Lifshitz-type QFTs 0000

Evolution of Entanglement Entropy in LHM $_{\rm OOOOOOOOOOOO}$

Entanglement Evolution After a Quantum Quench in Lifshitz Harmonic Models

<u>M. Reza Mohammadi Mozaffar</u>, A. Mollabashi arXiv:1705.00483, 1712,03531, 1805.XXXXX

Recent Trends in String Theory and Related Topics School of Physics (IPM)

May 2018

Lifshitz-type QFTs 0000

Evolution of Entanglement Entropy in LHM $_{\rm OOOOOOOOOOOO}$

1 Entanglement in QM and QFT

- Definition
- Properties
- 2 Lifshitz-type QFTs
 - Lifshitz scaling symmetry
 - Lifshitz Harmonic Models

⁽³⁾ Evolution of Entanglement Entropy in LHM

- Quantum Quench in Relativistic QFTs
- Quantum Quench in LHM

Lifshitz-type QFTs 0000

Evolution of Entanglement Entropy in LHM $_{\rm OOOOOOOOOOOO}$

Motivation

- Entanglement is a concept which appears in condensed matter, quantum information and black-hole physics.
- Entanglement measures may help us to study
 - Quantum phase transitions at T = 0
 - Non-equilibrium processes, e.g., quantum quenches
 - The connection between gauge theory and gravity
 - 4 · · ·

Entanglement in QM and QFT	Lifshitz-type QFTs	Evolution of Entanglement Entropy in LHM
00000		
Definition		

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● □ ● ●

Evolution of Entanglement Entropy in LHM 000000000000

- ロ ト - 4 回 ト - 4 □

Definition

(Pure) Entangled states

 $\bullet\,$ Consider two quantum systems, i.e., A and B

$$\mathcal{H}_A, \quad \mathcal{H}_B$$

• Construct M using the tensor product of A and B

$$\mathcal{H}_M = \mathcal{H}_A \otimes \mathcal{H}_B$$

• Separable states

$$|\chi\rangle_{\mathcal{H}_M} = |\psi\rangle_{\mathcal{H}_A} \otimes |\phi\rangle_{\mathcal{H}_B}$$

• (Pure) Entangled states

$$|\chi\rangle_{\mathcal{H}_M} \neq |\psi\rangle_{\mathcal{H}_A} \otimes |\phi\rangle_{\mathcal{H}_B}$$

Entanglement in QM and QFT $_{\rm OO}{\bullet}{\rm oo}{\circ}$

Lifshitz-type QFTs 0000

Evolution of Entanglement Entropy in LHM $_{\rm OOOOOOOOOOOO}$

Definition

Example: Spin 1/2 Particles

• Separable states

$$\begin{aligned} |\Psi_1\rangle &= |\uparrow_A\rangle \otimes |\downarrow_B\rangle \\ |\Psi_2\rangle &= |\downarrow_A\rangle \otimes |\uparrow_B\rangle \end{aligned}$$

• Entangled states

$$|\Psi_3
angle = \frac{1}{\sqrt{2}} \left(|\uparrow_A
angle \otimes |\downarrow_B
angle \pm |\downarrow_A
angle \otimes |\uparrow_B
angle
ight)$$

Challenge

Entanglement Measures!

Entanglement entropy, Mutual information, · · ·

Entanglement	in	QM	and	QFT
000000				

Lifshitz-type QFTs $_{0000}$

Evolution of Entanglement Entropy in LHM 000000000000

Definition

Entanglement Entropy

• Consider the density matrix for a pure quantum system

$$\rho = \left|\psi\rangle\langle\psi\right|$$

- Hilbert space decomposition $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$
- \bullet Reduced density matrix for A

$$\rho_A \equiv \operatorname{Tr}_B(\rho) = \sum_{i=1}^{\dim[B]} \langle i_B | \rho | i_B \rangle$$

• von-Neumann entropy for ρ_A

$$S_A \equiv -\text{Tr}_A \left(\rho_A \log \rho_A\right) = -\sum_{i=1}^{\dim[A]} \langle i_A | \rho_A \log \rho_A | i_A \rangle$$

Challenge

Generalization to QFT (Continuum Limit)?

Entanglement in QM and QFT 0000	Lifshitz-type QFTs 0000	Evolution of Entanglement Entropy in LHM 0000000000000
Definition		
Geometric entropy		

- Consider a *d*-dimensional QFT on $\mathbb{R} \times \mathcal{M}^{(d-1)}$
- Divide $\mathcal{M}^{(d-1)}$ into two parts

The geometric decomposition implies $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$

$$S_A = -\mathrm{Tr}_A \left(\rho_A \log \rho_A\right)$$

ション ふゆ ア キョン キョン ヨー もくの

Entanglement	$_{in}$	QM	and	QFT	Lifshitz
00000					

Evolution of Entanglement Entropy in LHM 000000000000

Properties

Interesting Features

Entanglement entropy

- corresponds to a non-linear operator in QM
- is not an extensive quantity (unlike the thermodynamic entropy)

-type QFTs

• satisfies various inequalities, e.g., subadditivity

 $S(A) + S(B) \geq S(A \cup B)$

• obeys an area law scaling (in local QFTs)

$$S_A \propto \frac{S_{d-2}}{\epsilon^{d-2}} + \cdots$$

Lifshitz-type QFTs 0000

Evolution of Entanglement Entropy in LHM 0000000000000

Lifshitz-type QFTs & Lifshitz Harmonic Models

Entanglement	in QM	QFT	Lifshitz-type QFTs
			0000

Evolution of Entanglement Entropy in LHM 000000000000

Lifshitz scaling symmetry

Lifshitz symmetry

• Anisotropic scaling invariance

 $t \to \lambda^z t, \qquad \vec{x} \to \lambda \vec{x}, \qquad z: \text{ Dynamical exponent}$

[E. M. Lifshitz 1941]

Entanglement	QM	QFT

Lifshitz-type QFTs

Evolution of Entanglement Entropy in LHM 000000000000

Lifshitz scaling symmetry

Lifshitz symmetry

• Anisotropic scaling invariance

 $t \to \lambda^z t, \qquad \vec{x} \to \lambda \vec{x}, \qquad z: \text{ Dynamical exponent}$

[E. M. Lifshitz 1941]

• Anisotropic RG flow

[J. A. Hertz 1976]

Lifshitz-type QFTs $0 \bullet 00$

Evolution of Entanglement Entropy in LHM 000000000000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Lifshitz scaling symmetry

Free Massless Scalar Theory

Lorentz vs. Lifshitz				
	Lorentz	Lifshitz		
Lagrangian	$\frac{1}{2} \left(\dot{\phi}^2 - (\partial_i \phi)^2 \right)$	$rac{1}{2}\left(\dot{\phi}^2-(\partial_i^z\phi)^2 ight)$		
Mass Dimensions	$[t] = -1, \ [\phi] = \frac{d-1}{2}$	$[t] = -z, \ [\phi] = \frac{d-z}{2}$		
Dispersion Relation	$\omega = k$	$\omega = k^z$		
Group Velocity	$v_g = 1$	$v_g = z \; k^{z-1}$		

Lifshitz-type QFTs $0 \bullet 00$

Evolution of Entanglement Entropy in LHM 000000000000

Lifshitz scaling symmetry

Free Massless Scalar Theory

Lorentz vs. Lifshitz				
	Lorentz	Lifshitz		
Lagrangian	$\frac{1}{2} \left(\dot{\phi}^2 - (\partial_i \phi)^2 \right)$	$rac{1}{2}\left(\dot{\phi}^2-(\partial_i^z\phi)^2 ight)$		
Mass Dimensions	$[t] = -1, \ [\phi] = \frac{d-1}{2}$	$[t] = -z, \ [\phi] = \frac{d-z}{2}$		
Dispersion Relation	$\omega = k$	$\omega = k^z$		
Group Velocity	$v_g = 1$	$v_g = z \ k^{z-1}$		

Massless modes with different k have different v_q

Lifshitz-type QFTs $\circ\circ\bullet\circ$

Evolution of Entanglement Entropy in LHM 000000000000

Lifshitz Harmonic Models

Lifshitz-type QFT on a (1+1)d Square Lattice

The harmonic lattice is well known to be the discretized version

of free scalar field theory with Lorentz symmetry

• Free Scalar Theory

$$H = \frac{1}{2} \int dx \left[\dot{\phi}^2 + (\partial \phi)^2 + m^2 \phi^2 \right]$$

 \bullet System of N Harmonic Oscillators

$$H = \sum_{n=0}^{N} \left[\frac{1}{2} p_n^2 + \frac{1}{2} \left(q_n - q_{n-1} \right)^2 + \frac{m^2}{2} q_n^2 \right]$$

Nearest Neighbor Interaction

• Dispersion Relation

$$\omega_k = \sqrt{m^2 + k^2} \quad \longrightarrow \quad \omega_k = \sqrt{m^2 + (2\sin\frac{\pi k}{N})^2}$$

Lifshitz-type QFTs $\circ\circ\bullet\circ$

Evolution of Entanglement Entropy in LHM 000000000000

Lifshitz Harmonic Models

Lifshitz-type QFT on a (1+1)d Square Lattice

The harmonic lattice is well known to be the discretized version

of free scalar field theory with Lorentz symmetry

• Free Scalar Theory

$$H = \frac{1}{2} \int dx \left[\dot{\phi}^2 + (\partial \phi)^2 + m^2 \phi^2 \right]$$

 \bullet System of N Harmonic Oscillators

$$H = \sum_{n=0}^{N} \left[\frac{1}{2} p_n^2 + \frac{1}{2} \left(q_n - q_{n-1} \right)^2 + \frac{m^2}{2} q_n^2 \right]$$

Nearest Neighbor Interaction

• Dispersion Relation

$$\omega_k = \sqrt{m^2 + k^2} \quad \longrightarrow \quad \omega_k = \sqrt{m^2 + (2\sin\frac{\pi k}{N})^2}$$

What happens when we turn on a non-trivial z?

Lifshitz-type QFTs $\circ \circ \circ \bullet$

Evolution of Entanglement Entropy in LHM $_{\rm OOOOOOOOOOOO}$

Lifshitz Harmonic Models

Lifshitz-type QFT on a Square Lattice

The Lifshitz harmonic model is the discretized version of free

scalar field theory with Lifshitz scaling symmetry

• Lifshitz-type scalar theory

$$H = \frac{1}{2} \int dx \left[\dot{\phi}^2 + (\partial^z \phi)^2 + m^{2z} \phi^2 \right]$$

• Discretization on a Square Lattice

$$H = \sum_{n=1}^{N} \left[\frac{p_n^2}{2} + \frac{1}{2} \left(\sum_{k=0}^{z} (-1)^{z+k} {z \choose k} q_{n-1+k} \right)^2 + \frac{m^{2z}}{2} q_n^2 \right]$$

Long Range Interaction (depending on z)

• Dispersion Relation

$$\omega_k = \sqrt{m^{2z} + k^{2z}} \quad \longrightarrow \quad \omega_k = \sqrt{m^{2z} + (2\sin\frac{\pi k}{N})^{2z}}$$

[MM, Mollabashi 1705.00483-1712.03731; He, Magan and Vandoren, 1705.01147]

Entanglement	QM	QFT

Lifshitz-type QFTs 0000 Evolution of Entanglement Entropy in LHM ${\scriptstyle \bullet 000000000000}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

Quantum Quench in Relativistic QFTs

Evolution of Entanglement Entropy in LHM

• Quantum quench is a simple set-up for studying evolution of entanglement which has also experimental realization (ultracold atoms [Greiner,Mandel,Esslinger,Hansch,Bloch '2002])

Entanglement in QM and QFT	Lifshitz-type QFTs	Evolution of Entanglement Entropy in LHM		
		000000000000		
Quantum Quench in Relativistic QFTs				
Quantum Quench				

• Quantum quench is a simple set-up for studying evolution of entanglement which has also experimental realization (ultracold atoms [Greiner,Mandel,Esslinger,Hansch,Bloch '2002])

$$\begin{array}{ccc} t < 0 & t = 0 & t > 0 \\ H(\lambda_0) & \longrightarrow & H(\lambda) \\ |\psi_0\rangle & \longrightarrow & e^{-iH(\lambda)t} |\psi_0\rangle \end{array}$$

• Quantum quench is a simple set-up for studying evolution of entanglement which has also experimental realization (ultracold atoms [Greiner,Mandel,Esslinger,Hansch,Bloch '2002])

Lifshitz-type QFTs 0000

Quantum Quench in Relativistic QFTs

Time Evolution of EE in CFT_2

• Calabrese-Cardy Quench Model [Calabrese, Cardy '05]

Sudden transition from a QFT with a finite mass gap

 $(m \sim \xi^{-1})$ to a CFT $(m \sim 0)$

Lifshitz-type QFTs 0000

Quantum Quench in Relativistic QFTs

Time Evolution of EE in CFT_2

• Calabrese-Cardy Quench Model [Calabrese, Cardy '05]

Sudden transition from a QFT with a finite mass gap

 $(m \sim \xi^{-1})$ to a CFT $(m \sim 0)$

How entanglement evolves with time after the quench?

Lifshitz-type QFTs 0000

Quantum Quench in Relativistic QFTs

Time Evolution of EE in CFT_2

• Calabrese-Cardy Quench Model [Calabrese, Cardy '05]

Sudden transition from a QFT with a finite mass gap

$$(m \sim \xi^{-1})$$
 to a CFT $(m \sim 0)$

How entanglement evolves with time after the quench?

• The conformal symmetry of post-quench system helps us to find the evolution of EE

Lifshitz-type QFTs 0000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● □ ● ●

Quantum Quench in Relativistic QFTs

Time Evolution of EE in CFT_2

Lifshitz-type QFTs 0000

Quantum Quench in Relativistic QFTs

Time Evolution of EE in CFT_2

• Quasiparticle picture [Calabrese, Cardy '05]

•
$$t_s \sim \frac{\ell}{2v}$$
 $(v = 1 \text{ in CFT}_2)$

Evolution of Entanglement Entropy in LHM

Quantum Quench in Relativistic QFTs

Time Evolution of EE in CFT_2

• Pre-quench Configuration

Evolution of Entanglement Entropy in LHM

Quantum Quench in Relativistic QFTs

Time Evolution of EE in CFT_2

- Pre-quench Configuration
- Post-quench Evolution

Evolution of Entanglement Entropy in LHM

Quantum Quench in Relativistic QFTs

Time Evolution of EE in CFT_2

- Pre-quench Configuration
- Post-quench Evolution

The transition between different scaling regimes can be understood in terms of quasiparticle spectrum [Alba, Calabrese '17] イロト (同) イヨト イヨト ヨー のくべ

Lifshitz-type QFTs 0000

Quantum Quench in Relativistic QFTs

Free Streaming Quasi Particles

Spectrum of quasiparicles:

Lifshitz-type QFTs 0000

Quantum Quench in Relativistic QFTs

Free Streaming Quasi Particles

Spectrum of quasiparicles:

• CFT: Quasiparticles propagate with a unique $v_g(=1)$

independent of k (Linear dispersion relation)

• All quasiparticles move along the null geodesics

Lifshitz-type QFTs 0000

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Quantum Quench in Relativistic QFTs

Free Streaming Quasi Particles

Spectrum of quasiparicles:

- CFT: Quasiparticles propagate with a unique $v_g(=1)$ independent of k (Linear dispersion relation)
 - All quasiparticles move along the null geodesics
- A General QFT: Quasiparticles propagate with $v_g(k)$ (Non-linear dispersion relation)
 - Quasiparticles have a wide spectrum

Example:

$$\omega = \sqrt{k^2 + m^2} \rightarrow \begin{cases} k \ll 1 & v_g \ll 1 & \text{Non-relativistic} \\ k \gg 1 & v_g \sim 1 & \text{Ultra-relativistic} \end{cases}$$

Evolution of Entanglement Entropy in LHM

Quantum Quench in Relativistic QFTs

Free Streaming Quasi Particles

Spectrum of quasiparicles:

- CFT: Quasiparticles propagate with a unique $v_q(=1)$ independent of k (Linear dispersion relation)
 - All quasiparticles move along the null geodesics
- **2** A General QFT: Quasiparticles propagate with $v_a(k)$ (Non-linear dispersion relation)
 - Quasiparticles have a wide spectrum

Example:

 $\omega = \sqrt{k^2 + m^2} \rightarrow \begin{cases} k \ll 1 & v_g \ll 1 & \text{Non-relativistic} \\ k \gg 1 & v_g \sim 1 & \text{Ultra-relativistic} \end{cases}$

Zero modes: Quaiparticles that stroll along the subregions

because of vanishingly small $v_q(\to 0)$

Lifshitz-type QFTs 0000 Quantum Quench in Relativistic QFTs

Free Streaming Quasi Particles

How the spectrum of quasi-particles affects the entanglement

evolution?

Lifshitz-type QFTs 0000

Quantum Quench in Relativistic QFTs

Free Streaming Quasi Particles

How the spectrum of quasi-particles affects the entanglement evolution?

- Transition from Linear Growth to Saturation Regime:
 - CFT: Instantaneous Transition
 - **②** QFT (Lattice set-up): Mild Transition (Logarithmic

Growth Due to Existence of Zero Modes, i.e., $k \to 0$)

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 _ のへで

Lifshitz-type QFTs

Evolution of Entanglement Entropy in LHM

Quantum Quench in Relativistic QFTs

Free Streaming Quasi Particles

How the spectrum of quasi-particles affects the entanglement evolution?

- Transition from Linear Growth to Saturation Regime:
 - O CFT: Instantaneous Transition
 - **2** QFT (Lattice set-up): Mild Transition (Logarithmic

Growth Due to Existence of Zero Modes, i.e., $k \to 0$)

What happens when we have a nontrivial z? ・ロト ・ 日 ・ ・ 田 ・ ・ 田 ・ ・ 日 ・ うへで

Entanglement in QM and QFT	Lifshitz-type QFTs	Evolution of Entanglement Entropy in LHM
		00000000000000
Quantum Quench in LHM		

Quantum Quench in LHM

Entanglement in QM and QFT 000000	Lifshitz-type QFTs 0000	Evolution of Entanglement Entropy in LHM
Quantum Quench in LHM		
Questions		

Regarding the entanglement evolution in LHM, different

questions may arise:

• Role played by z in $\begin{cases} \text{Linear Growth} \\ \text{Regimes} \\ \text{Saturation} \end{cases}$

- Existence of a Quasi-particle Picture
- Propagation Velocity and z-dependent Lightcone

[MM, A. Mollabashi, work in progress]

Lifshitz-type QFTs 0000

(日) (四) (日) (日) (日)

Quantum Quench in LHM

Existence of a Quasi-particle Picture

• Numerical Reults

For larger values of z:

- Rate of growth of entanglement entropy increases
- **2** Width of the logarithmic growth regime becomes larger
- **③** The saturation value of EE increases

Lifshitz-type QFTs 0000

Quantum Quench in LHM

Existence of a Quasi-particle Picture

l

Origin of Logarithmic Growth

• Lattice Dispersion Relation

$$\omega_k = \sqrt{m^{2z} + (2\sin\frac{\pi k}{N})^{2z}}$$

Lifshitz-type QFTs 0000

Quantum Quench in LHM

Existence of a Quasi-particle Picture

Origin of Logarithmic Growth

• Lattice Dispersion Relation

$$\omega_k = \sqrt{m^{2z} + (2\sin\frac{\pi k}{N})^{2z}}$$

• Group Velocity

$$\label{eq:massive Case} \begin{tabular}{ll} \blacksquare & \mbox{Massive Case} & v_g(k \rightarrow 0) \sim k^{2z-1} + \mathcal{O}(k^{2z+1}) \end{tabular}$$

$$\label{eq:massless Case} \begin{tabular}{ll} \begin{tabular}{ll} {\end{tabular}} & v_g(k \to 0) \sim k^{z-1} + \mathcal{O}(k^{z+1}) \end{tabular}$$

In both cases we have zero modes $(k \to 0)$ which are too lazy to move $(v_g \to 0)$

Lifshitz-type QFTs 0000 Quantum Quench in LHM

Existence of a Quasi-particle Picture

Origin of Logarithmic Growth

• Lattice Dispersion Relation

$$\omega_k = \sqrt{m^{2z} + (2\sin\frac{\pi k}{N})^{2z}}$$

• Group Velocity

In both cases we have zero modes $(k \rightarrow 0)$ which are too lazy to move $(v_g \rightarrow 0)$

Remember that in CFT (m = 0, z = 1) there is no zero modes and we have a unique $v_g(=1)$

Lifshitz-type QFTs 0000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

Quantum Quench in LHM

Existence of a Quasi-particle Picture

• Maximum Group Velocity and Lifshitz-cone

$$v_g^{\max} = 2^{z-1} \sqrt{z} \left(\frac{z-1}{z}\right)^{\frac{z-1}{2}}$$

Lifshitz-type QFTs 0000

Quantum Quench in LHM

Existence of a Quasi-particle Picture

• Maximum Group Velocity and Lifshitz-cone

$$v_g^{\max} = 2^{z-1} \sqrt{z} \left(\frac{z-1}{z}\right)^{\frac{z-1}{2}}$$

• The propagation of quasiparticles constraints to be inside a Lifsitz-cone whose structure depends on v_q^{\max}

Lifshitz-type QFTs 0000 Quantum Quench in LHM

Existence of a Quasi-particle Picture

• Maximum Group Velocity and Lifshitz-cone

$$v_g^{\max} = 2^{z-1} \sqrt{z} \left(\frac{z-1}{z}\right)^{\frac{z-1}{2}}$$

- The propagation of quasiparticles constraints to be inside a Lifsitz-cone whose structure depends on v_q^{\max}
- For z = 1 we have $v_g^{\max} = 1$ which is consistent with the CFT limit

Lifshitz-type QFTs 0000

Quantum Quench in LHM

Existence of a Quasi-particle Picture

• Maximum Group Velocity and Lifshitz-cone

$$v_g^{\max} = 2^{z-1} \sqrt{z} \left(\frac{z-1}{z}\right)^{\frac{z-1}{2}}$$

- The propagation of quasiparticles constraints to be inside a Lifsitz-cone whose structure depends on v_q^{\max}
- For z = 1 we have $v_g^{\max} = 1$ which is consistent with the CFT limit
- For z < 1, v_g^{\max} becomes pure imaginary! (In Lifshitz holography NEC imposes z > 1)

Lifshitz-type QFTs 0000

Quantum Quench in LHM

Existence of a Quasi-particle Picture

• Maximum Group Velocity and Lifshitz-cone

$$v_g^{\max} = 2^{z-1} \sqrt{z} \left(\frac{z-1}{z}\right)^{\frac{z-1}{2}}$$

- The propagation of quasiparticles constraints to be inside a Lifsitz-cone whose structure depends on v_q^{\max}
- For z = 1 we have $v_g^{\max} = 1$ which is consistent with the CFT limit
- For z < 1, v_g^{max} becomes pure imaginary! (In Lifshitz holography NEC imposes z > 1)

For any z we have a bound on propagation (similar to the Lieb-Robinson bound)

Entanglement in QM and QFT 000000	Lifshitz-type QFTs 0000	Evolution of Entanglement Entropy in LHM $000000000000000000000000000000000000$
Quantum Quench in LHM		
Conclusions		

After a quantum quench in LHM:

- the growth of EE can be divided into two main regimes: initial linear growth and late time logarithmic saturation
- Rate of growth of entanglement entropy in linear regime is an increases as a function of z
- For larger values of z, the region with logarithmic scaling becomes broader
- The qualitative, and some of the quantitative, features of $S_A(t)$ can be described in terms of a quasi particle picture

- ロ ト - 4 回 ト - 4 □

Entanglement in QM and QFT 000000	Lifshitz-type QFTs 0000	Evolution of Entanglement Entropy in LHM $000000000000000000000000000000000000$
Quantum Quench in LHM		
Further Studies		

- Considering other entanglement measures, e.g., relative entropy, logarithmic negativity, ···
- Quasi-particle picture vs. tsunami picture
- \bullet Investigating the possible relation between v_g and Lib-Robinson velocity

• • • •

Thank you