Cosmological
Structure Formation

Maps and a brief history of time
Spatial statistics
Baryon Acoustic Oscillations
The transfer function
Linear theory
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e Map whatis
known

l REcAaTEUS,

e Assume simple
model for
unknown

e 600 BC: Earth is
flat circle atop
cylinder
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500 BC: Earth is flat, but not on cylinder surrounded by
water! (Note similarity to human skull...)
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Alexander the Great’s travels mean Asia larger
than previously thought ...



150 BC: Crates
postulates three other
Identical landmasses,
symmetrically located,
separated by water



2007 AD: www.worldmapper.org




Christians




Muslims







Afterglow Light
Pattern
400,000 yrs.
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Fluctua

Dark Ages

1st Stars
about 400 million yrs.

Big Bang Expansion

Dark Energy
Accelerated Expansion

Development of
Galaxies, Planets, etc.
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13.7 billion years



Geometrical Test of curvature:

Standard Rod = Hubble volume at Last Scattering

a If universe is closed, b If universe is flat, ¢ If universe is open,
“hot spots” appear “hot spots” appear “hot spots” appear
larger than actual size actual size smaller than actual size
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Cold Dark Matter

* Cold: speeds are non-relativistic

— To illustrate, 1000 km/s x10Gyr = 10Mpc

— From z~1000 to present, nothing (except
photons!) travels more than ~ 10Mpc

e Dark: noidea (yet) when/where the stars
light-up

 Matter: gravity the dominant interaction

Late-time field retains memory of
initial conditions



STATISTICS OF RANDOM
FIELDS

e Section 3.2-3.4 (p.32-38) in PT review
(Bernardeau et al. 2002)

e Section 2.1 in Halo Model review (Cooray-
Sheth 2002)

But first ... some background



Continuous probability distributions

* P(<x) = ["dx p(x)
e m" moment: <x™> = [dx p(x) x™
e Fourier transform: F(t) = [dx p(x) exp(-itx)

— sometimes called Characteristic function

— d™F/dt™ ~ im<x™>, so F(t) is equivalent to
knowledge of all moments

e If x>0, Laplace transform more useful:
e L(t) = [dx p(x) exp(-tx)



Distribution of sum of n
independent random variates

* p,(s) = Jdx p(x) [dy p(y) Sp(x+y =s)
= [dx p(x) p(s-x)
e F,(t) = [ds exp(-its) [dx p(x) p(s-x)
= [ds [dx p(x) exp(-itx) p(s-x) exp[-it(s-X)]
= :1(t) Fl(t)
¢ Fylt) = [Fy(0))

= Convolve PDFs = Multiply CFs




Gaussian PDF

p(x) = exp[-(x-n)%/26%]/c\2n
F(t) = exp(itu) exp(- t> 6?)
F.(t) = exp(it nu) exp(- t> nc?)

Distribution of sum of n Gaussians is Gaussian
with mean nu and variance nc?

In general, PDFs are not ‘scale invariant’



Gaussian field

e p(x)=exp(-x" C1x/2)/ (2m)"/2 \/Det[C]
where X = (x4, ... X,) with x; =x(r,) - <x(ry)>
and Cij = <X; X;>

e HW: Show that F(t) = exp(im't - t'Ct/2)
where m = (<x(ry)>, ..., <x(r,)>)

e For Gaussian field Cis diagonal, but C! can be
complicated. Lesson: C may be much simpler
(e.g. approximately band diagonal) than C.



Fourier transform exp(ikx) useful

 Convolutions become products
— Smoothing on scale R: 8;(x) = 6(k) e** W(kR)
e Each derivative brings down a power of ik

— Can transform differential equations into algebraic
equations

e Integral brings 1/ik

— divergence at k=0 ~ constant of integration
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Quantify clustering by number of pairs compared to
random (unclustered) distribution, triples compared to
triangles (of same shape) in unclustered distribution, etc.



2pt spatial statistics

e dP=<n;>dV,<n,>dV, [1+(r,1,)]
=<n>2dV,dV, [1+&(r,—T,)] homogeneity
=<n>2dV, dV, [1+&(|r,—r,])] isotropy

Define: o(r) = [n(r) — <n>]/<n>
Then: (r) =< o(x) o(x+r)> & is the correlation function
Estimator: <(D;-R,)/R; (D,-R,)/R,>~ (DD-2DR+RR)/RR

And FTis: < 0o(k,) d(k,) >=(2m)3 o, (k,+k,) P(|k,])
P(k) is the power spectrum
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The Correlation Function for the Distribution of Galaxies

Hiroo Torsudi and Taro KiHARA
Depariment of Phyeics, Faculty of Seience, Universily of Tokyo
(Received May 15, 1969; revised June 26, 1269)

Abstract

The correlation function for the spatial distribution of galaxies in the
universe i8 determined to be (ro/r)'?, »r being the distance belween galaxies.
The characteristic length =y i8 4.7 Mpe. This determination is based on the
distribution of galaxies brighter than the apparent magnitude 19 counted by
SHANE and WIRTANEN (1967). The reason why the correlation function has the

form of inverse power of r is that the universe is in a state of *neutral”
stability.

Number of data pairs with separation r DD(r) — 1 + é:(r)
Number of random pairs with separation r RR(r)



ot Power-law: &(r) = (ry/r)”
L slope y=-1.8

1
(2% 45

AN - NGHN— <N
AN—{N—<N >
The filled circles indicate the empirical values obtained by the authors, and
the open circles and crosses b:.r[Hm.ul et al.; the unit solid angle is 1°x1"
for the ecircles and 10V 10" for the erosses, The curves are theoretical values

for s=1.7, 1.8, 1.9, and 2.0.

Fia. 2. Comparizon of the empirical and theoretical values of




blue FT red



Galaxy
clustering i
dependson . = e

1000 = -

Zehavi et al. 2005 ]
SDSS

galaxy type: - = .
luminosity, £
color, etc. o

(Final lectures use .
Halo Model to e (b

describe this.)

Mpc)




2pt spatial statistics

e dP=<n;>dV,<n,>dV,[1+¢(r,,r,)]
=<n>2dV,dV, [1+&(r;—r,)] homogeneity
=<n>2dV, dV, [1+&(|r —T,])] isotropy

Define: &(r) = [n(r) — <n>]/<n>

Then: &(r)=<0(x) d(x+r)> & isthe correlation function

Estimator: 1+ &(r) = data-pairs/random-pairs = DD(r)/RR(r)
=3 Ndata 1 (if r; =)/ 3 Nrandom 1 (if r; = r in same volume)
or <(D,-R,)/R, (D,-R,)/R,> ~ (DD-2DR+RR)/RR

And FT is: < O(k,) d(k,) > = (2m)3 o,(k,+k,) P(|k,|)
P(k) is the power spectrum



(Better) Estimator

120 .

dn=<omorn> of = o
8(
Since &(r) = [n(r) — <n>]/<n> 60 i
estimate using = a0l L
= <(DR)/R, (D, Ry)/R> O 20f T
~ (DD-2DR+RR)/RR of i
. oo @=1.01640.017 il

for pairs separated by r 2 =30.53/39 dof
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r(h~ Mpc)



&r) = (5(X)5(X+I‘)>
= lim f Zékexp (ik - X)Zék, exp [—ik’ - (x +1)] d

Voo V
—  lim — P(k Kk -
Jim LZ ) exp(—i r)
1 ' IStar;dar:i
— (271_)3 /P(k) exp(—ﬁk I')dk _:E;;f2?$e1
P(k) = f ¢(r) exp(ik - r)dr . 9
) i
_ sinkkr 2.
exp(—ikrcos f)dQd = 4m %1 fer
0 kr & g7

P(k) and &(r) are FT pairs




Cosmology from the same
physics imprinted in the galaxy
distribution at different redshifts:

Baryon Acoustic Oscillations



CMB from interaction between
photons and baryons when
Universe was 3,000 degrees

(about 300,000 years old)

* Do galaxies which formed much later carry
a memory of this epoch of last scattering?



Photons ‘drag’ baryons for ~400,000 years (time set by
Q,h?) at speed ~ ¢/[3(1 + 3p,/4p,)]" (set by Q h?) ...
300,000 light years ~ 100,000 pc ~ 100 kpc

Expansion of Universe since then stretches
this to (3000/2.725) x100 kpc ~ 100 Mpc



Mass Prafile of Perturbation
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Expect to see a feature in the Baryon distribution
on scales of 100 Mpc today

But this feature is like a standard rod:
We see it in the CMB itself at z~¥1000
Should see it in the galaxy distribution at other z



Cartoon of expected effect




in the Galaxy
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Spike in real space &(r)
means sin(krg,o)/krgag
oscillations in Fourier
space P(k)
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Spike not delta function as
photon-baryon not perfectly
coupled and surface of last
scattering not instantaneous:
e (k/ksik™* sin(krgao)/Kraac



BAO in CMB photons
on last scattering
surface ...

10 100 500 1000
Multipole moment 1



P(k) (h=2 Mpc?)

2m/K (h~' Mpc)
1000 100 10
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If all matter
baryonic,
power below
200 Mpc/h is
suppressed

104

Need
nonbaryonic
gravitating
dark matter
to explain
structure
formation

ACDM (Q,_=0.35)

0.005
0= <ﬂ 02
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0.01 0.1 1

k (h Mpc™!)

.. should/are seen in matter distribution at later times




...we need a tracer of the baryons

 Luminous Red Galaxies
— Luminous, so visible out to large distances

— Red, presumably because they are old, so
probably single burst population, so evolution
relatively simple

— Large luminosity suggests large mass, so
probably strongly clustered, so signal easier to
measure

— Linear bias on large scales, so length of rod not
affected by galaxy tracer!



The cosmic web at z~0.5, as traced by
luminous red galaxies

3
¥

SDSS  (M.white2010)  BOSS
A slice 500h1 Mpc across and 10 A1 Mpc thick
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SDSS
CMASS power spectrum BAO
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Can see baryons that are not in stars ...

Quasar

'* ‘

 Imtervening gas

H absorption
/ ‘Metal’ absorption lines
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4500 5000 5500 6000
Wavelength (Angstroms)
High redshift structures constrain neutrino mass

3500 4000



BAO in Ly-o forest at z~2.4
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;1 Slosar, Irsic et al. 2013

3 40 G0 &0 100 190 140 160 180 30 o 40 60 #0100 190 140 160 180 300
r{Mpc/h) riMpe/R

e Signal from cross-correlating different lines of
sight



e The baryon distribution today ‘remembers’
the time of decoupling/last scattering; can
use this to build a ‘standard rod’

 Next decade will bring observations of this
standard rod out to redshifts z~ 2
Constraints on model parameters from 10%
to 1%
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Variance of o, (0 smoothed on R):
c(R) = [dk/k A(k) W%(kR)

Correlations in smoothed field

A(K) = k3P(k)/2m2
De,r,(K) = A(K) W(KR,) W(KR,)

Earr, (1) = J dK/K Bg o (K) jo(kr)



E.g. Power-law P(k)
o &(r) = [dk/k [k3 Ak"/2r2] j,(kr) oc r3if n>-3
» 52(R) = (A/2r2) [dk/k kn*3 exp(-k?R2)
= (A/2n?) [[(n+3)/2]/2 R3™
o Ex(r) = (A/2m?) [dk k2*" exp(-k2R?) jo(kr)
= (A/21?) (1/2r) erf(r/2R) if n=-2
— &olr) whenr » R
(smoothing irrelevant on large scales? BAO ...)




Structure formation:
The shape of P(k)



Three possible metrics for
homogeneous and isotropic 3-space

ds® = dr?® + S,(r)%dQ?
Changing fromrtox=3S_(r)

makes this:
dQ)* = d#* + sin® 0dp*
_ dz? _—
Rsin(r/R) (k=+1) ds® = ——s + z7d)”
S.(r)=1{ r (1 = 0) l — kx=/R

Rsinh(r/R) (k= —1)



Robertson-Walker metric

(If homogeneity and isotropy did not exist, it would be necessary to invent them!)

ds® = —c2dt* — dr? + r2d0° Minkowski metric

Much of Observational Cosmology dedicated to
determining «, a(t), R,



Connection to GR
G,=R,—8,R/2=8rGT,

Homogeneity/isotropy:
T, = diagonal = (p,-p,-p,-p)
Conservation of stress-energy:
Vi(T,,)=0
Using FRW metric:
d(pa®) = -p d(a°)
Since a3ocV this is like 1%t Law of thermodynamics.
So, if p(p) then can solve for p(t):
Evolution depends on ‘equation of state’



Equation of state

Consider: p(t) = w p(t) w independent of t
Then d(pV)/dt =V (dp/dt) + p (dV/dt) = -p (dV/dt)
So V (dp/dt) =-(p+p) (dV/dt)

(dInp/dt) = - (1+p/p) (dInV/dt)
So p(t) oc  g3(1+w)

Special cases:

Non-relativistic matter: p=0 so w=0 so p«a3
Radiation: w=1/3 so poxca“
Vacuum energy: w =-1 so p constant



. Matter
Special cases:
Non-relativistic matter: 0 —>

w=0 so poxa’

Radiation: Radiation

w=1/3 so poxca“ __,

Vacuum energy:
w =-1 so p constant



If Universe
contains all
three, then
different ones
dominate at
different t

Conventional
to define:

Radiation Matter
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Friedmann
eguations

From 00 element of
Einstein equations with
RW metric (relates
expansion rate to density
and curvature);

And from time derivative
of it (relates acceleration
to density and pressure).




Friedmann equation
(dIna/dt) % + (kc?/Ry%a(t)?) = (8nG/3) p
HZ = (8nG/3) p - (kc?/R,%a(t)?)

1 - Q(t)=-x [c/H(t)]%/Ry%a(t)?
Knowing €2 = knowing sign of curvature
Flat Universe (k =0) has Q(t) = 1;
it has energy density 3H?/(87G).

Note that €2 is sum of all components
(matter + radiation + dark energy) .



Empty Universe: (2=0

1= - [¢/H(t)]¥/R,2a(t)?
(aH)? = - i (c/R,)?

k=0 requires a = constant
k=1 not allowed
Kk=-1 requires da/dt = constant; a = ct/R,



Flat Universe: Q=1

Suppose a oc t
Then H =g/t sop oca3+woc H2 oc t2
means g = 2/3(1+w)

Matter (W=O): 3 oc t2/3
Radiation (w=)): 3 oc t1/2
Dark Energy (w=-1)?? aoc e
(because p oc a31*W oc HZ oc constant)



(TT T[T T T[T I T[T T[T
N (W=‘1): 8 — I,-'Ih empty . —_
a oc et - | o
Empty ° :_ .'f: !,*’f n"larler__i
aoct Ry -
Matter (w=0): - radiatior.
a oc t2/3 I __
Radiati0n(w=1/3):D_+r1||||‘|||||||||||_

H,(t-t,)

From these, can work out d, (z|€2,A)

0o



2.0

A 1.5
i—:
Q
-
% 1.0
LL¢ -
2
v
A
0.5
0

Supernova
data

+15




Vlatter + curvature + A

H? Qg

1 — Qo — g

Flat
Q,,=0.7
T,=2.725K

H, = 70 km/s/Mpc "'

— i), .
B [ 11 [T 1 [T 1 11 |
E I

B Aocg
D _.___'.'.'.'.'.'.-.-_'_'.'.'.'.'.'.-.-_'_'.'.'.'.'.'.-.-_'_'.'.'.'.'.'.'.'_'_'.'.'.'.'.'.'.'_'_'I:/r_
E — v
8 o[ |
~ radiation matter & ]
o i i 7]
e e i
b T
6 ol i o el

-10 -8 -6 —4 —2 0



1oa(H°)

lod(s)



Different wavelengths enter horizon
at different times

log(A,,,.), log(H™")

Radiation Matter

ae{k} (I
log(a)

eq

Tuesday, July 17, 2012



Sub-horizon: Linear theory

Newtonian analysis:
d?R/dt? = - GM/R?(t) = - (4w/3) Gp(t)R(t) [1+0(t)]
M constant means R3 oc p1[1+8]? oc @3 [145]?

l.e., Roca[1+3]Y3 so dR/dt oc HR - d&/dt (R/3) [1+68]1
and when |0]| << 1 then

(d?R/dt?)/R = (d%a/dt?)/a - (d23/dt?)/3 — (2/3)H (do/dt)
= - (41/3) Gp(t) [1+0(t)]

Friedmann equation: (d%a/dt?)/a = - (4rt/3) Gp(t) so

(d20/dt?) + 2H (do/dt) =4m Gp(t) o(t) = (3/2) O, H? 5(t)




Linear theory (contd.)

 When radiation dominated (H = 1/2t):
(d?0/dt?) + 2H (dd/dt) = (d?0/dt?) + (dd/dt)/t =0
o(t) = C, + C, In(t) (weak growth)
e |n distant future (H = constant):
(d?06/dt?) + 2H,(dd/dt) = 0
O(t) = C, + C, exp(-2H,t)
o If flat matter dominated (H = 2/3t):
5(t) =D, t¥3+D_tloca(t) atlatetimes

e Because linear growth just multiplicative factor, it
cannot explain non-Gaussianity at late times



Super-horizon growth

Start with Friedmann equation when k=0:
H? = (8nG/3) p
Now consider a model with same H but
slightly higher p (so it is a closed universe):
H2 = 8nGp,/3 — k/a?
Then 6 = (p; — p)/p = (k/a%)/(8nGp/3)

For small 0 we have 0 o« a (matter dominated)
but 0 oc a? (radiation dominated)



Long and short modes enter horizon at
different times, so will grow differently

large *.
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radiation + baryons
during tight coupling

dark matter, from
radiation to matter
dominated universe

[N

baryon after decoupling
falling into DM potential
wells

super-horizon
evolution of an

adiabatic mode i A super-horizon |
: mode at :
\' | decoupling 1
If there were no -
DM wells to fall 0.7
into, baryon
fluctuations —2. 1
today would be . .
much smaller; — 6. —1. 0.
observed
clustering
strength > DM Horizon crossing decoupling

must exist!




Putting it together

Consider two modes, A, and A, < A, which entered at
a,/a, = A,/A, while radiation dominated

Their amplitudes will be (a,/a,)? = (k,/k,)? so expect
suppression of power oc k2 at k>k,, (i.e. for the short
wavelength modes which entered earlier)

After entering horizon, dark matter grows only
logarithmically until matter domination, after which it
grows oc a

Baryons oscillate (i.e. don’t grow) until decoupling,
after which they fall into the deeper wells defined by
the dark matter



Transfer function is approximately
Teom(k) o 1/[1+(k/Kq)?]
P(k) oc k Teppm?(K)
FT of Teppm = (ke 2/410) exp(-rk.,)/rk,
so might wish to think of Ty, as
describing ‘smoothing’ on scale R,

Similarly, sometimes useful to think of
P(k) as ‘smoothing’ of ‘white-noise’ field
to obtain field with correlations



Current power pectrum P{k) [(h-? d¥pc)9]

Transfer function:
Tepm(K) o 1/[1+(k/keq)2]
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P(k) (h-% Mpc?)
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If all matter
baryonic,
power below
200 Mpc/h is
suppressed

Need
nonbaryonic
gravitating
dark matter
to explain
structure
formation



Same, but

Cluster
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