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Motivation
-Black hole information paradox: fundamental conflict between GR and QM

-What happens to an infalling observer crossing the horizon?

-IR paradox, quantum gravity effects/(non)-locality at large scales?

-concrete technical problem in AdS/CFT: how does the CFT describe the region
behind the horizon?

-Can we understand the BH singularity from the CFT?

Outline
-review basic formulation of information paradox
-explain the relevance of smoothness of horizon
-formulate the problem in AdS/CFT
-a proposal for describing the BH interior from CFT
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Hawking radiation

φ(x) =
∑

fi(x)ai + h.c.

φ(x) =
∑

gi(x)bi +
∑

hi(x) ci + h.c.

ai|0〉in = 0 but in〈0|b†b|0〉in =
∑
|βij |2 6= 0
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Properties of Hawking radiation

〈b†ωbω′〉 = δ(ω − ω′)P (ω, l)
1

eβω − 1

where β−1 = T is

T =
1

8πGM

and where P (ω, l) is the absorption probability (gray-body factor)

Moreover
〈bbbb...〉 = product of 2-point functions

The Hawking particles seem to be thermal and uncorrelated.

The density matrix of the radiation is thermal (diagonal in occupation level basis)
5



Black Hole Evaporation

tevap ∝ G2M3
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Information Paradox

Hawking’s computation seems to contradict Unitarity in Quantum Mechanics

It predicts that a pure state |Ψ〉 can evolve into a mixed state ρthermal while in QM we
have

Ψ(t) = e−iHtΨ(0)

Hawking’s computation predicts that many initial states of same mass M , give the
same final state ⇒ fundamental irreversibility, information loss
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Entropy of Hawking radiation

N
S
N

S N

Hawking

BH

unitary

Consider the first N Hawking particles, compute reduced density matrix ρN and its
von Neumann entropy

SN ≡ −Tr[ρN log ρN ]
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Possible resolution

Information encoded in Hawking radiation in small correlations between particles

Can small corrections to Hawking’s computation resolve the information paradox?
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Two clarifications:

1) We can not yet calculate these corrections. This would be equivalent to computing
an exact S-matrix in Quantum Gravity. We will only estimate what is the minimal size
of these corrections necessary to restore unitarity and consider:
i) whether it is reasonable to expect corrections of this size in the theory of Quantum
Gravity and
ii) whether the existence of these corrections is compatible with Effective Field Theory

2) When talking about “small corrections to Hawking’s computation” it is important
to be precise about the quantities to which these corrections apply.
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General expectation: Unitarity can be restored in Hawking evaporation, at the price
of introducing exponentially small (of order e−SBH ) corrections to simple
observables in effective field theory.

Corrections of this size are generally expected and do not invalidate effective field
theory.

Corrections to complicated observables, for example SBH -point functions, or “the
quantum state of the entire Hawking radiation”, or the EE of the Hawking radiation
may be very large

This claim relies on a basic property of Quantum Statistical Mechanics:
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Pure vs Mixed states

[Lloyd]

In a large quantum system most pure states look almost identical when probed my
most observables — and almost identical to the maximally mixed state.

For any observable A we have the following identities

〈Ψ|A|Ψ〉 = Tr[ρmA]

(〈Ψ|A|Ψ〉 − Tr[ρmA])2 =
1

eS + 1

(
Tr[ρmA

2]− Tr[ρmA]2
)

where “overline“ denotes Haar-average over pure states, and ρm = I
eS

.
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Page curve

Entanglement entropy of subsystem

S
A

1

2
1 A

B

A

=

B

Large system A⊗B in typical pure state |Ψ〉

Subsystem A: if A is small, reduced density matrix ρA is exponentially close to
maximally mixed and its EE is SA ≈ log |A|. This breaks down once |A| > |B|

2
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Page curve

S
Hawking

exact

t

E

Page time

Assuming evaporation is unitary we have that:

1. Before Page time: new Hawking particles mostly entangled with remaining black
hole

2. After Page time: new Hawking particles mostly entangled with older radiation

14



Implications for Hawking radiation

If Quantum Gravity effects unitarize Hawking radiation, we generally expect that they
will modify the predictions of Hawking to simple observables by e−SBH corrections.

Hawking’s computation is reliable for the approximate computation of low-point
functions of photons, up to exp-small corrections.

Hawking’s computation is not reliable for SBH -point functions between photons, with
sufficient accuracy to identify microstate.

The quantum information of the BH microstate is encoded in SBH -point functions

So far we have not said anything about the effect of these small corrections to the
black hole interior.

As we will see, an important difficulty of the information paradox arises when we try to
reconcile unitarity with the smoothness of the horizon and the existence of spacetime
in the black hole interior.

15



Quantum cloning on nice slices

Importance of BH interior for information paradox
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Black Hole complementarity

[’tHooft, Susskind-Thorlacius]

In gravity:
H 6= Hin ⊗Hout
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A consistency check of complementarity

A

B

Observer A needs at least β logS to extract information of qubit (Hayden-Preskill) and
then dive into BH

Qubit B would have to be sent with transplanckian energy to reach A
18



Strong subadditivity paradox

[Mathur, AMPS]

B

A

C

S
N

N

A
A+B

Theorem: strong subadditivity of Entanglement entropy

SAB + SBC ≥ SA + SC

+Mathur’s theorem for small corrections

19



Observing the paradox

[AMPS]

B

A

C
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Quantum chaos vs specific entanglement

B

c

Smooth horizon requires specific pattern of entanglement between field operators at
B and C

Fragile under perturbations due to chaotic nature of system

Hard to imagine how typical states will end up with the correct, specific
entanglement needed for smoothness 21



Eternal black hole

Smoothness of horizon depends on correct entanglement

〈TFD| OL OR|TFD〉 ∼ O(1)

But, for a typical state |Ψ〉 (with same amount, but different details of entanglement)
we find using ETH

〈Ψ| OL OR|Ψ〉 ∼ O(e−S)

22



[Shenker,Stanford]

A

We start with |TFD〉 and perturb it by a small operator (energy of O(1)) at time
tL = −T ).

For small T , effect on infalling observer A is small. But center of mass collision energy
grows exponentially with T

For T > β logS (scrambling time) we can no longer ignore backreaction.

The “correct entanglement” of the TFD disrupted even by small perturbations due to
chaos.

23



What if there is no entanglement of Hawking particles with interior modes after Page
time?

24



Entanglement and smoothness of spacetime

x

t

25



Entanglement and smoothness of spacetime

x

t
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If, after Page time, the Hawking particles are no longer entangled with something inside
the black hole, playing the role of the interior partner C, then an infalling observer
would not see the vacuum but rather a highly excited state of the quantum field.

This corresponds to a very large 〈Tµν〉 which would backreact and dramatically modify
the region behind the horizon (firewall/fuzzball?)

In particular the infalling observer would not experience a smooth horizon.

This effect would be there even for black holes of very large mass, thus violating the
predictions of classical GR in a regime of low curvatures.

27



Summary

1. Information paradox from the point of view of asymptotic observer: natural
(in-principle) resolution, consistent with generic expectations from quantum statistical
mechanics

2. Preserving smoothness of the horizon: more challenging. Seems to violate
monogamy of entanglement. Seems to contradict generic expectations from quantum
statistical mechanics (requires specific detailed enganglement for typical states).

3. We will make some of these paradoxes more precise in AdS/CFT

28



Information paradox in AdS/CFT

?

CFT dual ⇒ Evaporation manifestly unitary

What about smoothness of horizon?
29



Large BHs in AdS

In flat space we emphasized the relation betwen the information paradox and the
smoothness of the horizon.

A natural question is whether large black holes in AdS have a smooth interior.

These black holes do not evaporate, so one might expect that there would be no
paradox to address.

We will see that even for these black holes it is difficult to reconcile the smoothness of
their horizon with unitarity in the CFT.

Mathematically precise version of the paradox.
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Comments on bulk reconstruction

-CFT with gravity dual, large N, large λ

-HKLL construction

(�AdS −m2)φ = 0 lim
z→0

z−∆φ(x, z) = O(x)

φCFT(t,Ω, z) =
∑
m

∫
ω>0

dω (Oω,m fω,m(t,Ω, z) + h.c.)

[φCFT(P1), φCFT(P2)] = 0, if points P1, P2 spacelike with respect to AdS metric

-On-shell, uses bulk EOMs

-perturbative in 1/N

31



x

φCFT(t,Ω, z) =

∫
dt′d~Ω′ K( t,Ω, z ; t′,Ω′)O(t′,Ω′)

where K is some known kernel

32



Black Hole Exterior

Consider big black hole in AdS. Expectation from bulk effective field theory (EFT) for
a free scalar

φ(t, r,Ω) =

∫ ∞
0

dω
∑
lm

bωlm e
−iωtfω,l(r)Ylm(Ω) + h.c.

where (dropping l,m indices) we have

[bω, b
†
ω′ ] = δ(ω − ω′) [H, bω] = −ωbω

and

〈b†ωbω〉 ∼
1

eβω − 1

How do we reconstruct this from the CFT?

33



In typical QGP pure state |Ψ〉 (energy O(N2)), single trace correlators factorize at
large N

〈Ψ|O(x1)...O(xn)|Ψ〉 = 〈Ψ|O(x1)O(x2)|Ψ〉...〈Ψ|O(xn−1)O(xn)|Ψ〉+ ...

The 2-point function in which they factorize is the thermal 2-point function

G(t, x) ≡ Z−1Tr[e−βHO(t, x)O(0, 0)]

which is hard to compute, but obeys KMS condition

G(t− iβ, x) = G(−t,−x)

34



Consider single-trace operator O in CFT, dual to bulk field φ. Define Fourier modes

Oωlm =

∫
dtdΩ O(t,Ω) eiωt Y ∗lm(Ω)

The KMS condition implies

〈O†ωlmOωlm〉 = e−βω〈OωlmO†ωlm〉

then we identify

bωlm =
1√

〈[Oωlm,O†ωlm]〉
Oωlm

so
[bωlm, b

†
ωlm] = 1

and, using KMS and large N, we have

〈b†ωlmbωlm〉 =
1

eβω − 1
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Local bulk field outside horizon of AdS black hole

φCFT(t,Ω, z) =
∑
m

∫ ∞
0

dωOω,m fβω,m(t,Ω, z) + h.c.

At large N (and late times) the correlators

〈Ψ|φCFT(t1,Ω1, z1)...φCFT(tn,Ωn, zn)|Ψ〉
reproduce those of semiclassical QFT on the BH background (in AdS-Hartle-Hawking
state).

36



Some subtleties with spacelike modes

Fix ω, take ~k →∞. If we normalize bulk wavefunctions so that f → 1 as r →∞, then
at any finite r they grow like

eα
β|~k|
2

For BTZ α = 1, for higher dimensional AdS-BHs α < 1

HKLL reconstruction is possible because of exponential decay of spacelike thermal
correlators.

[S.Banerjee, KP, S.Raju, P.Samantray, P. Shrivastava]

We recently derived a bound for spacelike thermal correlators in any QFT

〈O(ω1,~k1)...O(ωn,~kn)〉β ≤ e−Rβ

where R is smallest sphere enclosing ~ki. 37



Local analysis near the horizon

Demanding that low-point correlators of local fields at late times look locally like flat
space we find some conditions which must hold at large N

[Oω,O†ω] = 1, [Õω, Õ†ω] = 1

[Oω, Õω′ ] = 0

[H,O†ω] = ωO†ω, [H, Õ†ω] = −ωÕ†ω,

〈O†ωOω〉 = 〈Õ†ωÕω〉 =
1

eβω − 1

〈OωÕω〉 =
e
βω
2

eβω − 1

38



On TFD state

Õ = OL

Collapsing BH

Õ = Oearly (?)

39



On TFD state

Õ = OL
Collapsing BH

Õ = Oearly (?)
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Collapsing vs typical black holes

Black holes formed by (simple)
gravitational collapse are a-typical

Typical black hole microstates are defined by “microcanonical measure”

|Ψ〉 =
∑
i

ci|Ei〉

where Ei ∈ E0 ± δE and ci selected randomly by Haar measure
Notice that typical states are almost time-independent

〈Ψ|dA
dt
|Ψ〉 =

∑
ij

c∗i cjAij
d

dt
eiEijt = O(e−S/2)

Typical states are equilibrium states.
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A problem

It is challenging to identify the operators Õ in the CFT, with satisfy desired properties
on most states counted by

S =
A

4G

because these properties seem to imply [AMPSS, Marolf-Polchinski]

Tr[e−βHÕ†ωÕω] < 0

There is no problem to find these operators in particular, special states.

41



A problem

It is challenging to identify the operators Õ in the CFT, with satisfy desired properties
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There is no problem to find these operators in particular, special states.

41



[Õ, Õ†] = 1 ⇒ Õ† = “creation operator”

⇒ Õ† should not annihilate (typical) states of the CFT (∗).

On the other hand
[H, Õ†] = −ωÕ†

implies that Õ† lowers the energy so it maps CFT states of energy E to E − ω.

But in CFT, we have S(E) > S(E − ω).

⇒ if Õ† is an ordinary linear operator, it must have a nontrivial kernel.

Inconsistent with statement (*).

⇒ The CFT does not contain Õ operators and cannot describe the BH interior (?)

42



A related paradox

[Bousso]

Consider the number operator Na for some modes relevant for the infalling observer. If
typical states have a smooth horizon then we expect

TrE [Na] = 0

where the trace is over states of energy E ± δE.

A trace can be evaluated in any basis of orthonormal vectors.

The number operator of Schwarzchild modes Nb = O†O obeys [H,Nb] = 0 and can be
simultaneously diagonalized with H.

TrE [Na] =
∑
〈nb|Na|nb〉 > 0

since eigenstates |nb〉 of Schwarzchild number operator have excited horizon 43



Paradox for eternal black hole

44



Using entanglement to go behind the horizon

[KP, S. Raju]

The quantum fields outside the horizon appear to be in an entangled state. They are
entangled with certain CFT d.o.f. which can play the modes of the interior.
There is a natural mathematical construction allowing us to identify those.

45



Tomita-Takesaki modular theory

Consider Hilbert space H, a state |Ψ〉 ∈ H and an algebra A acting on H with the
properties:
1) The state is cyclic wrt the algebra A i.e.

H = spanA|Ψ〉

2)The state is separating wrt the algebra A i.e. ∀a ∈ A, a 6= 0

a|Ψ〉 6= 0

Then the Tomita-Takesaki theorem says (among other things) that:

The representation of the algebra A on H is reducible, and the algebra has a
non-trivial commutant A′ also acting on H. Moreover A′ is isomorphic to A. Finally,
the algebras A,A′ are entangled in a particular way.

46
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Tomita-Takesaki modular theory

We define an antilinear map

Sa|Ψ〉 = a†|Ψ〉 a ∈ A

Consider the polar decomposition

S = J∆1/2 ∆ = S†S

where ∆ = e−K and K=modular Hamiltonian.
Then we have:

1. A′ = JAJ : the commutant A′ is isomorphic to A (notice J2 = 1).

2. ∆isA∆−is = A, ∆isA′∆−is = A′ s ∈ R
3. KMS-like condition: F (z) ≡ 〈Ψ|a∆izb∆−iz|Ψ〉, then F (−i) = 〈Ψ|ba|Ψ〉

n

47
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Example:Rindler space

Consider a general, possibly strongly coupled, relativistic QFT in the Minkowski ground
state |0〉. Suppose we have only access to right Rindler wedge. How can we use the
entanglement to recover the rest of space-time?

Reeh-Schlieder theorem: The Minkowski vacuum |0〉 is a cyclic and separating state for
the algebra A:

1. States of form a1...an|0〉 ai ∈ A, span dense subspace of H
2. There is no a ∈ A such that a|0〉 = 0.
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Example:Rindler space

Consider Lorentz boost U = eiKs on t− x plane

t′ = t cosh s+ x sinh s

x′ = t sinh s+ x cosh s

A complexified Lorentz boost by s = iπ maps (t, x, ~y)→ (−t,−x, ~y)

e−πKφ(t, x, ~y)|0〉 = φ(−t,−x, ~y)|0〉

Combine this with a rotation R1 by π around x which takes ~y → −~y and finally CPT
transformation Θ which maps (−t,−x,−~y) back to (t, x, ~y). All in all we find

ΘR1e
−πKφ(t, x, ~y)|0〉 = φ†(t, x, ~y)|0〉

Generalizing to more operators (Bisognano-Wichmann thm.) it follows that the desired
modular conjugation implementing Sa|0〉 = a†|0〉 is

S = ΘR1e
−πK
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Example:Rindler space

We have S = ΘR1e
−πK . From this follows that

∆ = S†S = e−2πK

The modular Hamiltonian is the Lorentz boost generator with effective temperature
1

2π . The antiunitary operator J mapping A to A′ and allowing us to recover the left
wedge is

J = ΘR1

The fact that each of the algebras A,A′ remain invariant under conjugation by ∆is is
obvious in this example. The KMS condition implies the Unruh temperature (even at
strong coupling).
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Tomita-Takesaki and the black hole

We do not have a decomposition of the algebra in physical space, but rather in the
“space of operators” (simple vs complicated).
Introduce a “small algebra” A of simple operators (single trace + small products).

We define the small Hilbert space (also called “code-subspace” in later works)

HΨ = A|Ψ〉

The algebra A probes the typical pure state |Ψ〉 as a thermal state

〈Ψ|O(x1)...O(xn)|Ψ〉 = Z−1Tr[e−βHO(x1)...O(xn)] +O(1/N)

No annihiliation operators in A ⇒ |Ψ〉 is a cyclic and separating vector.

An analogue of the Tomita-Takesaki construction applies.
Using large N factorization and the KMS condition, we find the modular Hamiltonian
for the small algebra

∆ ≡ S†S = e−β(H−E0) +O(1/N)
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The mirror operators

This leads to the “mirror operators”

Õω|Ψ〉 = e−
βH
2 O†ωe

βH
2 |Ψ〉

ÕωO....O|Ψ〉 = O...OÕω|Ψ〉

[H, Õω]O....O|Ψ〉 = ωÕωO....O|Ψ〉

These equations define the operators Õ on the code-subspace HΨ ⊂ HCFT, which is
relevant for EFT experiments around BH microstate |Ψ〉

I Operators defined only on HΨ, not on full CFT Hilbert space - they are
state-dependent operators.

I [O, Õ] = 0 only inside HΨ, not as operator equation

I Due to Boltzman factors 〈O†ωOω〉 ∝ e−βω, we define these operators for ω < ω∗,
where ω∗ does not grow too fast with N
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The mirror operators

The small algebra A is not an exact algebra, hence the Tomita-Takesaki theorem can
not be applied exactly. Hence A′ is not an exact commutant.

From a physical point of view this is a desirable feature of the construction. It
realizes the idea of black hole complementarity in a precise setting.

It also naturally implies that there is some non-locality in the construction of the
interior.

Finally, notice the operators Õ defined by the Tomita-Takesaki constrcution are
state-dependent, since they are “defined by the enganglement”.
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Infalling observer

φ(t, r,Ω) =

∫ ∞
0

dω
[
Oω fω(t,Ω, r) + Õωgω(t,Ω, r) + h.c.

]
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Extended geometry

The cutoff on the left is determined by ω∗.

Since Õ do not fundamentally commute with O, left region should not be though as a
fundamentally independent part of the Hilbert space (BH complementarity)
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State-dependence

I Interior operators defined by

Õω|Ψ〉 = e−
βω
2 O†ω|Ψ〉

ÕωO....O|Ψ〉 = O...OÕω|Ψ〉

I Solution defined only on HΨ, depends on reference state |Ψ〉

I Operators cannot be upgraded to “globally defined” operators

I Solves previous paradoxes ( Negative trace, Chaos vs Entanglement problem,...)
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Complementarity and Non-locality

Õ were constructed based on the fact that we restricted our attention to a “small
algebra” of O’s. The construction breaks down if the “small algebra” is enlarged to
include all operators

[O, Õ] = 0 only on HΨ, not as operator equation

Operators Õ = complicated combinations of O. Realization of BH complementarity

P

Q

[φ(P ), φ(Q)] ∼ 0

[φ(P ),Φcomplex(Q)] = O(1)

The Hilbert space of Quantum Gravity does not factorize as Hinside ⊗Houtside

1) Solves problem of Monogamy of Entanglement (and avoids Mathur’s theorem)

2) Is consistent with locality in EFT, concrete mathematical realization of
complementarity
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[O, Õ] = 0 only on HΨ, not as operator equation
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Eternal AdS black hole

Two identical non-interacting CFTs

H = HL +HR

in an entangled state

|TFD〉 =
1√
Z

∑
E

e−
βE
2 |E〉L ⊗ |E〉R
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Eternal AdS black hole

In the bulk they are connected by a wormhole (Einstein-Rosen bridge).

It is not traversable, consistent with the fact that CFTs are non-interacting
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Eternal AdS black hole
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Gao-Jafferis-Wall protocol

at t = 0 we briefly couple the CTFs by a double-trace interaction

H = HL +HR + gf(t)OLOR

For given sign of g this creates negative energy shockwaves in the bulk. Probe
undergoes time advance when crossing shockwaves

Wormhole becomes traversable
61



Gao-Jafferis-Wall protocol

Change of CFT energy
δ〈HR〉 ∝ g〈OLOR〉+O(g2)

Black hole horizon shrinks somewhat, probe can cross the wormhole
CFTs briefly interacted via OLOR at t = 0, so information can be exchanged
Notice φ vs O
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Quantum Teleportation Interpretation

A B

Quantum

Measurement

Classical

information

Measure OL on CFTL, then apply

eigoLOR

on CFTR. The probe φ is teleported.
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Gao-Jafferis-Wall protocol
analysis by [Maldacena-Stanford-Yang]

We create the probe on the left by

eiεφL(−t)|TFD〉

At t = 0 we apply double-trace
perturbation coupling the two CFTs

eigOLOR(0)eiεφL(−t)|TFD〉

We measure the operator φR(t) on this state. To leading order in ε we need

〈TFD|[φL(−t), e−igOLOR(0)φR(t)eigOLOR(0)]|TFD〉

Expanding in g
〈TFD|[φL(−t), OL(0)][φR(t), OR(0)]|TFD〉
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Traversable wormholes and quantum chaos

Growth of out-of-time-order-correlators (OTOC) due to quantum chaos

〈TFD|[φL(−t), OL(0)][φR(t), OR(0)]|TFD〉 ∼ 1

N2
e

2π
β
t

Including higher orders in g, we find that the commutator is zero up to scrambling
time t ≈ β logS, when it becomes nonzero and we get a nontrivial signal,
corresponding to the probe appearing in the right CFT. 65



I Gao-Jafferis-Wall identified an S-matrix-like experiment which probes the interior
of eternal black hole

I CFT correlators contain information about geometry inside horizon

I Computations provide evidence for smoothness of horizon of eternal black hole,
dual to the TFD state, and ER/EPR proposal

I However, the real difficulty in reconciling unitarity with the smoothness of the
black hole horizon is not for the TFD (which is a very special, atypical state), but
rather for typical black hole microstates.

I Can we find a way of applying a similar protocol to (1-sided) typical black hole
microstates, which will allow us to probe their interior?
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Exciting the left region

Mirror quench: we perturb the CFT Hamiltonian by Õ at −t

Excitation is invisible by simple CFT operators
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Creating negative energy shockwaves for 1-sided black hole
[J. de Boer, R. van Breukelen, S. Lokhande, KP, E. Verlinde, arXiv: 1804.10580, 1901.08527]

At t = 0 we perturb CFT Hamiltonian by

gf(t)OÕ(0)

Compute effect on bulk correlators ⇒ generates negative energy shockwaves for
appropriate choice of g
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Some subtleties (in progress)

Operators Õ are gravitationally dressed wrt the right ⇒ Wilson lines extending across
geometry

Backreaction and Einstein equations at subleading order?
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The experiment

We create a probe in the left region of the black hole by acting with φ̃(−t).

Then at t = 0 we perturb the CFT by gf(t)O(0)Õ(0). Finally we detect the probe by
measuring φ(t).

The postulated Penrose diagram makes a prediction about CFT correlators
(singal around t = β logS)

〈Ψ0|[φ̃(−t), e−igÕO(0)φ(t)eigÕO(0)]|Ψ0〉 70



Comparison
Eternal BH

C =
1

Z
Tr[e−βHX (φ,O)]

1-sided BH

C ′ = 〈Ψ0|X (φ,O)|Ψ0〉

Using properties of the TFD state and the mirror operators we find that both
experiments are governed by the expectation value of exactly the same string of
ordinary CFT operators χ(φ,O). Moreover, in stat-mech we have

C ′ = Tr[ρmX (φ,O)] +O(e−S)
71



Condition for CFT correlators

C =
1

Z
Tr[e−βHX (φ,O)] C ′′ = Tr[ρmX (φ,O)]

A necessary condition for horizon of typical BH mircostate to be smooth is

lim
N→∞

C = lim
N→∞

C ′′

keeping frequencies ω < ω∗.

I Not obvious, trace-distance ||ρβ − ρm|| between ensembles is almost maximal.

I X (φ,O) is a complicated observable, product of operators at time separation
∆t ∼ β logS

I Condition is related to whether X (φ,O) obeys Eigenstate Thermalization
Hypothesis (ETH)

〈Ei|X |Ej〉 = f(Ei)δij +Rije
−S/2 (1)

with df
dE ∼ O(1/S) 72



Condition for CFT correlators

I Interesting effect comes from subleading corrections of the form

1

N2
e

2πt
β

At scrambling time they become O(1).

Are these “chaos-enhanced” 1/N2 corrections the same in typical pure states and
thermal ensemble?

I Our condition requires that correlators agree even after analytic continuation by
t→ t− iβ2 (keeping frequencies up to ω∗)
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Evidence

1. ETH holds for products of operators at small time separation. We can show that
it also holds for very large time separations (when chaos saturates). It is natural
to expect that it holds for intermediate times of order β logS

2. In 2d CFTs with large c and sparse spectrum correlators are dominated by
Virasoro identity block. In this case the conjecture is true.

3. Numerical evidence in SYK model
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The SYK model

N -Majorana fermions in 0 + 1d
{ψi, ψj} = δij

H =
∑
ijkl

Jijklψ
iψjψkψl

where Jijkl random couplings

dimH = 2
N
2

Flows to strongly coupled CFT in IR

Model of black hole in AdS2
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The mirror operators in the SYK model

Typical state in SYK

|Ψ〉 =
∑
i

ci|Ei〉

Introduce the spin operators [Kourkoulou,Maldacena]

Sk = 2i ψ2k−1ψ2k
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The mirror operators in the SYK model

|1〉 = |Ψ0〉 ,
|2〉 = S1,ω1 |Ψ0〉 ,
|3〉 = S1,ω2 |Ψ0〉 ,

...

|n〉 = S2,ω1 |Ψ0〉 ,
|n+ 1〉 = S2,ω2 |Ψ0〉 ,

...

|l〉 = S2,ω2S1,ω1 |Ψ0〉 ,
...

(2)
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The mirror operators in the SYK model

To simplify the notation, we denote these states as

|I〉 ≡ OI |Ψ0〉, (3)

where OI is a combination of the spin operators introduced above. We define

GIJ ≡ 〈I|J〉

and
BIJ,kω ≡ 〈I| S̃k,ω |J〉 , (4)

or using the equations for the mirror operators

BIJ,kω = 〈Ψ0|O†IOJe
−βH

2 Sk,ωe
βH
2 |Ψ0〉. (5)

Finally we can represent the mirror operators explicitly as

S̃k,ω = GIJBJK,kωG
KL |I〉 〈L| . (6)
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Extracting particle from behind the horizon
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Relation to Kourkoulou-Maldacena

They consider a class of a-typical, non-equilibrium states in the SYK model

e−
βH
2 |Bs〉 where Sk|Bs〉 = sk|Bs〉

On these states they consider the (state-dependent) perturbation of the form

δH = g
∑
k

skSk

and they argue that this exposes part of the region behind the horizon.
This thought experiment is closely related to the perturbations

δH = gOÕ

that we discussed earlier.
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Pure vs thermal state OTOC in SYK

Time

〈{ψi(t), ψi(0)}2〉

on thermal state (red) vs typical pure state (blue).
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ETH for chaotic observables in SYK

Matrix elements in SYK of
{ψi(t), ψi(0)}2

for t ≈ β logS 82



Recovering information from a black hole

We throw a qubit into black hole. How long do we need to wait to recover the
information from Hawking radiation?

tevap ∼ G2M3

Hayden Preskill (2007): if we have access to more than half of Hawking radiation we
only need to wait scrambling time

tS ∼ GM logS

to recover information. For the protocol to work we need to know the initial state of
the black hole.
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Hayden-Preskill protocol

Reformulated by Maldacena-Stanford-Yang in terms of traversable wormholes
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A realization of Hayden-Preskill

x

We throw qubit φ(−ts) into black hole

At t = 0 we act with OÕ
After scrambling time we can extract the quantum information of the qubit my
measuring operator φ̃(ts).

This provides an explicit decoding Hayden-Preskill protocol

Knowledge of the quantum state related to state-dependent Õ. 85



Summary

I The nature of space-time behind the horizon remains mysterious

I This question becomes particularly sharp for typical black hole microstates in AdS

I Presented a proposal for their geometry, by making use of state-dependent
operators.

I Developments related to traversable wormholes: new calculational tools to probe
BH interior

I Interesting connections with quantum teleportation and quantum chaos in pure
states.
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