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Motivation

Entanglement is a concept which appears in condensed

matter, quantum information and black-hole physics.

Entanglement measures may help us to study

1 Quantum phase transitions at T = 0

2 Non-equilibrium processes, e.g., quantum quenches

3 The connection between gauge theory and gravity

4 · · ·
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Definition

Entanglement in QM and QFT
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Definition

(Pure) Entangled states

Consider two quantum systems, i.e., A and B

HA, HB

Construct M using the tensor product of A and B

HM = HA ⊗HB

Separable states ∣∣χ〉HM
=
∣∣ψ〉HA

⊗
∣∣φ〉HB

(Pure) Entangled states∣∣χ〉HM
6=
∣∣ψ〉HA

⊗
∣∣φ〉HB
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Definition

Example: Spin 1/2 Particles

Separable states ∣∣Ψ1〉 =
∣∣ ↑A〉 ⊗ ∣∣ ↓B〉∣∣Ψ2〉 =
∣∣ ↓A〉 ⊗ ∣∣ ↑B〉

Entangled states∣∣Ψ3〉 =
1√
2

(∣∣ ↑A〉 ⊗ ∣∣ ↓B〉 ± ∣∣ ↓A〉 ⊗ ∣∣ ↑B〉)
Challenge

Entanglement Measures!

Entanglement entropy, Mutual information, · · ·
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Definition

Entanglement Entropy

Consider the density matrix for a pure quantum system

ρ =
∣∣ψ〉〈ψ∣∣

Hilbert space decomposition H = HA ⊗HB

Reduced density matrix for A

ρA ≡ TrB(ρ) =
dim[B]∑
i=1
〈iB
∣∣ρ∣∣iB〉

von-Neumann entropy for ρA

SA ≡ −TrA (ρA log ρA) = −
dim[A]∑
i=1
〈iA
∣∣ρA log ρA

∣∣iA〉
Challenge

Generalization to QFT (Continuum Limit)?
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Definition

Geometric entropy

Consider a d-dimensional QFT on R×M(d−1)

Divide M(d−1) into two parts

The geometric decompostion implies H = HA ⊗HB

SA = −TrA (ρA log ρA)
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Properties

Interesting Features

Entanglement entropy

1 corresponds to a non-linear operator in QM

2 is not an extensive quantity (unlike the thermodynamic

entropy)

3 satisfies various inequalities, e.g., subadditivity

S(A) + S(B) ≥ S(A ∪B)

4 obeys an area law scaling (in local QFTs)

SA ∝ Sd−2

εd−2 + · · ·

5 · · ·
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Lifshitz-type QFTs & Lifshitz Harmonic Models
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Lifshitz scaling symmetry

Lifshitz symmetry

Anisotropic scaling invariance

t→ λzt, ~x→ λ~x, z : Dynamical exponent

[E. M. Lifshitz 1941]

Anisotropic RG flow

[J. A. Hertz 1976]
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Lifshitz scaling symmetry

Free Massless Scalar Theory

Lorentz vs. Lifshitz

Lorentz Lifshitz

Lagrangian 1
2

(
φ̇2 − (∂iφ)2

)
1
2

(
φ̇2 − (∂zi φ)2

)
Mass Dimensions [t] = −1, [φ] = d−1

2 [t] = −z, [φ] = d−z
2

Dispersion Relation ω = k ω = kz

Group Velocity vg = 1 vg = z kz−1

Massless modes with different k have different vg
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Lifshitz Harmonic Models

Lifshitz-type QFT on a (1+1)d Square Lattice

The harmonic lattice is well known to be the discretized version

of free scalar field theory with Lorentz symmetry

Free Scalar Theory

H = 1
2

∫
dx
[
φ̇2 + (∂φ)2 +m2φ2

]
System of N Harmonic Oscillators

H =
∑N

n=0

[
1
2p

2
n + 1

2 (qn − qn−1)2 + m2

2 q
2
n

]
Nearest Neighbor Interaction

Dispersion Relation

ωk =
√
m2 + k2 −→ ωk =

√
m2 + (2 sin πk

N )2

What happens when we turn on a non-trivial z?



Entanglement in QM and QFT Lifshitz-type QFTs Evolution of Entanglement Entropy in LHM

Lifshitz Harmonic Models
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Lifshitz Harmonic Models

Lifshitz-type QFT on a Square Lattice

The Lifshitz harmonic model is the discretized version of free

scalar field theory with Lifshitz scaling symmetry

Lifshitz-type scalar theory

H = 1
2

∫
dx
[
φ̇2 + (∂zφ)2 +m2zφ2

]
Discretization on a Square Lattice

H =
∑N

n=1

[
p2
n
2 + 1

2

(∑z
k=0(−1)z+k

(
z
k

)
qn−1+k

)2
+ m2z

2 q2n

]
Long Range Interaction (depending on z)

Dispersion Relation

ωk =
√
m2z + k2z −→ ωk =

√
m2z + (2 sin πk

N )2z

[MM, Mollabashi 1705.00483-1712.03731; He, Magan and Vandoren, 1705.01147]
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Quantum Quench in Relativistic QFTs

Evolution of Entanglement Entropy in LHM
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Quantum Quench in Relativistic QFTs

Quantum Quench

Quantum quench is a simple set-up for studying evolution

of entanglement which has also experimental realization

(ultracold atoms [Greiner,Mandel,Esslinger,Hansch,Bloch ’2002])

t < 0 t = 0 t > 0

H(λ0) H(λ)

|ψ0〉 e−iH(λ)t|ψ0〉

B

↑ ↓ ↑ ↑ ↓ ↑ ↑ ↑
↓ ↑ ↓ ↑ ↑ ↓ ↑ ↑
↑ ↑ ↓ ↑ ↑ ↓ ↑ ↓
↑ ↓ ↑ ↓ ↑ ↑ ↓ ↑
↑ ↑ ↑ ↓ ↑ ↑ ↓ ↓
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Quantum Quench in Relativistic QFTs

Time Evolution of EE in CFT2

Calabrese-Cardy Quench Model [Calabrese, Cardy ’05]

Sudden transition from a QFT with a finite mass gap

(m ∼ ξ−1) to a CFT (m ∼ 0)

How entanglement evolves with time after the quench?

The conformal symmetry of post-quench system helps us to

find the evolution of EE
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Quantum Quench in Relativistic QFTs
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Quantum Quench in Relativistic QFTs

Time Evolution of EE in CFT2

`

A ĀĀ

Quasiparticle picture [Calabrese, Cardy ’05]

ts ∼ `
2v (v = 1 in CFT2)
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Quantum Quench in Relativistic QFTs

Time Evolution of EE in CFT2
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Quantum Quench in Relativistic QFTs

Time Evolution of EE in CFT2

Pre-quench Configuration

Post-quench Evolution

The transition between different scaling regimes can be

understood in terms of quasiparticle spectrum [Alba, Calabrese ’17]
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Quantum Quench in Relativistic QFTs

Free Streaming Quasi Particles

Spectrum of quasiparicles:

1 CFT: Quasiparticles propagate with a unique vg(= 1)

independent of k (Linear dispersion relation)

All quasiparticles move along the null geodesics

2 A General QFT: Quasiparticles propagate with vg(k)

(Non-linear dispersion relation)

Quasiparticles have a wide spectrum

Example:

ω =
√
k2 +m2 →

{
k � 1 vg � 1 Non-relativistic

k � 1 vg ∼ 1 Ultra-relativistic

Zero modes: Quaiparticles that stroll along the subregions

because of vanishingly small vg(→ 0)
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Quantum Quench in Relativistic QFTs

Free Streaming Quasi Particles

How the spectrum of quasi-particles affects the entanglement

evolution?

Transition from Linear Growth to Saturation Regime:

1 CFT: Instantaneous Transition

2 QFT (Lattice set-up): Mild Transition (Logarithmic

Growth Due to Existence of Zero Modes, i.e., k → 0)

Quadratic Growth

Linear Growth

Saturation

Logarithmic Growth
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What happens when we have a nontrivial z?
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Quantum Quench in Relativistic QFTs

Free Streaming Quasi Particles

How the spectrum of quasi-particles affects the entanglement

evolution?

Transition from Linear Growth to Saturation Regime:

1 CFT: Instantaneous Transition

2 QFT (Lattice set-up): Mild Transition (Logarithmic

Growth Due to Existence of Zero Modes, i.e., k → 0)

Quadratic Growth

Linear Growth

Saturation

Logarithmic Growth

0 20 40 60 80 100 120 140

0.0

0.1

0.2

0.3

0.4

0.5

time

dSA

dt




































0 20 40 60 80 100 120
0

2

4

6

8

t

S
A

 m=10-2

 m=2

What happens when we have a nontrivial z?



Entanglement in QM and QFT Lifshitz-type QFTs Evolution of Entanglement Entropy in LHM

Quantum Quench in LHM

Quantum Quench in LHM
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Quantum Quench in LHM

Questions

Regarding the entanglement evolution in LHM, different

questions may arise:

Role played by z in

{
Linear Growth

Saturation

Regimes

Existence of a Quasi-particle Picture

Propagation Velocity and z-dependent Lightcone

· · ·

[MM, A. Mollabashi, work in progress]
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Quantum Quench in LHM

Existence of a Quasi-particle Picture

Numerical Reults






























































0 20 40 60 80 100 120
0

5

10

15

t

S
A

 z=1

 z=2

 z=3

For larger values of z:

1 Rate of growth of entanglement entropy increases

2 Width of the logarithmic growth regime becomes larger

3 The saturation value of EE increases
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Quantum Quench in LHM

Existence of a Quasi-particle Picture

Origin of Logarithmic Growth

Lattice Dispersion Relation

ωk =
√
m2z + (2 sin πk

N )2z

Group Velocity

1 Massive Case vg(k → 0) ∼ k2z−1 +O(k2z+1)

2 Massless Case vg(k → 0) ∼ kz−1 +O(kz+1)

In both cases we have zero modes (k → 0) which are too lazy to

move (vg → 0)

Remember that in CFT (m = 0, z = 1) there is no zero modes

and we have a unique vg(= 1)
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Quantum Quench in LHM

Existence of a Quasi-particle Picture

Maximum Group Velocity and Lifshitz-cone

vmax
g = 2z−1

√
z
(
z−1
z

) z−1
2

The propagation of quasiparticles constraints to be inside a

Lifsitz-cone whose structure depends on vmax
g

For z = 1 we have vmax
g = 1 which is consistent with the

CFT limit

For z < 1, vmax
g becomes pure imaginary! (In Lifshitz

holography NEC imposes z > 1)

For any z we have a bound on propagation (similar to the

Lieb-Robinson bound)
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Quantum Quench in LHM
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Quantum Quench in LHM

Conclusions

After a quantum quench in LHM:

the growth of EE can be divided into two main regimes:

initial linear growth and late time logarithmic saturaiton

Rate of growth of entanglement entropy in linear regime is

an increases as a function of z

For larger values of z, the region with logarithmic scaling

becomes broader

The qualitative, and some of the quantitative, features of

SA(t) can be described in terms of a quasi particle picture
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Quantum Quench in LHM

Further Studies

Considering other entanglement measures, e.g., relative

entropy, logarithmic negativity, · · ·

Quasi-particle picture vs. tsunami picture

Investigating the possible relation between vg and

Lib-Robinson velocity

· · ·

Thank you
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