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Motivation

Is there a similar notion as deformations at the level of (symmetry)
algebra???
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Motivation

As an example, Galilean algebra can be deformed to Poincare,
Newton-Hooke and AdS/dS algebras!
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Motivation

I The concept of asymptotic symmetries is one corner of
triangular description of IR dynamics of gauge theories.
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I Deformation/contraction relation for isometries algebra of flat
and AdS spacetimes in any dimention

I ASA of AdS4 is just isometries algebra of AdS spacetime,
so(3, 2)

I ASA of 4d flat spacetime, bms4 algebra, is infinite dimensional

I AS analysis depends very much on the choice of boundary
falloff behavior
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Motivation

Why bms4 algebra?

1 The main question

May bms4 algebra come from contraction of an infinite
dimensional asymptotic symmetry algebra of AdS4 with another
boundary falloff conditions?
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Motivation

Application of the deformation procedure to study asymptotic
symmetry algebra of 4d flat spacetime.
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Deformation theory of Lie algebras

Definition
Deformation of a certain Lie algebra is defined as

[gi, gj ]ε := Ψ(gi, gj ; ε) = Ψ(gi, gj ; ε = 0) + ψ1(gi, gj)ε
1 + ψ2(gi, gj)ε

2 + ...,

in which ψr(gi, gj) is a bilinear and anti symmetric function and ε is called
deformation parameter.
Ψ(gi, gj ; ε = 0), or [gi, gj ]0, denotes the Lie bracket of the original algebra.

The deformed commutator must satisfy the Jacobi identity

[gi, [gj , gk]ε]ε + cyclic permutation of (gi, gj , gk) = 0,

order by order in ε.
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Deformation theory of Lie algebras

Non trivial deformations

Definition
The non trivial deformations are whose can not be removed by change of the
basis.

Contraction vs deformation

Definition
The contraction procedure is inverse of deformation. In fact by taking the
limit ε→ 0 one can return to the original algebra g from the deformed
algebra.
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Deformation theory of Lie algebras

Stable Lie algebra

Definition
A Lie algebra g is called formally Stable or Rigid if it does not admit any
formal deformation.

Whitehead’s Lemma
All semisimple finite Lie algebras are stable.
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Deformation theory of Lie algebras

Finite vs infinite dimensional Lie algebras

Definition
I In physics we are usually dealing with the Lie algebras which have semi

direct sum structure, g = g1 A g2, and its commutation relations are as
follows

[g1, g1] = g1,

[g1, g2] = g2,

[g2, g2] = g2.

Hochschild-Serre factorization theorem
I All deformations of finite dimensional Lie algebra g which has semi

direct sum structure, are located in its ideal part.
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Deformation theory of Lie algebras

Deformation of 3d Poincare algebra to 3d AdS/dS algebra.

Commutation relations

i[Jm,Jn] = (m− n)Jm+n,

i[Jm,Pn] = (m− n)Pm+n,

i[Pm,Pn] = 0.

−→
i[Jm,Jn] = (m− n)Jm+n,

i[Jm,Pn] = (m− n)Pm+n,

i[Pm,Pn] = ±(Λ2)(m− n)Jm+n.

where m,n = ±1, 0.

I The H-S factorization theorem does not work in the case of infinite
dimensional algebras!
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Review on deformations of bms3 algebra

bms3 is an infinite dimensional algebra which has semi direct sum
structure as

(Superrotations) A (Supertranslations)

Commutation relations of bms3

i[Jm,Jn] = (m− n)Jm+n,

i[Jm,Pn] = (m− n)Pm+n,

i[Pm,Pn] = 0.
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Review on deformations of bms3 algebra

Deformations of centerless bms3

We have shown that bms3 just have two independent deformations
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Review on deformations of bms3 algebra

Deformations of centerless bms3

The bms3 algebra can be deformed in its ideal part as

i[Jm,Jn] = (m− n)Jm+n,

i[Jm,Pn] = (m− n)Pm+n,

i[Pm,Pn] = ε(m− n)f(m,n)Jm+n.
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Review on deformations of bms3 algebra

Deformations of centerless bms3

The Jacobi analysis gives rise to

i[Jm,Jn] = (m− n)Jm+n,

i[Jm,Pn] = (m− n)Pm+n,

i[Pm,Pn] = ε̃(m− n)Jm+n.

I By an appropriate redefinition of generators one gets the asymptotic
symmetry algebra of 3d AdS spacetimes (witt⊕witt) in which
deformation parameter is the cosmological constant Λ.

i[Lm,Ln] = (m− n)Lm+n,

i[Lm, L̄n] = 0,

i[L̄m, L̄n] = (m− n)L̄m+n.
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Review on deformations of bms3 algebra

Deformations of centerless bms3

The bms3 algebra has another deformation in commutators [J ,P] which
is in contrast with HSF theorem
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Review on deformations of bms3 algebra

Deformations of centerless bms3

W (a, b) algebra

[Jm,Jn] = (m− n)Jm+n,

[Jm,Pn] = −(a+ bm+ n)Pm+n,

[Pm,Pn] = 0.
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Review on deformations of bms3 algebra

W (a, b) algebra

[Jm,Jn] = (m− n)Jm+n,

[Jm,Pn] = −(a+ bm+ n)Pm+n,

[Pm,Pn] = 0.

I The deformation parameter a is related to the periodicity of vector field
P(ϕ) on circle.

I The deformation parameter b is related to the conformal weight of
operator P.

15 / 26



Review on deformations of bms3 algebra

Theorem

The most general deformations of bms3 are either witt⊕witt or W (a, b)
algebras.

Theorem

The most general deformations of b̂ms3 are either vir⊕ vir or Ŵ (a, b)
algebras, (the latter has just one central terms in its Witt subalgebra).
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Deformation of bms4 algebra
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Deformation of bms4 algebra

The bms4 is ASA of 4d flat spacetime
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Deformation of bms4 algebra

The original bms4 algebra has semi direct sum structure as

(bms4)old = (Lorentz) A (Supertranslations)
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Deformation of bms4 algebra

The extended bms4 algebra, which is infinite enhancement of the old
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Deformation of bms4 algebra

Commutation relations of bms4 algebra

[Lm,Ln] = (m− n)Lm+n,

[L̄m, L̄n] = (m− n)L̄m+n,

[Lm, L̄n] = 0,

[Lm, Tp,q] = (
m+ 1

2
− p)Tp+m,q,

[L̄n, Tp,q] = (
n+ 1

2
− q)Tp,q+n,

[Tp,q, Tr,s] = 0.
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Deformation of bms4 algebra

Commutation relations of bms4 algebra

It has direct sum of two Witt subalgebras which is infinite enhancement
of Lorentz algebra
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Deformation of bms4 algebra

Commutation relations of bms4 algebra

The ideal part is Abelian

[Lm,Ln] = (m− n)Lm+n,

[L̄m, L̄n] = (m− n)L̄m+n,
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I Deformation in the two Witt subalgebras
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[L̄m, L̄n] = (m− n)L̄m+n + (m− n)h̄(m,n)T0,m+n,

[Lm, L̄n] = H(m,n)Tm,n.

The Jacobi analysis leads to

h(m,n) = constant = h, h̄(m,n) = constant = h̄

H(m,n) = H0(m+ 1)(n+ 1) + h̄(m+ 1)− h(n+ 1).

18 / 26



Deformation of bms4 algebra

Deformation of centerless bms4

I Deformation in the two Witt subalgebras

[Lm,Ln] = (m− n)Lm+n + (m− n)h(m,n)Tm+n,0,

[L̄m, L̄n] = (m− n)L̄m+n + (m− n)h̄(m,n)T0,m+n,

[Lm, L̄n] = H(m,n)Tm,n.

Redefinition of generators

L̃m ≡ Lm +
∑

X(m)Tm,0,

˜̄Lm ≡ L̄m +
∑

Y (m)T0,m,

T̃m,n ≡ Tm,n,

where X(m) = H0(m+ 1)− 2h and Y (m) = −H0(m+ 1)− 2h̄ .
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[L̄n, Tp,q] = (
n+ 1

2
− q)Tp,q+n + K̄(n, q)Tp,n+q.

The Jacobi identities [Lm, [Ln, Tp,q]] + cyclic permutations = 0 and

[L̄m, [L̄n, Tp,q]] + cyclic permutations = 0 result in

K(m,n) = α+ βm,

K̄(m,n) = ᾱ+ β̄m.
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Deformation of bms4 algebra

Deformation of centerless bms4

I Deformation of [L, T ] commutators

Theorem
The bms4 algebra is not stable and can be formally deformed into a four
parameter family of algebras W (a, b; ā, b̄).
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Deformation of bms4 algebra

Deformation of centerless bms4

I Deformation of [L, T ] commutators

Commutation relations of W (a, b; ā, b̄)

[Lm,Ln] = (m− n)Lm+n,

[L̄m, L̄n] = (m− n)L̄m+n,

[Lm, L̄n] = 0,

[Lm, Tp,q] = −(p+ bm+ a)Tp+m,q,

[L̄n, Tp,q] = −(q + b̄n+ ā)Tp,q+n,

[Tp,q, Tr,s] = 0.

I We should note that bms4 = W (− 1
2 ,−

1
2 ;− 1

2 ,−
1
2 ).
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The Jacobi analysis leads to

f(m, p) = f̄(n, q) = g(m, p) = ḡ(n, q) = 0.
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Deformation of bms4 algebra

Deformation of centerless bms4

I Deformations of commutator of ideal part [T, T ]
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Deformation of centerless bms4

I Deformations of commutator of ideal part [T, T ]

[Tm,n, Tp,q] = G(m,n; p, q)Tm+p,n+q,

The Jacobi [Lr, [Tm,n, Tp,q]] + cyclic permutations = 0 leads to

G(m,n; p, q) = 0.
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Deformation of centerless bms4
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Deformation of centerless bms4

I Deformations of commutator of ideal part [T, T ]

[Tm,n, Tp,q] = A(m,n; p, q)Lm+p−1 +B(m,n; p, q)L̄n+q−1,

The Jacobi identities [Lr, [Tm,n, Tp,q]] + cyclic permutations = 0 and

[L̄r, [Tm,n, Tp,q]] + cyclic permutations = 0 lead to

A(m,n; p, q) = B(m,n; p, q) = 0.
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Deformation of bms4 algebra

Deformation of centerless bms4

Conclusion
Although the ideal part of bms4 algebra is STABLE, it is not stable generally
and can be deformed into W (a, b; ā, b̄) algebra.
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Deformation of bms4 algebra

Deformation of centrally extended bms4, b̂ms4

I The bms4 algebra admits two independent central terms in its two Witt
subalgebras
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I The bms4 algebra admits two independent central terms in its two Witt
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Deformation of bms4 algebra

Deformation of centrally extended bms4, b̂ms4

I The most general deformation of b̂ms4 algebra is Ŵ (a, b; ā, b̄):

[Lm,Ln] = (m− n)Lm+n +
CL
12
m3δm+n,0,

[L̄m, L̄n] = (m− n)L̄m+n +
CL̄
12
m3δm+n,0,

[Lm, L̄n] = 0,

[Lm, Tp,q] = −(p+ bm+ a) Tp+m,q,

[L̄n, Tp,q] = −(q + b̄n+ ā) Tp,q+n,

[Tm,n, Tp,q] = 0.
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Stability of deformed algebras

Deformations of W algebra

I The most general deformation of W (a, b; ā, b̄) algebra is W (ã, b̃; ˜̄a, ˜̄b)
with shifted parameters.
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Stability of deformed algebras

Deformation of special W algebras
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Stability of deformed algebras

Deformation of special W algebras

W (0, 0; 0, 0) algebra

[Lm,Ln] = (m− n)Lm+n,

[L̄m, L̄n] = (m− n)L̄m+n,

[Lm, L̄n] = 0,

[Lm, Tp,q] = (−p)Tp+m,q,

[L̄n, Tp,q] = (−q)Tp,q+n,

[Tm,n, Tp,q] = 0.

I The W (0, 0; 0, 0) algebra is obtained (by Donnay et al.) as near horizon
algebra of 4d Kerr black holes
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Stability of deformed algebras

Deformation of special W algebras

Deformations of W (0, 0; 0, 0) algebra
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[Lm, L̄n] = H0(α+ βm)(ᾱ+ β̄n)Tm,n,
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[Lm, L̄n] = 0,

[Lm, Tp,q] = −(a+ bm+ p)Tp+m,q,
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[Lm, Tp,q] = (m− p)Tp+m,q,

[L̄n, Tp,q] = (−q)Tp,q+n,

[Tm,n, Tp,q] = 0.

I By setting the second index of the Tm,n zero, one obtains the subalgebra
bms3 ⊕witt.
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[Lm, L̄n] = 0,

[Lm, Tp,q] = (m− p)Tp+m,q,

[L̄n, Tp,q] = (−q)Tp,q+n,

[Tm,n, Tp,q] = (m− p)Tm+p,n+q.

I By appropriate redefinition of generators one obtains the direct sum of
three Witt algebras as subalgebra.
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Stability of deformed algebras

Deformation of special W algebras

I The most general formal deformations of W (0,−1; 0, 0) algebra are
witt⊕witt⊕witt and W (a, b; ā, b̄) algebras.

I The witt⊕witt⊕witt algebra and its contraction bms3 ⊕witt algebra,
can be obtained through deformation of infinite dimensional version of
3d Maxwell algebra.

I These algebras can be obtained as asymptotic symmetry algebras of
some Chern-Simons theories in 3d.
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Summary and discussion

1 We considered deformation/stabilization of bms4 algebra and its central

extension b̂ms4

2 It can be deformed into a four parameter family of algebras W (a, b; ā, b̄)

3 Stability of bms4’s ideal part implies that there is no infinite dimensional
algebra with so(3, 2) as its global part

4 The W (a, b; ā, b̄) algebra and its central extension Ŵ (a, b; ā, b̄) are stable
as a family of algebras

5 The W (0, 0; 0, 0) and W (0,−1; 0, 0) can be deformed non trivially

6 According to our computations, we have proposed a new version of HSF
theorem for infinite dimensional algebras
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3 Stability of bms4’s ideal part implies that there is no infinite dimensional
algebra with so(3, 2) as its global part
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Future directions

1 Physical realization of deformation parameters a, b, ā and b̄

2 Can W (a, b; ā, b̄) algebra be obtained as asymptotic symmetry of 4d flat
(AdS) spacetime with ”specific” B.Cs ?

3 Extension of deformation/stabilization procedure in the level of group,
representation, action and coadjoint orbits

4 From Mathematical point of view, consideration of our proposal for new
version of HSF theorem
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Thank You For Your Attention.

26 / 26


