st or 2nd order phase transitions)
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Gravity Setup dual to non-CFT

The simplest setup dual to 

Gubser, Nellore ’08 & Gursoy, Kiritsis, Mazzanti, Nitti ’09

→

→ The potential has a general form:
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Gravity Setup dual to non-CFT

The first step: what are the static black hole (T>0) solutions

→For arbitrary potential one needs numerical tools

→Spectral Chebyshev polynomials along radial coordinate 

→We are interested in FT’s in flat background with fixed 
sources (  ) at different temperatures (corresponding to φH )

→Equation of State:



Gravity Setup dual to non-CFT

Examples: 3+1-gravity/CFT+(          )

Stable regimes:
Green: Large BH
Blue: Small BH

Unstable regimes:
Red: thermodynamic instability
Black-dotted: Dynamical instability
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Linearized Gravity (QNMs)

QNM equations: linearized Einstein equations  (δΦi ∼ e−iωt+ikx Ψi(r))
EoM(gμν+ε hμν,φ+ε ψ)=EoM(gμν,φ)+εQNMeqs 

Typical structure of the QNMs in AAdS (k= finite) 

Red: Unstable mode 
Green: Diffusive modes
Yellow: Non-hydrodynamic modes
Blue: Hydrodynamic modes, ω(k→0) → 0



Linearized Gravity (QNMs)

New features in non-CFT cases:

→Crossing between hydro and nonhydro modes! 
(limits applicability of hydrodynamics)

→Sign for bubble formation in 1st order phase transitions!

→Joining modes: Hydro modes and nonhydro modes might 
be indistinguishable!

→Dynamical instability: A thermodynamically stable black hole 
MAY suffers an unstable non-hydro mode! 

Janik, Jankowski, HS, PRL ’16 
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Linearized Gravity (QNMs)

New features in non-CFT cases:

→Sign for bubble formation in 1st order phase transitions!
(Re(ω)=0  for  kmin <k<kmax)

Janik, Jankowski, HS, PRL ’16 
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phase transition 



Dynamics of 1st order phase transition

Potential in 4D:
Janik, Jankowski, HS, PRL ’17 

Initial configurations: perturbed black holes 
in Spinodal region
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Dynamics of 1st order phase transition

Some technical points:
Metric Ansatz (in Eddington-Finkelstein): x ∼ x + 12π 

→Time integration: Runge-Kutta and Adams-Bashforth methods

→ Proper boundary conditions at AAdS and at the apparent horizon

Commenets:

→Holographic renormalization: < Tij > ,       < Oφ>

→Ward identities: <Ti
i > = <Oφ> ,       ∇i <Tij > = 0 
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Dynamics of 1st order phase transition

Results:  initial config. : φH = 2 

The final state: Static Black holes with inhomogenous horizons
With homogenous sources



Dynamics of 1st order phase transition

Results:
New static black hole: inhomogenous horizon 

and temperature Tc

Dias, Santos, Way, JHEP ’17 



Dynamics of 1st order phase transition

Results:
New static black hole: inhomogenous horizon 

and temperature Tc

Green lines: Min and Max points on EoS at Tc

Red  and Blue line: ε(x) for the final state of perturbations
Hydrodynamics is applicable with 2nd-order transport Coefficients  
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Expanding plasma: Boost-invariant expansion as a simple model

The physics of (d+1)-dim FT 
depends only on  τ and 
not rapidity y. i=1,…,d-1

Dual gravity Ansatz in 3+1 d:

→ Proper boundary conditions at AAdS and at the apparent horizon

→Holographic renormalization: < Tij > ,       < Oφ>

→Ward identities: <Ti
i > = <Oφ> ,       ∇i <Tij > = 0 

Bjorken, PRD, ‘83
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Expanding plasma: Boost-invariant expansion as a simple model

1st Potential in 4D:
Janik, Jankowski, HS, “soon”

→The energy is decreasing 

→The expansion passes the Spinodal region “trivially”
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Expanding plasma: Boost-invariant expansion as a simple model

2nd Potential in 4D:
Janik, Jankowski, HS, “soon”

→The energy is decreasing

→There is a reminiscent of dynamical instability 
until the late time in expansion!!!



Summary

→Higher QNMs introduce new instabilities in BHs

→New black holes with homogenous sources but inhomogenous horizon
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Summary and future directions

→Higher QNMs introduce new instabilities in BHs

→New black holes with homogenous sources but inhomogenous horizon

→Different dimensions (in particular 3D gravity + matter)

→ Plasma expansion (boost invariant flow) is studied and needs more,…

→ Investigating anisotropic plasma

→Collision of bubbles in 1st order phase transition

→Using probes: strings, Wilson line/loop, EE, …

→New black holes: Domain wall solutions to GR 

→Bubble formation is studied (in strongly coupled regime, with universal properties)



Thanks for your attention



Dynamics of 1st order phase transition

Some technical points:
Metric Ansatz (in Eddington-Finkelstein): x ∼ x + 12π 

EoMs: Using the new time derivative:

Solve the equations at t=0 and then one step forward


