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Motivation

o Entanglement is a concept which appears in condensed
matter, quantum information and black-hole physics.
o Entanglement measures may help us to study

@ Quantum phase transitions at T = 0
@ Non-equilibrium processes, e.g., quantum quenches
@ The connection between gauge theory and gravity
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Definition

(Pure) Entangled states

o Consider two quantum systems, i.e., A and B
Ha, Hp
o Construct M using the tensor product of A and B
Hy =Ha®HB
@ Separable states

|X>7—LM = WMA ® ‘¢>HB

o (Pure) Entangled states

‘X>'HM 7é ‘w>7'lA ® |¢>HB
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Definition

Example: Spin 1/2 Particles

@ Separable states

W) = [ta)®]|ls)
(02) = [la)®|1B)
o Entangled states
) = Ss(twe £ e|ts)

Challenge

Entanglement Measures!

Entanglement entropy, Mutual information, - - -
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Entanglement Entropy

o Consider the density matrix for a pure quantum system

p = [¥)(|
e Hilbert space decomposition H = Ha4 ® Hp

@ Reduced density matrix for A
dim[B]
pa =Trp(p) = Zl (i|plin)
1=
e von-Neumann entropy for p4

dim[A]
Sa=—Tra (palogpa) = = 3 (ialpalogpalia)
=1

1=

Challenge

Generalization to QFT (Continuum Limit)?
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Definition

Geometric entropy

o Consider a d-dimensional QFT on R x M(@=1)

e Divide M@= into two parts

’ @
B A B

The geometric decompostion implies H = Ha ® Hp

Sa=—Tra (palogpa)
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Properties

Interesting Features

Entanglement entropy
@ corresponds to a non-linear operator in QM
@ is not an extensive quantity (unlike the thermodynamic
entropy)
@ satisfies various inequalities, e.g., subadditivity
S(A)+ S(B) > S(AUB)
@ obeys an area law scaling (in local QFTs)

Sq_
Saox Stz
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Lifshitz scaling symmetry

Lifshitz symmetry

@ Anisotropic scaling invariance
t — A*t, T — AT, z : Dynamical exponent

[E. M. Lifshitz 1941]
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Lifshitz symmetry

@ Anisotropic scaling invariance
t — A*t, T — AT, z : Dynamical exponent
[E. M. Lifshitz 1941]

o Anisotropic RG flow

W z=1 w, z#£1

[J. A. Hertz 1976]
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Free Massless Scalar Theory

Lorentz vs. Lifshitz

Lorentz

Lifshitz

Lagrangian

Mass Dimensions

Group Velocity

Dispersion Relation

L (8- @)

L (42 - 0700)
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Free Massless Scalar Theory

Lorentz vs. Lifshitz

Lorentz

Lifshitz

Lagrangian

Mass Dimensions

Group Velocity

Dispersion Relation

L (8- @)

L (42 - 0700)

_ z—1
vg =2k

Massless modes with different £ have different v,
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Lifshitz Harmonic Models

Lifshitz-type QFT on a (14+1)d Square Lattice

The harmonic lattice is well known to be the discretized version

of free scalar field theory with Lorentz symmetry
o Free Scalar Theory
H=13[dx [(;52 + (0¢)? + m2¢2}
e System of N Harmonic Oscillators
H=Y, [%p% +3(m—an1)’ + m{qi]
Nearest Neighbor Interaction

o Dispersion Relation

wp=vm?+k2 — wp= \/m2—|—(2sin%k)2




Lifshitz-type Q
0

Lifshitz Harmonic Models

Lifshitz-type QFT on a (14+1)d Square Lattice

The harmonic lattice is well known to be the discretized version

of free scalar field theory with Lorentz symmetry
o Free Scalar Theory
H=13[dx [(;52 + (0¢)? + m2¢2}
e System of N Harmonic Oscillators
H=Y, [%p% +3(m—an1)’ + m{qi]
Nearest Neighbor Interaction

o Dispersion Relation

wp=vm?+k2 — wp= \/m2—|—(2sin%k)2

What happens when we turn on a non-trivial z?
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Lifshitz Harmonic Models

Lifshitz-type QFT on a Square Lattice

The Lifshitz harmonic model is the discretized version of free
scalar field theory with Lifshitz scaling symmetry
o Lifshitz-type scalar theory
[ dz {(pz (0°¢)% + m22¢2}
o Discretization on a Square Lattice

H=y, [p" + 5 (o (D7) 1+k) +m222q%}

Long Range Interaction (depending on 2)

e Dispersion Relation
=vm2 + k% — wp= \/mQZ + (2sin ”Wk)%

[MM, Mollabashi 1705.00483-1712.03731; He, Magan and Vandoren, 1705.01147]
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Quantum Quench in Relativistic QFTs

Quantum Quench

o Quantum quench is a simple set-up for studying evolution
of entanglement which has also experimental realization

(ultracold atoms [Greiner,Mandel,Esslinger,Hansch,Bloch ’2002])
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Quantum Quench

o Quantum quench is a simple set-up for studying evolution
of entanglement which has also experimental realization

(ultracold atoms [Greiner,Mandel,Esslinger,Hansch,Bloch ’2002])

t<0 t=0 t>0
H(Xo) H(A)

[40) e N y)
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Quantum Quench in Relativistic QFTs

Quantum Quench

o Quantum quench is a simple set-up for studying evolution
of entanglement which has also experimental realization

(ultracold atoms [Greiner,Mandel,Esslinger,Hansch,Bloch ’2002])

t<0 t=0 t>0
H(Xo) H(N)
[40) e N y)
R N

E I A N O

R A WB
O O
R A
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Time Evolution of EE in CFT5

o Calabrese-Cardy Quench Model [Calabrese, Cardy *05]

Sudden transition from a QFT with a finite mass gap

(m~ &1 toa CFT (m ~0)
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Quantum Quench in Relativistic QFTs

Time Evolution of EE in CFT5

o Calabrese-Cardy Quench Model [Calabrese, Cardy *05]

Sudden transition from a QFT with a finite mass gap

(m~ &1 toa CFT (m ~0)

How entanglement evolves with time after the quench?
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Time Evolution of EE in CFT5

o Calabrese-Cardy Quench Model [Calabrese, Cardy *05]

Sudden transition from a QFT with a finite mass gap

(m~ &1 toa CFT (m ~0)

How entanglement evolves with time after the quench?

@ The conformal symmetry of post-quench system helps us to

find the evolution of EE
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Quantum Quench in Relativistic QFTs

Time Evolution of EE in CFT5

Sa

SA(t) ~ {

t> ts

NS
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Quantum Quench in Relativistic QFTs

Time Evolution of EE in CFT5

Sa

SA(t) ~ {

t> ts

NS

ts t

o Quasiparticle picture [Calabrese, Cardy *05]

o ty~ £ (v=1in CFTy)
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Quantum Quench in Relativistic QFTs

Time Evolution of EE in CFT5

@ Pre-quench Configuration

IOO. 'OO IOO. IOO. IOO. -00‘ 'OO. IOO. ... IOO. -0.. 'OO‘
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Quantum Quench in Relativistic QFTs

Time Evolution of EE in CFT5

@ Pre-quench Configuration

9000 00 00 00: 00: 00 00 00 00 00! 00!
o Post-quench Evolution
t=t ° e o []
t=0 \/
oo 20
t=t, [ e o [
t=1t \ /
t= 0 = =
09 0
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Quantum Quench in Relativistic QFTs

Time Evolution of EE in CFT5

@ Pre-quench Configuration

’ “ . “ . .I - .I . " . " . “ . ‘I . .I . " ’ “ . “
99 00 90 99 009 00 90Q. 09 00 0O 0O 00
‘-..-' ‘-..-' ‘~..-' ‘~..-‘ ‘...-' ‘-..-' ‘~---' ‘~..-' ‘~..-' ‘...-' ‘-.--’ ‘~..-'

o Post-quench Evolution

t=1t, 0\/0 ° °
t=0 —

o 99
t=ts \ e 2 /?
t=1
r:() = =

Ly ol

The transition between different scaling regimes can be

understood in terms of quasiparticle spectrum [Alba, Calabrese "17]
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Free Streaming Quasi Particles

Spectrum of quasiparicles:
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Free Streaming Quasi Particles

Spectrum of quasiparicles:
@ CFT: Quasiparticles propagate with a unique vy(= 1)
independent of k (Linear dispersion relation)

o All quasiparticles move along the null geodesics
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Free Streaming Quasi Particles

Spectrum of quasiparicles:
@ CFT: Quasiparticles propagate with a unique vy(= 1)
independent of k (Linear dispersion relation)
o All quasiparticles move along the null geodesics
@ A General QFT: Quasiparticles propagate with v, (k)
(Non-linear dispersion relation)

e Quasiparticles have a wide spectrum

Example:

k<l v, x1 Non-relativistic
w=vVk%2+m?2— { 7

k>1 wg~1 Ultra-relativistic
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Free Streaming Quasi Particles

Spectrum of quasiparicles:
@ CFT: Quasiparticles propagate with a unique vy(= 1)
independent of k (Linear dispersion relation)
o All quasiparticles move along the null geodesics
@ A General QFT: Quasiparticles propagate with v, (k)
(Non-linear dispersion relation)
e Quasiparticles have a wide spectrum

Example:

E<l vk Non-relativistic
w=vVk%2+m?2—

k>1 wg~1 Ultra-relativistic
Zero modes: Quaiparticles that stroll along the subregions

because of vanishingly small v,(— 0)
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Quantum Quench in Relativistic QFTs

Free Streaming Quasi Particles

How the spectrum of quasi-particles affects the entanglement

evolution?



Evolution of Entanglement Entropy in LHM
000000e
Quantum Quench in Relativistic QFTs

Free Streaming Quasi Particles

How the spectrum of quasi-particles affects the entanglement

evolution?
o Transition from Linear Growth to Saturation Regime:
@ CFT: Instantaneous Transition
@ QFT (Lattice set-up): Mild Transition (Logarithmic
Growth Due to Existence of Zero Modes, i.e., k — 0)

e

Logarithmic Growth

&ar * o m=10"2

......................................

. m=2
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Free Streaming Quasi Particles

How the spectrum of quasi-particles affects the entanglement

evolution?
o Transition from Linear Growth to Saturation Regime:
@ CFT: Instantaneous Transition
@ QFT (Lattice set-up): Mild Transition (Logarithmic
Growth Due to Existence of Zero Modes, i.e., k — 0)

b S eeseessessnesseseesesssess -
o Leeneee®
o4 Logarithmic Growth 6
954 03
! st o m=10"2
.........................
L2 e e T — oo
2 *
0.1
* [J=a
0 2 40 s s w0 i 1o 0 ) = 5 = - 4
time ¢

What happens when we have a nontrivial z7
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Questions

Regarding the entanglement evolution in LHM, different

questions may arise:

Linear Growth
o Role played by z in Regimes

Saturation

o Existence of a Quasi-particle Picture

e Propagation Velocity and z-dependent Lightcone

[MM, A. Mollabashi, work in progress|
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Existence of a Quasi-particle Picture

@ Numerical Reults

10 o z=1
i .
2 . 222
essesese
o
sl z=3
o
R
.
H
oth .
0 20 40 60 80 100 120

For larger values of z:
@ Rate of growth of entanglement entropy increases
© Width of the logarithmic growth regime becomes larger

@ The saturation value of EE increases
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Existence of a Quasi-particle Picture

Origin of Logarithmic Growth
o Lattice Dispersion Relation

Wi = \/mQZ + (2sin %)22
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Existence of a Quasi-particle Picture

Origin of Logarithmic Growth
o Lattice Dispersion Relation

Wi = \/mQZ + (2sin %)22

o Group Velocity
@ Massive Case  vy(k — 0) ~ k?*71 + O(k?*T1)
@ Massless Case  vy(k — 0) ~ k*~1 + O(k**1)

In both cases we have zero modes (k — 0) which are too lazy to

move (vg — 0)
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Existence of a Quasi-particle Picture

Origin of Logarithmic Growth
o Lattice Dispersion Relation

Wi = \/mQZ + (2sin %)22

o Group Velocity
@ Massive Case  vy(k — 0) ~ k?*71 + O(k?*T1)
@ Massless Case  vy(k — 0) ~ k*~1 + O(k**1)

In both cases we have zero modes (k — 0) which are too lazy to
move (vg — 0)
Remember that in CFT (m = 0,z = 1) there is no zero modes

and we have a unique vg(= 1)
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Existence of a Quasi-particle Picture

o Maximum Group Velocity and Lifshitz-cone

U;nax _ 23_1\/5(%1)%



Evolution of Entanglement Entropy in LHM
0000e00
Quantum Quench in LHM

Existence of a Quasi-particle Picture

o Maximum Group Velocity and Lifshitz-cone

z—1
ax __ -1 z—1\ "2
U;]n =2 \/E ( z ) :
e The propagation of quasiparticles constraints to be inside a

max

Lifsitz-cone whose structure depends on vy
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Existence of a Quasi-particle Picture

o Maximum Group Velocity and Lifshitz-cone

z—1
ax __ -1 z—1\ "2
U;]n =2 \/E ( z ) :
e The propagation of quasiparticles constraints to be inside a

max

Lifsitz-cone whose structure depends on vy

max

e For z =1 we have Uy

= 1 which is consistent with the

CFT limit
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Existence of a Quasi-particle Picture

o Maximum Group Velocity and Lifshitz-cone

z—1
ax __ -1 z—1\ "2
U;]n =2 \/E ( z ) :
e The propagation of quasiparticles constraints to be inside a

max

Lifsitz-cone whose structure depends on vy

max

e For z =1 we have Uy

= 1 which is consistent with the
CFT limit
o For z < 1, v"®* becomes pure imaginary! (In Lifshitz

holography NEC imposes z > 1)
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Existence of a Quasi-particle Picture

o Maximum Group Velocity and Lifshitz-cone

z—1
ax __ -1 z—1\ "2
U;]n =2 \/E ( z ) :
e The propagation of quasiparticles constraints to be inside a

max

Lifsitz-cone whose structure depends on vy

max

e For z =1 we have Uy

= 1 which is consistent with the
CFT limit
o For z < 1, v"®* becomes pure imaginary! (In Lifshitz

holography NEC imposes z > 1)

For any z we have a bound on propagation (similar to the

Lieb-Robinson bound)
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Conclusions

After a quantum quench in LHM:

o the growth of EE can be divided into two main regimes:
initial linear growth and late time logarithmic saturaiton
o Rate of growth of entanglement entropy in linear regime is

an increases as a function of z

o For larger values of z, the region with logarithmic scaling

becomes broader

@ The qualitative, and some of the quantitative, features of

SA(t) can be described in terms of a quasi particle picture
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Further Studies

Considering other entanglement measures, e.g., relative

entropy, logarithmic negativity, - - -

Quasi-particle picture vs. tsunami picture

(]

Investigating the possible relation between v, and

Lib-Robinson velocity

Thank you
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