

SURFACE DEFECTS IN MASSIVE IIA

Nicolò Petri Boğaziçi University

> IPM, Teheran 7 May 2018

Based on JHEP 1712 (2017) 041 and JHEP 1801 (2018) 039

with Giuseppe Dibitetto (Uppsala U)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Supersymmetric Objects

- Quantum gravity is intrinsically non-perturbative → extended objects in the UV (strings, branes, KK monopoles, O-planes...).
- ${\scriptstyle \bullet}$ Supersymmetry is necessary for stability ${\rightarrow}$ BPS objects.
- Low-energy regime $\rightarrow D = 11, 10$ supergravities.
- The physics of BPS objects is captured by classical solutions.
- Consistent truncations to low dimensions \rightarrow Many supergravities for d and $\mathcal{N}.$
- ullet Gauged supergravities o Moduli stabilization and AdS_d vacua.

The AdS/CFT Correspondence

- Some branes (or their intersections) include closed string AdS vacua in their near-horizon.
- AdS/CFT correspondence: Dual description of AdS string vacua as the RG fixed point of the QFT living on the worldvolume of the brane. This fixed point is given by a strongly-coupled SCFT in the large Nlimit and corresponds to the near-horizon limit. [Maldacena 1997] [Witten 1998].
- Consistent truncation to a d-dimensional gauged supergravity \rightarrow RG flow across dimensions, conformal defects... [Boonstra, Skenderis, Townsend. 1998.] [Maldacena, Nunez. 2000.] [Karch, Randall. 2001.].

▲ロト ▲掃ト ▲ヨト ▲ヨト ニヨー のへで Teheran, 07/05/2018

3 / 26

Outline

- RG flows across dimensions and defects.
- Minimal $d=7,~\mathcal{N}=1$ gauged supergravity.
- Solutions with non-trivial 3-form gauge potential.
- M-theory uplifts and dyonic membrane.
- $\bullet~{\rm AdS}_3$ slicing and truncation from massive IIA.
- Holographic conformal defect $SCFT_2$ within the $\mathcal{N} = (1,0) SCFT_6$.

RG Flows Across Dimensions and Defects

Two complementary interpretations of some SUSY solutions in a *d*-dimensional gauged supergravity:

• **RG Flows** : $\operatorname{AdS}_d \longrightarrow \operatorname{AdS}_{p+2} \times \mathcal{M}_{d-p-2}$ are dual to $\operatorname{SCFT}_{d-1} \longrightarrow \operatorname{SCFT}_{p+1}$. [Maldacena, Nunez. 2000.].

$$ds_d^2 = e^{2U(r)} ds_{\mathbb{R}^{1,p}}^2 + e^{2V(r)} dr^2 + e^{2W(r)} ds_{d-p-2}^2 + e^{2W(r)} ds_$$

• Defects: Asymptotically AdS_d warped solutions $AdS_{p+2} \times_w \mathcal{M}_{d-p-2}$ are dual to a defect $SCFT_{p+1}$ within the $SCFT_{d-1}$ dual to the boundary. [Karch, Randall. 2001.].

$$ds_d^2 = e^{2U(r)} ds_{\mathrm{AdS}_{p+2}}^2 + e^{2V(r)} dr^2 + e^{2W(r)} ds_{d-p-3}^2$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Minimal d = 7 Gauged Supergravity

• $\mathcal{N} = 1$, d = 7 supergravity multiplet: $(g_{\mu\nu}, X, B_{(3)}, A^i_{\mu})$.

- 16 real supercharges preserved and R-symmetry $SU(2)_R$.
- Global symmetry: $G_0 = \mathbb{R}^+_X \times \mathrm{SO}(3)$.
- Gauging:
 - ▶ SU(2) gauge group realized by A^i_μ with gauge coupling g.
 - Chern-Simons mass h for the 3-form $B_{(3)}$.
- Scalar potential:

$$V_g(X) = 2h^2 X^{-8} - 4\sqrt{2} gh X^{-3} - 2g^2 X^2$$

 $\longrightarrow 1 \text{ SUSY AdS}_7 \text{ vacuum: } X = 1 \text{ and } h = \frac{g}{2\sqrt{2}}.$

[Townsend, van Nieuwenhuizen. 1983.]

The Lagrangian

$$\mathcal{L} = R \star_{(7)} 1 - 5 X^{-2} \star_{(7)} dX \wedge dX - \frac{1}{2} X^4 \star_{(7)} \mathcal{F}_{(4)} \wedge \mathcal{F}_{(4)} - V_g \star_{(7)} 1 - \frac{1}{2} X^{-2} \star_{(7)} \mathcal{F}_{(2)}^i \wedge \mathcal{F}_{(2)}^i - h \mathcal{F}_{(4)} \wedge B_{(3)} + \frac{1}{2} \mathcal{F}_{(2)}^i \wedge \mathcal{F}_{(2)}^i \wedge B_{(3)}.$$

Fluxes:

$$\mathcal{F}^i_{(2)} = dA^i \, - \, rac{g}{2} \, \epsilon^{ijk} \, A^j \wedge A^k \qquad ext{and} \qquad \mathcal{F}_{(4)} = dB_{(3)} \, .$$

Odd-dimensional self-duality condition:

$$X^{4} *_{(7)} \mathcal{F}_{(4)} \stackrel{!}{=} -2h B_{(3)} + \frac{1}{2} A^{i} \wedge \mathcal{F}_{(2)}^{i} + \frac{g}{12} \epsilon_{ijk} A^{i} \wedge A^{j} \wedge A^{k}.$$

[Townsend, van Nieuwenhuizen 1983]

The SUSY Variations

$$\begin{split} \delta_{\zeta}\psi_{\mu}{}^{a} &= \nabla_{\mu}\zeta^{a} + ig\left(A_{\mu}\right)^{a}{}_{b}\zeta^{b} + i\frac{X^{-1}}{10\sqrt{2}}\left(\gamma_{\mu}{}^{mn} - 8\,e_{\mu}{}^{m}\,\gamma^{n}\right)\left(\mathcal{F}_{(2)\,mn}\right)^{a}{}_{b}\zeta^{b} \\ &+ \frac{X^{2}}{160}\left(\gamma_{\mu}{}^{mnpq} - \frac{8}{3}\,e_{\mu}{}^{m}\,\gamma^{npq}\right)\mathcal{F}_{(4)\,mnpq}\,\zeta^{a} - \frac{1}{5}\,f(X)\,\gamma_{\mu}\,\zeta^{a}, \\ \delta_{\zeta}\chi^{a} &= \frac{\sqrt{5}}{2}\,X^{-1}\partial\!\!\!\!/ X\,\zeta^{a} - i\frac{X^{-1}}{\sqrt{10}}\left(\mathcal{F}_{(2)}\right)^{a}{}_{b}\zeta^{b} + \frac{X^{2}}{2\sqrt{5}}\,\mathcal{F}_{(4)}\,\zeta^{a} - \frac{X}{5}\,D_{X}f\,\zeta^{a}. \end{split}$$

BPS superpotential:

$$f(X) = \frac{1}{2} \left(h X^{-4} + \sqrt{2} g X \right) ,$$

such that

$$V_g(X) = \frac{4}{5} \left(X^2 \left(D_X f \right)^2 - 6f(X)^2 \right) .$$

Teheran, 07/05/2018 8 / 26

Backgrounds with Dyonic 3-form

Metric:

$$ds_7^2 = e^{2U(r)} ds_{M_3}^2 + e^{2V(r)} dr^2 + e^{2W(r)} ds_{\Sigma_3}^2$$

where $M_3 = \{\mathbb{R}^{1,2}, AdS_3\}$ and $\Sigma_3 = \{\mathbb{R}^3, S^3\}$.

• Odd-dimensional self-duality \rightarrow Dyonic 3-forms:

$$B_{(3)} = k(r) \operatorname{vol}_{M_3} + l(r) \operatorname{vol}_{\Sigma_3}.$$

• SU(2) vectors in case of $\Sigma_3 = S^3$:

$$A_j^i = \frac{A(r)}{2g} \,\epsilon^{i\,k\,l} \,\omega_{j\,kl} \;.$$

• Dilaton: X = X(r).

< □ ト < □ ト < 三 ト < 三 ト < 三 ト 三 の へ () Teheran, 07/05/2018 9 / 26

Killing Spinors

- Dirac spinor with 16 components organized in a SU(2) doublet of symplectic-Majorana spinors ζ^a satisfying a pseudo-reality condition.
- Killing spinor in case of $M_3 = \mathbb{R}^3$ and $\Sigma_3 = \mathbb{R}^3$:

$$\zeta^a(r) = Y(r) \left(\cos\theta(r) \,\mathbb{1}_8 + \sin\theta(r) \,\gamma^{012}\right) \,\zeta^a_0 \,,$$

• $A_i = 0$: ζ_0^a constant spinor s.t. $\gamma^3 \zeta_0^a \stackrel{!}{=} \zeta_0^a \to \text{BPS}/2$.

• If $M_3 = AdS_3$ and/or $\Sigma_3 = S^3$: Hopf fibration on S^3 and AdS_3 !

$$ds_{S^3}^2 = \frac{1}{\kappa^2} \left[d\theta_2^2 + \cos^2 \theta_2 d\theta_3^2 + (d\theta_1 + \sin \theta_2 d\theta_3)^2 \right]$$

• $A_i \neq 0$: $\gamma^3 \zeta_0^a \stackrel{!}{=} \zeta_0^a$ and $\gamma^{ij} \zeta_0^b \stackrel{!}{=} -i (\sigma^k)^a_{\ b} \zeta_0^b \to \mathsf{BPS/8}.$

Explicit Flows

• Vanishing vectors $A^i = 0$:

•
$$M_3 = \mathbb{R}^3$$
 and $\Sigma_3 = \mathbb{R}^3$.

- $M_3 = \mathbb{R}^3$ and $\Sigma_3 = S^3$. Asymptotically AdS_7 .
- ► $M_3 = \text{AdS}_3$ and $\Sigma_3 = S^3$. Asymptotically AdS₇. Charged flow with U(r) = W(r) and k(r) = l(r).
- $M_3 = \text{AdS}_3$ and $\Sigma_3 = S^3$. Asymptotically AdS_7 and $\text{IR } \text{AdS}_3 \times T^4$.

<ロト < □ト < □ト < 三ト < 三ト < 三ト 三 の Q (* Teheran, 07/05/2018 11 / 26

- Running vectors with numerical integration:
 - $M_3 = \mathbb{R}^3$ and $\Sigma_3 = S^3$. Asymptotically AdS_7 .
 - $M_3 = \text{AdS}_3$ and $\Sigma_3 = S^3$. Asymptotically AdS_7 .

The Background $M_3 = \mathbb{R}^{1,2}$ and $\Sigma_3 = \mathbb{R}^3$

BPS equations for $U(r), W(r), k(r), l(r), X(r), Y(r), \theta(r)$:

$$\begin{aligned} U' &= \frac{1}{5} e^{V} f \frac{(3\cos(4\theta) - 1)}{\cos(2\theta)}, \qquad W' = -\frac{2}{5} e^{V} f \frac{(\cos(4\theta) - 2)}{\cos(2\theta)}, \\ Y' &= \frac{1}{10} e^{V} Y f \frac{(3\cos(4\theta) - 1)}{\cos(2\theta)}, \qquad \theta' = -e^{V} f \sin(2\theta), \\ k' &= -\frac{4f e^{3U+V}}{X^{2}} \tan(2\theta), \qquad l' = \frac{4f e^{V+3W}}{X^{2}} \sin(2\theta), \\ X' &= -\frac{2}{5} e^{V} X \left(X D_{X} f - 8f \frac{\sin^{4} \theta}{\cos(2\theta)} \right), \\ X D_{X} f + 4 f \stackrel{!}{=} 0. \end{aligned}$$

The Flow for $M_3 = \mathbb{R}^{1,2}$ and $\Sigma_3 = \mathbb{R}^3$

- Gauge choice on the radial warp factor: $e^V = f^{-1}$
- Supersymmetric flow:

$$e^{2U} = \sinh(4r)^{1/5} \coth(2r), \qquad e^{2V} = \frac{4}{h^2} \sinh(4r)^{16/5},$$

$$e^{2W} = \sinh(4r)^{1/5} \tanh(2r), \qquad X = \sinh(4r)^{2/5},$$

$$k = \frac{1}{\sqrt{2} \sinh^2(2r)}, \qquad l = -\frac{1}{\sqrt{2} \cosh^2(2r)},$$

$$Y = \sinh(4r)^{1/20} \coth(2r)^{1/4}, \qquad \theta = \arctan\left(e^{-2r}\right).$$

< □ ト < □ ト < 三 ト < 三 ト < 三 ト 三 の Q (* Teheran, 07/05/2018 13 / 26

 ${\ \bullet \ }$ From the constraint on $f(X) \longrightarrow V_g(X) = \frac{h}{2} X^{-4}$.

• No AdS₇ asymptotics.

Dyonic Membrane in M-Theory

• The M2-M5 bound state [Izquierdo, Lambert, Papadopoulos, Townsend. 1996.]:

$$ds_{11}^2 = H^{-2/3} \tilde{H}^{1/3} ds_{\mathbb{R}^{1,2}}^2 + H^{1/3} \tilde{H}^{1/3} ds_{\mathbb{R}^5}^2 + H^{1/3} \tilde{H}^{-2/3} ds_{\mathbb{R}^3}^2$$

$$F_{(4)} = \frac{1}{2} \cos\xi \star_5 dH + \frac{1}{2} \sin\xi dH^{-1} \wedge \operatorname{vol}_{\mathbb{R}^{1,2}}$$

$$- \frac{3 \sin(2\xi)}{2 \tilde{H}^2} \operatorname{vol}_{\mathbb{R}^3} \wedge dH$$

Teheran, 07/05/2018

14 / 26

with $\tilde{H} = \sin^2 \xi + H \cos^2 \xi$.

- H harmonic function on $\mathbb{R}^5 \longleftrightarrow$ smearing of the M2 on the M5.
- $\cos \xi = 0 \longrightarrow$ purely electric case: smeared M2 brane.
- $\sin \xi = 0 \longrightarrow$ purely magnetic case: pure M5 brane.
- Near-horizon: $AdS_7 \times S^4$.

M2-M5 Bound State and Dyonic 3-Form

- M-theory on T^4 with 4-form wrapping the $T^4 \to V(X) = \frac{h}{2} X^{-4}$ with $A^i = 0$ and g = 0.
- Truncation Ansatz:

$$\begin{split} ds_{11}^2 \, = \, X^{-4/3} \, ds_7^2 \, + \, X^{5/3} \, ds_{T^4}^2 \, , \\ F_{(4)} = Q \, \mathrm{vol}_{T^4} \, . \end{split}$$

ullet Reducing the dyonic membrane on a T^4 in the \mathbb{R}^5 as

$$ds_{\mathbb{R}^5}^2 = dz^2 + ds_{T^4}^2 \qquad \text{with} \qquad H = 1 + \alpha \, z \, .$$

• From the comparison, one obtains Q = h, $\alpha = \frac{2h}{\cos\xi}$ and

$$z = \frac{1 + \cos^2 \xi}{4h \cos \xi} + \frac{\sin^2 \xi}{4h \cos \xi} \cosh(2hr) \,.$$

The Charged AdS_7 Flow

•
$$M_3 = \text{AdS}_3$$
, $\Sigma_3 = S^3$ and $U(r) = W(r)$, thus
 $ds_7^2 = e^{2U(r)} (ds_{\text{AdS}_3}^2 + ds_{S^3}^2) + e^{2V(r)} dr^2$

 ${\ }$ It follows that $k(r)=l(r)\text{, }\theta(r)=0\text{, }R_{\mathrm{AdS}_{3}}=R_{S^{3}}\text{, thus }$

$$B_{(3)} = k(r) \left(\operatorname{vol}_{\mathrm{AdS}_3} + \operatorname{vol}_{S^3} \right) \quad \text{and} \quad \zeta^a = Y(r) \, \zeta^a_0.$$

• BPS equations:

$$U' = \frac{2}{5} e^{V} f, \qquad Y' = \frac{Y}{5} e^{V} f,$$

$$k' = -\frac{e^{2U+V} R_{\text{AdS}_{3}}}{X^{2}}, \qquad X' = -\frac{2}{5} e^{V} X^{2} D_{X} f.$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Explicit Flow with AdS_3 slicing

• Choose the gauge $e^{-V} = -\frac{2}{5}X^2D_Xf$ and the parameters $h = \frac{g}{2\sqrt{2}}$. • Integrate the equations for $r \in (0, 1)$:

$$e^{2U} = \frac{2^{-1/4}}{\sqrt{g}} \left(\frac{r}{1-r^5}\right)^{1/2}, \quad e^{2V} = \frac{25}{2g^2} \frac{r^6}{\left(1-r^5\right)^2},$$
$$Y = \frac{2^{-1/16}}{g^{1/8}} \left(\frac{r}{1-r^5}\right)^{1/8}, \quad k = -\frac{2^{1/4}L}{g^{3/2}} \left(\frac{r^5}{1-r^5}\right)^{1/2},$$
$$X = r.$$

• UV regime: locally AdS_7 with X = 1 and $\mathcal{F}_{(4)\,0123} = \mathcal{F}_{(4)\,3456} = 0$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• IR regime: Generic singularity. We want to give the physical interpretation of this singularity!

AdS_7/CFT_6 in Massive IIA

- Massive type IIA with $\operatorname{AdS}_7 \times_w \tilde{S}^3$ vacuum $\to \mathcal{N} = 1$ minimal gauged supergravity in d = 7. [Apruzzi, Fazzi, Rosa, Tomasiello. 2013.], [Passias, Rota, Tomasiello. 2015.].
- Branes' intersection NS5-D6-D8. [Hanany, Zaffaroni. 1998.], [Imamura. 2001].
- Non-lagrangian theory arising as the fixed point of the 6d worldvolume QFT. [Hanany, Zaffaroni. 1998.].
- $AdS_7 \times_w \tilde{S}^3$ "near-horizon" of NS5-D6-D8 with 16 supercharges. [Gaiotto, Tomasiello. 2014.], [Bobev, Dibitetto, Gautason, Truijen. 2016.]
- Dual to $\mathcal{N}=(1,0)~\mathrm{SCFT}_6.$ [Gaiotto, Tomasiello. 2014.].

AdS₃ Slicing and its Massive IIA Interpretation

 We want to give an interpretation of our d = 7 charged flow as a defect in the N = (1,0) SCFT₆.

$$ds_7^2 = e^{2U(r)} \left(ds_{AdS_3}^2 + ds_{S^3}^2 \right) + e^{2V(r)} dr^2$$

- In the UV the solution is dual to the $\mathcal{N} = (1,0)$ SCFT₆: it describes the near-horizon of NS5-D6-D8.
- What happens in the IR? The singular behavior and the dyonic profile of $\mathcal{F}_{(4)}$ in d = 7 hints the presence of D2 and D4-branes filling the AdS₃ and intersecting the bound state NS5-D6-D8!
- We need a new explicit solution in massive IIA supergravity describing a bound state D2-D4-NS5-D6-D8.

The Brane Picture: the Intersection

- First step: Solution describing NS5-D6-D8 depends on two functions S(z,r) and K(z,r) related to the D6 and NS5 on a background filled by D8 branes. [Imamura. 2001] $\rightarrow H_3$ and F_2 fluxes.
- Second step: Intersect NS5-D6-D8 with a D2-D4 bound state wrapping two coordinates of the worldvolume. \rightarrow Dyonic F_4 flux!

branes	t	y	ρ	φ^1	φ^2	φ^3	z	r	θ^1	θ^2
NS5	×	×	×	×	×	×	_	-	_	_
D6	×	×	×	×	×	×	×	-	_	_
D8	×	×	×	×	×	×	-	×	×	×
D2	×	×	_	_	_	_	×	-	_	_
D4	×	×	_	_	_	_	-	×	×	×

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The Brane Picture: Explicit Solution

- S(r,z) and $K(r,z) \rightarrow$ intersection NS5-D6-D8. [Imamura 2001].
- "Non-standard" intersection with D2-D4 (see [Boonstra, Peeters, Skenderis. 1998.]).
- $\mathrm{d}s_{10}^2 = S^{-1/2} H_{\mathrm{D}2}^{-1/2} H_{\mathrm{D}4}^{-1/2} \mathrm{d}s_{\mathbb{P}^{1,1}}^2 + S^{-1/2} H_{\mathrm{D}2}^{1/2} H_{\mathrm{D}4}^{1/2} \left(\mathrm{d}\rho^2 + \rho^2 \mathrm{d}s_{\mathrm{S}3}^2\right)$ $+KS^{-1/2}H_{D2}^{-1/2}H_{D4}^{1/2}dz^2 + KS^{1/2}H_{D2}^{1/2}H_{D4}^{-1/2}(dr^2 + r^2 ds_{s2}^2),$ $e^{\Phi} = q_s K^{1/2} S^{-3/4} H_{D2}^{1/4} H_{D4}^{-1/4},$ $H_3 = \frac{\partial}{\partial z} (KS) \operatorname{vol}_3 - dz \wedge \star_3 \mathrm{d}K, \qquad F_0 = m, \qquad F_2 = -g_s^{-1} \star_3 \mathrm{d}S$ $F_{(4)} = g_s^{-1} \operatorname{vol}_{\mathbb{R}^{1,1}} \wedge dz \wedge \mathrm{d}H_{\mathrm{D}2}^{-1} + \star_{10} \left(\operatorname{vol}_{\mathbb{R}^{1,1}} \wedge \operatorname{vol}_3 \wedge \mathrm{d}H_{\mathrm{D}4}^{-1} \right),$ where $mg_s K - \frac{\partial S}{\partial z} = 0$, $r^{-2} \partial_r (r^2 \partial_r S) + \frac{1}{2} \frac{\partial^2}{\partial z^2} S^2 = 0$, $H_{D2}(\rho, r) = \left(1 + \frac{Q_{D4}}{a^2}\right) \left(1 + \frac{Q_{D6}}{r}\right), \quad H_{D4}(\rho) = \left(1 + \frac{Q_{D4}}{a^2}\right).$

AdS_7 Regime and dual $SCFT_6$

- Take $\rho \to \infty$ (i.e. $H_{D4} \to 1$ and $H_{D2} \to H_{D6}$) and $z, r \to \infty$ (while still keeping $\frac{r}{z^2}$ finite).
- Take $K \sim \frac{2}{z^3} G\left(\frac{r}{z^2}\right)$, and $S \sim \frac{1}{4r} W\left(\frac{r}{z^2}\right)$ for some suitable functions G and W. [Bobev, Dibitetto, Gautason, Truijen. 2016.]
- Perform the coordinate redefiniton

(inspired by [Cvetic, Lu, Pope, Vazquez-Poritz. 2000.])

$$r^{1/2} = 6 \frac{\sin \alpha}{\zeta}, \qquad z = \frac{\cos \alpha}{\zeta}$$

• Choosing W = 1 and $G = \frac{1}{2} \cos^3 \alpha$,

$$\mathrm{d}s_{10}^2 \sim 2\,\cos\alpha\,\left(\tan\alpha\,\mathrm{d}s_{\mathrm{AdS}_7}^2\,+\,\tan\alpha\,\mathrm{d}\alpha^2\,+\,\frac{1}{4}\,\sin^2\alpha\,\mathrm{d}s_{S^2}^2\right)\,.$$

 $\longrightarrow \mathrm{AdS}_7 \times_w S^3: \text{ dual description in terms of } \mathcal{N}_{\scriptscriptstyle \bullet} \equiv (1, 0) SCFT_6, \quad \text{ In terms of } \mathcal{N}_{\scriptscriptstyle \bullet} = 0$

AdS_3 Regime and Defect $SCFT_2$

• Take $z, r \to \infty$ (while still keeping $\frac{r}{z^2}$ finite).

• Send $\rho \rightarrow 0$.

$$ds_7^2 \sim \zeta^{-1/4} \underbrace{\left(\frac{\rho^2}{Q_{\rm D4}} ds_{\mathbb{R}^{1,1}}^2 + \frac{Q_{\rm D4}}{\rho^2} d\rho^2\right)}_{ds_{\rm AdS_3}^2} + \frac{d\zeta^2}{\zeta^2} + Q_{\rm D4} \, \zeta^{-1/4} \, ds_{S^3}^2 ,$$

 $\longrightarrow AdS_3 \times_w \mathcal{M}_4$ with a 4-manifold \mathcal{M}_4 constructed as a fibration of S^3 over a segment.

• Dual description in terms of $\mathcal{N} = (4,0)$ SCFT₂: Conformal defect within the SCFT₆!

Summary on D2-D4-NS5-D6-D8 Bound State

- The bound state D2-D4-NS5-D6-D8 realizes a surface defect $SCFT_2$ within the $\mathcal{N} = (1,0) SCFT_6$.
- Three limits depending on a combination of the three coordinates (ρ, z, r) , respectively yielding AdS₇, the asymptotic domain-wall behavior typical of massive type IIA solutions, and AdS₃.

Teheran, 07/05/2018

24 / 26

Future Directions

- AdS_3 solutions and the origin of d = 2 SCFTs in massive IIA string theory. [Dibitetto, Lo Monaco, Passias, N.P., Tomasiello. Work in progress.].
- Defects in $\mathcal{N} = 2 \text{ SCFT}_5$: AdS₃ solutions in F(4) gauged supergravity in d = 6. [Dibitetto, N.P. Work in progress.].
- D3-D5-NS5-D7 intersections and defects in type IIB and F-theory. [Dibitetto, N.P. Work in progress].
- Warped d = 2 SCFTs as holographic defects. [Deger, Dibitetto, N.P. Work in progress].

Teheran, 07/05/2018

25 / 26

Conclusions

- We introduced minimal $\mathcal{N} = 1$ gauged supergravity in d = 7.
- We presented a new class of BPS flows involving a non-trivial profile for the 3-form gauge potential.
- We presented the uplift to the dyonic membrane in M-theory.
- We considered a particular BPS flow with an AdS_3 slicing and AdS_7 asymptotics and we presented its brane picture in massive IIA string theory in terms of a bound state D2-D4-NS5-D6-D8.
- We constructed the holographic interpretation of this bound state in terms of a defect $\mathcal{N} = (4,0)$ SCFT₂ within the $\mathcal{N} = (1,0)$ SCFT₆.