
Symmetries, Groups Theory and Lie Algebras in Physics
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Symmetries have been the cornerstone of modern physics in the last century. Symmetries
are used to classify solutions to physical theories, as well as a guiding principle in

formulating new physical theories. From the mathematical viewpoint, symmetries naturally
fall into the subject of group theory, Lie algebras and their representations. In these

lectures we intend to very briefly discuss these issues.
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1 Introduction to symmetries

In general a physical model or theory has a set of variables, degrees of freedom (dof ), which
should obey specific (partial) differential equations, the equations of motion (E.o.M), whose
solutions are completely determined by a set of boundary conditions (BC ) and/or initial
conditions. Although not always necessary, the E.o.M are supposed to have not more than
second order time derivatives. The class of all solutions to E.o.M with given BC define the
physical on-shell configuration space.

Physical theories may be describing dynamics of a system of particles (particle theory)
or describing dynamics of a finite number of fields (field theory). Degrees of freedom in the
particle theory are hence Xµ

i (τ) where µ denotes the spacetime index, i is the particle label;
Xµ

i denote the trajectory of the particles which is parameterized by τ . In the field theory
case, the degrees of freedom are functions/fields defined over the spacetime, ΦI(x).

1 The
configuration space in particle theory is then labeled by Xµ

i (τ ;λr) and for field theory by
ΦI(x;λr) where λr denote parameters of the theory or parameters of the solution.

A symmetry is then an inner automorphism on the physical configuration space, trans-
forming a given solution to another solution. One may then use orbits of these inner auto-
morphisms to label the configuration space. Therefore, by definition, E.o.M and BC should
remain covariant under symmetry transformations. That is, symmetries enable us to gener-
ate new solutions from given (set of) solutions. In almost all physical applications this inner
automorphism is assumed to be a linear one, e.g. in the case of a field theory,

ΦI(x) → Φ̃J(x̃) = G · ΦI(x) , (1)

where G is the linear operator acting on the configuration space. From (1) one can already
deduce that the set of all such transformations like G, denoted by G, must form a group
because,

∀Gi ∈ G , Gi · Gj ∈ G , IIid ∈ G , G−1
i ∈ G . (2)

The above definition of symmetries is based on the E.o.M +BC. There is, however,
another way of defining symmetries in terms of Lagrangian and action. Here, we consider
the field theory case, the discussions on the particle theory case can be made in a similar
way. Both the E.o.M and the BC may be obtained by requiring variation of the action
functional,

S[ΦI ] =

∫
ddx L[ΦI , ∂ΦI ; x] , (3)

to be vanishing. The transformation (1) is a symmetry if it keeps the action invariant, i.e.

S[ΦI ] = S[G · ΦI(x)] . (4)

1As an extension of the particle theory, the dynamical objects may be p-dimensional extended objects
(p = 0 corresponds to particle theory) moving in a generic D dimensional spacetime. This leads to string
theory for p = 1 and brane theory for p > 1.
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Using the language of the action we have another advantage: We have another possi-
bility for the symmetries, the symmetries need not be acting on the physical configuration
space, one may consider transformations which do not satisfy E.o.M but still keep the action
invariant. That is, we can have on-shell symmetries ((4) is satisfied for ΦI which satisfy
equations of motion) or off-shell symmetries ((4) is satisfied for a generic ΦI not necessarily
satisfying equations of motion). For the former the transformation acts only on the class of
solutions while in the latter any field configuration could be considered. We note that, one
may need to specify BC for both on-shell or off-shell symmetries. By definition, any off-shell
symmetry is also true on-shell but not vice-versa.

NOTE: ⟨For condensed matter or stat.mech. systems instead of the action one may use
invariance of (free, Gibbs or ..) ENERGY functional to define symmetries.⟩

2 Classification of symmetries

As discussed symmetries are specific transformation defined on the configuration space of a
given theory. One may then use the properties of this transformation to classify symmetries.
Here we give three different ways to classify symmetry transformations:

• Discrete or Continuous: This classification is based on whether the transformation
(1) is continuously connected to Identity transformation or not. If it is connected to
identity, i.e. if we have infinitesimal transformations, then the transformation is gener-
ated by a continuous parameter and we hence have a continuous symmetry; otherwise
we have a discrete symmetry.

• Internal or External: If the transformation does not act on the spacetime and only
acts on the internal space of the fields we have an internal symmetry. That is, for
internal symmetry,

ΦI(x) → Φ̃I(x) . (5)

For a particle theory internal symmetry means reshuffling of identical particles (which
for finite number of particles is necessarily a discrete symmetry).

External symmetry is the one which in its transformation also involves change in
“external” spacetime structure:

ΦI(x) → Φ̃I(x̃) , x → x̃. (6)

• On-shell or Off-shell: For on-shell symmetry action remains invariant only upon
imposing E.o.M +BC, while for off-shell symmetry action remains invariant for generic
field transformations, not subject to E.o.M +BC.

With the above one then has eight classes of symmetries. However, one may show that
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• All discrete symmetries are necessarily off-shell;

• All internal symmetries are also necessarily off-shell.

Exercise: ⟨Convince yourself that the above statements are true.⟩

Therefore, we remain with five categories:

1. Discrete-Internal like, charge conjugation C, R-parity in supersymmetric theories,
ZN symmetry which remains from the color or flavor symmetries in QCD like theories
(in confined or chiral-symmetry broken phases).

2. Discrete-External like parity P, time-reversal T, rotations by 2π/N degree.

3. Continuous-Internal like flavor symmetry in quark or lepton sectors.

4. Continuous-External-On-shell like spacetime translations, rotation and Lorentz
symmetry (or more generally isometries of a given spacetime), conformal symmetry,
supersymmetry.

5. Continuous-Internal-Off-shell like diffeomorphisms in generally covariant theories,
super-diffeomorphisms in supergravities.

• As pointed out any symmetry is defined by a (linear) transformation (1) and these
transformations form a group. In fact, (1) already tells us that all fields/configuration
must form or fall into representations of the symmetry group.

• For continuous symmetries, we are usually (not always) interested only in invariance
under infinitesimal transformations. These infinitesimal variation of the fields are
generated by the elements of the Lie algebra associated with the group. Therefore,
fields/configuration also furnish representations of the corresponding Lie algebra.

3 Symmetries and conserved charges

• The great outcome of symmetries is the celebrated Noether theorem:

To any global continuous symmetry one may associate a conserved current and a
conserved charge.

• The value of conserved charges associated with a given configuration is fixed by the
initial conditions (up to boundary conditions).

• Conserved charges are in fact the same quantities which identify the representation
associated with the symmetry group. (Recall that the representations of the symmetry
group are labeling the physical configurations.)

4



• Local (gauge) symmetries (see below), do not lead to conserved charges.

• If each physical configuration is uniquely labeled and identified by its conserved charges
then the system is called solvable.

4 Global vs Local symmetries, gauging a symmetry

• Another useful classification for the symmetries is based on the point that the symmetry
transformation is spacetime dependent or a constant. In the latter case we have a global
symmetry while in the former we have a local or gauge symmetry.

NOTE: ⟨The transformation parameter can be a constant while not necessarily a space-
time scalar. That is, generator of global symmetries are not necessarily spacetime
scalars.⟩
Exercise: ⟨Convince yourself that generator of internal global symmetries (or
equivalently the corresponding symmetry transformation parameters) are necessarily
spacetime scalars, while for the external symmetries they can also be spacetime
vector, spinor and ...⟩
Exercise: ⟨Convince yourself that all local symmetries are necessarily off-
shell.⟩

• All off-shell global symmetries can be gauged and made into local symmetries.

• So, we can have discrete (internal or external), or continuous (internal or external)
gauge symmetries.

Process of gauging a symmetry generically involves three steps

1. Find the gauge orbits, i.e. all field configuration which are related by symmetry (gauge)
transformations;

2. Identify all such configurations; mod out the configuration space by gauge orbits;

3. Make the necessary changes in the action to keep the action invariant. This step usually
involves addition of gauge fields (see below for more comments).

Some comments are in order:

• Steps 1. and 2. actually say that gauge symmetry is in fact a redundancy in the
description, a redundancy in the original configuration space.

• One may gauge a discrete symmetry. This involves only steps 1. and 2. i.e. modding
out the configuration space/Hilbert space; there is no need to add gauge fields.
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• To gauge a continuous symmetry we need to also carry out step 3.

• Practically, given a continuous global transformation parameterized by λ gauging
means making

λ → λ(x) (7)

change in the same transformation law and require the action to remain invariant.
Note that λ or λ(x) is necessarily a spacetime scalar for internal symmetries while it
can be a spacetime tensor or spinor for external symmetries.

• In the process of gauging a generic internal symmetry group G we need to introduce
gauge interactions. In general:

– number of gauge fields =dim G;

– number of gauge couplings = number of simple factors in G.

• In the process of gauging a generic external symmetry, we still need to introduce
appropriate gauge fields. In general if the transformation parameter is a tensor of
rank p, the corresponding gauge field will be a rank p+ 1 tensor.

• Since a generic rank p + 1 tensor, involves states with spin up to p + 1, and since
field theories involving spin fields higher than two are not unitary (S. Weinberg, mid
1960’s), therefore,

– we consider only p = 1 case which corresponds to diffeomorphisms (i.e. gauging
of translations xµ → xµ + ξµ(x), OR

– for p > 1 we restrict ourselves to totally antisymmetric p + 1-tensors, i.e. p + 1
form fields.

NOTE: ⟨Gauging a symmetry with a GENERIC p-form transformation param-
eter is still an open interesting question both in mathematics and in physics.⟩

– The transformation parameter for an external symmetry may also be a spacetime
spinor. This is the case for supersymmetry. Gauging supersymmetry leads
to supergravity theories. Again, if the global transformation parameter is a
spin s spinor, the corresponding gauge field will have spin s + 1. That is, the
gauge particles of supergravity theories are spin 3/2 gravitino.

5 Symmetries at quantum level

• Unlike the classical case, at quantum level not all the information is sitting in E.o.M
+BC. This becomes explicit e.g. in the path integral where we should also integrate
over configuration which are not on-shell.

• We define a quantum theory, either QM or QFT, by i) specifying the action or Hamil-
tonian, ii) the Hilbert/Fock space of the theory.
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• A symmetry at quantum level is then defined by set of transformations which keep
the action/Hamiltonain invariant and also faithfully act on the Hilbert/Fock space,
i.e. states of the Hilbert space fall into the representations of the symmetry group.
The latter in the path integral formulation is replaced by demanding invariance of the
measure of the path integral to be invariant under the symmetry transformation.

• Noether theorem too can be extended to the quantum level:

– QM: Noether charges are operators commuting with the Hamiltonian and states
are labeled by the eigenvalues of the symmetry operators, the quantum numbers.

– QFT: Here the Noether current turns to an operator Jµ acting on the Fock space
of the theory. The conservation now means

∂µJ
µ = 0 ⇔ ⟨Ψ|∂µJµ|Φ⟩ = 0 ⇔ ⟨∂µJµ(x)O(y)⟩ = 0 (8)

for any two states |Φ⟩, |Ψ⟩ and/or any local operator O(y).

– From the above we learn that

∗ Vacuum state |V ac⟩, should be in singlet representation of ALL symmetries
of the theory.
NOTE: ⟨Vacuum is by definition a state with lowest energy. When we have
topological charges, in any given sector with a given topological charge we may
define a perturbative vacuum state.⟩

∗ Equivalently, in the language of path integral, measure should be a singlet of
all symmetries.

• If vacuum is not a singlet of a given symmetry group, then we can have spontaneous
symmetry breaking (SSB). That is, the SSB occurs if action (or Hamiltonian) are
invariant under a symmetry transformation while the vacuum state is not.

• In a different wording, SSB for symmetry group G happens if we have an operator
which is non-singlet representation of G gets a non-zero VEV.

• Discrete or continuous, global or local symmetries may be subject to SSB.

• Nambu-Goldstone theorem: Spontaneous breaking of continuous symmetries leads
to massless Goldstone-modes. If a symmetry group G is spontaneously broken to a
subgroup of it H, then number of Goldstone modes is dimG−dim H.

• If in SSB a local gauge symmetry is broken (the Higgs mechanism) the Nambu-
Goldstone modes of the broken symmetry appear as longitudinal modes of the corre-
sponding gauge field which have now become massive, as it is usually said the Goldstone
modes are eaten up by the gauge fields to become massive.

7



Anomalies.

• In classical theory action +variation principle contain all the information about the
theory.

• In quantum theory besides the action we also need to know about the Hilbert/Fock
space or the measure of the path integral.

• One may then ask if a symmetry of classical theory also remains a symmetry at quan-
tum level; if not the symmetry is called anomalous. An anomalous symmetry is hence
not a symmetry of the full quantum theory.

• Anomaly in a local gauge symmetry leads to an inconsistency of the theory (gives rise
to propagating negative norm states, ghosts), while anomaly in global symmetries are
bearable.

• Anomaly may also arise in statistical field theory, the source of anomaly may be quan-
tum or thermal fluctuations.

• To check if a symmetry is anomalous or not, one may check if the corresponding
Noether current is still conserved at quantum level. That is to check if (8) still holds.

• Alternatively, one may compute the Wilsonian Effective Action, i.e. the action func-
tional which includes all the information about quantum effects (up to a given order
in perturbation theory and energy scale which its computed). Invariance of effective
action implies that there is no anomaly.

Approximate symmetries.

• One of the notions which is usually very useful is the approximate symmetry. Consider
a generic action

S[Φ] = S0[Φ] + ϵS1[Φ] , (9)

where ϵ ≪ 1 while for generic field configurations (of our interest) S0 and S1 of the
same order. The transformation Φ → Φ̃ is called an approximate symmetry if it is a
symmetry of S0[Φ].

• Noether theorem then also holds “approximately” and we have the notion of an ap-
proximately conserved charge.

• Approximate symmetries are particularly useful in arguing why some n-point functions,
or the amplitude for some physical processes are suppressed.

• It may happen that a symmetry is a good (approximate) symmetry at some order in
perturbation or loops.
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• Local gauge symmetries cannot be approximate symmetries, as gauge invariance is re-
sponsible for the removal of redundancies of the configuration space; e.g. a propagat-
ing longitudinal mode of photon either exists or not, one cannot have “approximately”
propagating longitudinal photon.

• Examples of approximate symmetries in particle physics are, parity P or charge con-
jugation C in the low energy hadron physics; CP in the standard model; SU(3) flavor
symmetry in the low mass hadron physics.

• Global anomalous symmetries, which are broken due to quantum effects, usually appear
as approximate symmetries.

6 More on external symmetries

• External symmetries, as discussed, involve spacetime transformations of the form

xµ → x̃µ = x̃µ(x) , (10)

In the infinitesimal form they are therefore, generically a part of diffeomorphisms
(general coordinate transformations).

• Diffeomorphisms
xµ → x̃µ = xµ + ξµ(x) , (11)

are in general local (gauge) symmetries of generally invariant theories.

• General covariance is then the statement that physics and its observables should not
depend on the choice of coordinates.

• As discussed, fields of a theory are necessarily in representations of the corresponding
symmetry group. For the case of diffeomorphisms this implies that for any given field
theory, on a given spacetime manifold M with metric tensor gµν , all fields must be
tensor fields on M.

• Diffeomorphisms (11) form an infinite dimensional Lie algebra. The bracket structure
of the algebra of diffeomorphisms is produced by the Lie derivatives, e.g. for any two
vectors X,Y ∈ V where V is a vector field on M,

[X,Y ] ≡ LXY − LYX , (12)

One may easily show that the above Lie-bracket leads to a Lie algebra structure.

• A subgroup of the above diff’s (which is always finite dimensional) is the isometries
of M. The isometry algebra, is a set of diff’s which keep metric tensor invariant. That
is, isometry algebra is the algebra produced by Killing vector fields ξ satisfying

δξgµν = Lξgµν = 0 . (13)
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Exercise: ⟨Show that the set of Killing vectors form an algebra. Show also that the
isometry algebra, for FINITE transformations, form a group, the isometry group.⟩

Conformal group.

• One may extend the notion of isometry group for a given manifold by considering a
“generalized” notion of Killing equation (13).

• To this end we also need to extend the notion of diffeomorphisms to a bigger algebra
of diffeomorphisms+ Weyl transformations. Weyl transformations are those which
transform metric up to an over all x-dependent conformal factor:

gµν(x) → eλ(x)gµν(x) . (14)

NOTE: ⟨From the above definition it is obvious that Weyl transformations form an
algebra and also a group (for non-singular λ(x)).⟩
Exercise: ⟨Show that diffeomorphisms+ Weyl transformations (for infinitesimal Weyl
transformations) form an algebra. What is the bracket structure of this algebra? ⟩

• Conformal algebra is then a subalgebra of diffeomorphisms+ Weyl transformations
which keep the metric tensor invariant. Therefore, a generic conformal transformation
involves an (infinitesimal) Weyl scaling which is removable by a diffeomorphism:

xµ → x̃µ = xµ + ξµ(x) , such that ∃λ(x) δξgµν = λ(x)gµν . (15)

Exercise: ⟨Show that transformations satisfying the above form a closed algebra; the
bracket structure of this algebra is induced from the diff’s, i.e. a Lie bracket. ⟩

• From the above it is obvious that isometries are a part of the conformal algebra (are
those with λ(x) = 0).

• One may solve (15) for a given metric tensor gµν and show that λ(x) is completely
determined by the diffeomorphism ξµ(x). That is, conformal algebra is a part of
diffeomorphisms.

• For spaces with dimension more than two, one may show that the conformal algebra
is finite dimensional.

• For two dimensional spacetime the conformal algebra is infinite dimensional.

• One can show that conformal algebra is in fact the largest finite dimensional subalgebra
of diffeomoephisms.

• For spacetimes with dimension more than two, one can show that conformal transfor-
mations also form a Lie group. This Lie group leads to conformal algebra for infinites-
imal transformations.
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• In two dimensions, conformal algebra is not based on a conformal group, as only a
small subset of infinitesimal conformal transformations are invertible on the whole two
dimensional manifold M.

• The above definition for the conformal algebra/group leads to a global symmetry.

• One may gauge the conformal group to obtain the so-called Weyl gravity. The La-
grangian for Weyl gravity is proportional to (Weyl− curvature)2. This theory is most
probably sick due to having ghosts in its spectrum. It is an open question to see if
indeed the ghosts of Weyl gravity could be dealt with.

Supersymmetry.

• Supersymmetry provides another venue for extending the notion of isometry group
for a given manifold by considering a “generalized” notion of Killing equation (13) to
Killing spinor equations.

• To this end, one may extend diff’s by generators which are in the spinor representation
on the manifold M. In the mathematical language, M should hence be a spin manifold.

• One can show (Coleman-Mandula theorem or extensions thereof) that the generators
corresponding to these “spinorial transformations” (supercharges) cannot form an al-
gebra unless we consider anti-commutators of the supercharges.

• That is, supersymmetry algebra involves an extension of the standard notion of Lie al-
gebras to cases involving both commutators and anti-commutators and the appropriate
notion of Jacobi identity.

• Superalgebras have hence two class of generators “bosonic generators”Ti and “fermionic
generators” Qα; Ti are in tensorial representation of the diffeom. algebra while Qα

are in spinor represention of diffeom. algebra.

• We may hence associate a grading operator σ to the generators such that

σ(Qα) = +1 , σ(Ti) = 0 , (16)

This Z2 grading can be extended to the enveloping algebra generators (products of
generators):

∀generators Xi : σ(X1 · · ·Xn) ≡
n∑

i=1

σ(Xi)

∣∣∣∣
mod.2

. (17)

• Using the above grading we can define a graded Lie bracket of generators:

[X1,X2]graded ≡ X1X2 − (−)[σ/2]X2X1 (18)
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where σ is the grading value of X1X2; i.e. if X1 and X2 are both bosonic we have
usual commutators, if one of X1 or X2 is bosonic we again have commutator and if X1

and X2 are both fermionic we have anti-commutator.

Exercise: ⟨Show that the above grading also implies that bracket of two bosonic, or two
fermionic generators is a bosonic generator while bracket of a bosonic and a fermionic
generator is fermionic.⟩
Exercise: ⟨Show that if the product of generators is associative the above graded
bracket satisfies Jacobi identity.⟩

• It is possible to extend the notion spacetime to “superspace” where our spacetime has
a part with spinorial (Grassmann-valued) coordinates. In this case, one may define
“super-diffeomorphisms”.

• One may then view the above supersymmetry transformations as “super-isometries”
on this superspace.

• The above define super-isometries as global symmetries and one may try to gauge
them. Gauging them will lead to supergravity theories.

I should stop here since my time is over. The discussion about symmetries, is a long tale
and the above is just scratching the surface of it. Each of these topics we touched upon

here, anomalies, gauging, approximate symmetries and .... deserves a full course and some
parts are still research problems.

Thank you for your attention.
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