

Electronic Cooling in Multilayer Epitaxial Graphene

Reza Asgari

asgari@ipm.ir

Workshop on Nanoscale heat transport 15-16th April 2015

My purpose I:

M. Mihney, J. Tolsma, C. David, D. Sun. R. Asgari, M. Polini, C. Berger, W. A. de Heer, A. H. MacDonald, T. Norris, Nature Commun. (2015)

My purpose II:

Electronic cooling life time

M. Mihney, J. Tolsma, C. David, D. Sun. R. Asgari, M. Polini, C. Berger, W. A. de Heer, A. H. MacDonald, T. Norris, Nature Commun. (2015)

Outlook

1. Introduction

brief overview on electronic cooling and ultrafast spectroscopy

- 2. Electronic cooling and different mechanisms electron-phonon interactions electron-impurity interactions electron-electron interactions Multilayer epitaxial graphene
- 3. Conclusion

W. S. Yun, et al, Phys. Rev. B 85, 033305 (2012)

Di Xiao, et al, Phys. Rev. Lett. 108,196802 (2012)

Thermalization of the hot electron

Outlook

1. Introduction

brief overview on electronic cooling and ultrafast spectroscopy

- 2. Electronic cooling and different mechanisms electron-phonon interactions electron-impurity interactions electron-electron interactions Multilayer epitaxial graphene
- 3. Conclusion

Electron-phonon interactions

Heat transfer rate

$$Q_{e\text{-}ac} = V_d \Sigma (T_e^{\delta} - T_{ac}^{\delta})$$

- $\delta = 5$ 3D metals, F. Wellstood, et al, PRB 49, 5942 (1994)
- $\delta = 6$ Discorded thin film, Sergeev and Mitin, PRB 61, 6041 (2000)
- $\delta = 3$ Clamped 3D but vibrations are 1D, Hekkila, PRB 77, 033401 (2008)

$$\delta = 2 + d$$

$$Q_{e\text{-}ac} = V_d \Sigma (T_e^{\delta} - T_{ac}^{\delta})$$

$\delta = 4$ 2D graphene, Kubakadda, PRB 79, 075417 (2009)

$$Q_{e\text{-}ac} = V_d g(\mu, T_e) (T_e - T_{ac})$$

2D graphene, Bistritzer and MacDonald PRL 102, 206410 (2009)

Classical Boltzmann equation

$$\partial_t f^{\alpha}_{k} = S_{e\text{-}ph}(f^{\alpha}_{k})$$

Scattering integral

$$S_{e-ph}(f_k^{\alpha}) = -\sum_{p\beta} \left[f_k^{\alpha} (1 - f_p^{\beta}) W_{k\alpha \to p\beta} - f_p^{\beta} (1 - f_k^{\alpha}) W_{p\beta \to k\alpha} \right],$$

Golden-rule scattering rate

$$\begin{split} W_{k\alpha \to p\beta} &= \frac{2\pi}{\hbar} \sum_{q\gamma} w_{kp,q}^{\alpha\beta,\gamma} [(n_q^{\gamma} + 1) \delta_{k,p+q} \delta(\epsilon_{kp}^{\alpha\beta} - \omega_q^{\gamma}) \\ &+ n_q^{\gamma} \delta_{k,p-q} \delta(\epsilon_{kp}^{\alpha\beta} + \omega_q^{\gamma})]. \end{split}$$

$_{\alpha}\beta$	_α	β
$\epsilon_{kp}' =$	ϵ_k –	ϵ_p

$$Q = -\partial_t \sum_{k\alpha} \epsilon_k^{\alpha} f_k^{\alpha} = -\sum_{k\alpha} \epsilon_k^{\alpha} S_{e-ph}(f_k^{\alpha}).$$

Electron-phonon Hamiltonian:

$$\hat{H}_{e\text{-}ac} = \sum_{\boldsymbol{k}\alpha, \boldsymbol{p}\beta} \sum_{\boldsymbol{q}} M^{\beta\alpha}_{\boldsymbol{p}\boldsymbol{k}, \boldsymbol{q}} c^{\dagger}_{\boldsymbol{p}\beta} c_{\boldsymbol{k}\alpha} (b_{\boldsymbol{q}} + b^{\dagger}_{-\boldsymbol{q}})$$

D is the coupling constant

$$M_{pk,q}^{\beta\alpha} = -\sqrt{\hbar^2/(2M\omega_q)} Dq\langle p\beta | e^{iq \cdot r} | k\alpha \rangle \qquad \omega_q = \hbar cq$$

Effective interaction term

$$w_{kp,q}^{\alpha\beta} = \frac{\hbar^2}{2M\omega_q} D^2 q^2 F_{\alpha\beta}(\theta)$$

$$F_{\alpha\beta}(\theta) = (1 + s_{\alpha}s_{\beta}\cos n\theta)/2$$

$$\theta = \phi_p - \phi_k$$

$$Q_{\text{ind}} = -\frac{g_e A \hbar D^2}{2(2\pi)^2 \rho} \sum_{\alpha\beta} \int_0^\infty dkk \int_{q_{\min}^{\alpha\beta}}^{q_{\max}^{\alpha\beta}} dqq^2$$
$$\times \frac{1 + s_\alpha s_\beta y(k,q)}{\sqrt{1 - [x(k,q)]^2}} |\hbar v_k^\alpha [p(k,q)/k]^{n-2}|^{-1}$$
$$\times n_{ac} (\hbar cq) [f(\epsilon_k^\alpha - \hbar cq) - f(\epsilon_k^\alpha)]$$

 $p(k,q) = [s_{\alpha}s_{\beta} - s_{\beta}\hbar cq\gamma_1^{n-1}/(\hbar vk)^n]^{1/n}k$

$$x(k,q) = -\{[p(k,q)]^2 - k^2 - q^2\}/(2kq)$$

 $y(k,q) = n[z(k,q)]^n - n + 1$ z(k,q) = [k - qx(k,q)]/p(k,q)

Limit of the low temperature

 $k_B T_e, k_B T_{ac} \ll 2(c/v) |\mu| = k_B T_{BG,MLG}$

$$Q_{e-ac} = V_d \Sigma (T_e^{\delta} - T_{ac}^{\delta})$$
$$\sum_{k=1}^{\infty} \frac{\pi^2 D^2 |\mu| k_B^4}{\pi^2 \sigma^2 \sigma^2}$$

$$^{-}15\rho\hbar^{5}v^{3}c^{3}$$

δ=4

For high temperature regiem

$$2(c/v)\max(|\mu|,k_BT_e) \ll k_BT_e, k_BT_{ac}$$

$$Q_{e\text{-}ac} = V_d g(\mu, T_e) (T_e - T_{ac})$$

$$g(\mu, T_e) = \frac{D^2 k_B}{30\pi o \hbar^5 v^6} [15\mu^4 + 30\pi^2 \mu^2 (k_B T_e)^2 + 7\pi^4 (k_B T_e)^4]$$

$$g(\mu, T_e) \propto T_e^4$$

Electron-phonon interactions: Exp results

Betz et al, Phys. Rev Lett **109**, 056805 (2012)

Outlook

1. Introduction

brief overview on electronic cooling and ultrafast spectroscopy

2. Electronic cooling and different mechanisms electron-phonon interactions electron-impurity interactions electron-electron interactions Multilayer epitaxial graphene

3. Conclusion

Electron-impurity interactions: supercollision

Song, Reizer and Levitov Phys. Rev Lett, 109, 106602 (2012)

Electron-impurity interactions: Evidences!

Graham et al Nature Physics (2012)

Betz et al Nature Physics (2012)

Brida, et al, Nature Commuin, DOI 10.1038 (2013) Butscher, et al App. Phys. Lett **91**, 203103 (2007) Sun et al, Phys. Rev. B **85**, 125413 (2012)

Semiclassical Boltzmann equation

Brida, et al, Nature Commuin, DOI 10.1038 (2013) Butscher, et al App. Phys. Lett **91**, 203103 (2007) Sun et al, Phys. rEv. B **85**, 125413 (2012) $E = \varepsilon_1 + \varepsilon_2$ $Q = k_1 + k_2$ 23

$$\frac{df_{\mu}(\varepsilon_{\mathbf{k},\lambda})}{dt} = \frac{df_{\mu}(\varepsilon_{\mathbf{k},\lambda})}{dt}\Big|_{e-e} + \frac{df_{\mu}(\varepsilon_{\mathbf{k},\lambda})}{dt}\Big|_{e-ph}$$

$$|V_{1234}^{(\mu)}|^{2} = |\mathcal{U}_{1234}^{(\mu)} - \mathcal{U}_{1243}^{(\mu)}|^{2} / 2 + |\mathcal{U}_{1234}^{(\mu)}|^{2}$$

$$\mathcal{U}_{1234}^{(\mu)} = W(|\mathbf{k}_{1} - \mathbf{k}_{3}|, \omega; t)F_{s_{1},s_{3}}^{(\mu)}(\theta_{\mathbf{k}_{3}} - \theta_{\mathbf{k}_{1}})F_{s_{2},s_{4}}^{(\mu)}(\theta_{\mathbf{k}_{4}} - \theta_{\mathbf{k}_{2}})$$

$$F_{s,s'}^{(\mu)}(\theta) = [1 + ss' \exp(i\mu\theta)] / 2$$

$$\mathcal{L}_{\mu}(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3})\Big|_{\mathrm{Auger}} = \frac{1}{8\pi^{2}\hbar^{5}v^{4}} \sqrt{\left|\frac{\varepsilon_{2}\varepsilon_{3}\varepsilon_{4}}{\varepsilon_{1}}\right|} |V_{1234}^{(\mu)}|^{2}$$
Brida, et al, Nature Commun, DOI 10.1038 (2013)
Butscher, et al App. Phys. Lett 91, 203103 (2007)
Sun et al, Phys. Rev. B 85, 125413 (2012)

<u>2</u>4

Electron-electron interactions: Delay time

$$\frac{\Delta T}{T}(\lambda,t) = \pi \alpha [f_{\mu}(\hbar\omega/2) - n_{\rm F}(\hbar\omega/2) - f_{\mu}(-\hbar\omega/2) + n_{\rm F}(-\hbar\omega/2)]$$

Brida, et al, Nature Commuin, DOI 10.1038 (2013)

Electron-electron interactions: interlayer

$$\dot{\mathbf{P}}_{2} = -i[\mathbf{P}_{2},H] = -i\nabla_{\mathbf{R}_{2}}H = \sum_{\mathbf{q}} i\mathbf{q}U_{d}(q)\rho_{\mathbf{q}}^{1}\rho_{-\mathbf{q}}^{2}e^{-i\mathbf{q}\cdot(\mathbf{R}_{1}-\mathbf{R}_{2})}$$
$$-en_{2}\mathbf{E}_{2} + \dot{\mathbf{P}}_{2,ep} + \dot{\mathbf{P}}_{2,ei}.$$

$$en_{2}\mathbf{E}_{2} = i\sum_{\mathbf{q}} \mathbf{q} \int_{-\infty}^{\infty} dt_{1}(-i) \,\theta(t-t_{1}) \sum_{\mathbf{k},\mathbf{p}} \sum_{\mathbf{Q}} \\ \times e^{-i\mathbf{q} \cdot [\mathbf{R}_{1}(t) - \mathbf{R}_{1}(t_{1})] + i\mathbf{Q} \cdot \mathbf{R}_{1}(t_{1})} e^{i(1-\gamma)(\varepsilon_{k+q} - \varepsilon_{k})(t-t_{1})} \\ \times \mathrm{Tr}\{\widetilde{\varrho}[U_{d}(q)\widetilde{c}_{\mathbf{k}+\mathbf{q}}^{\dagger}(t)\widetilde{c}_{\mathbf{k}}(t)\widetilde{d}_{\mathbf{p}-\mathbf{q}}^{\dagger}(t)\widetilde{d}_{\mathbf{p}}(t), \\ \times U_{d}(\mathbf{Q}-\mathbf{q})\widetilde{\rho}_{\mathbf{Q}-\mathbf{q}}^{1}(t_{1})\widetilde{\rho}_{\mathbf{q}-\mathbf{Q}}^{2}(t_{1})]\}.$$

Wang and Lima, Phys. Rev. B **63**, 205312 (2001) Senger and Tanatar SSC **121**, 61 (2002)

Electron-electron interactions: Interlayer

Cooling power rate transferred between layers

$$\begin{aligned} \frac{\mathcal{Q}^{el}}{L^2} = & \frac{\hbar}{4\pi^3} \int_{-\infty}^{\infty} \omega \, d\omega \int d\vec{q} \, |v_{LD,HD}^{sc}|^2 \left[n_B(T_{LD}) - n_B(T_{HD}) \right] \\ \times & \text{Im}\chi_{LD}(q,\omega,T_{LD}) \text{Im}\chi_{HD}(q,\omega,T_{HD}) \end{aligned}$$

Wang and Lima, Phys. Rev. B **63**, 205312 (2001) Flensberg and Hu, Phys. Rev. B **52**, 14795 (1995)

$$\chi^{(0)}(q,\omega,T) = g \lim_{\eta \to 0^+} \sum_{s,s'=\pm} \int \frac{\mathrm{d}^2 k}{(2\pi)^2} \frac{1 + ss' \cos(\theta_{k,k+q})}{2} \frac{n_{\mathrm{F}}(\varepsilon_{k,s}) - n_{\mathrm{F}}(\varepsilon_{k+q,s'})}{\omega + \varepsilon_{k,s} - \varepsilon_{k+q,s'} + \mathrm{i}\eta}.$$

$$\begin{split} \operatorname{Im} \chi^{(0)}(q,\omega,T) &= \frac{g}{4\pi} \sum_{\alpha=\pm} \left\{ \Theta(v_{\mathrm{F}}q-\omega) q^2 f(v_{\mathrm{F}}q,\omega) \left[G_+^{(\alpha)}(q,\omega,T) - G_-^{(\alpha)}(q,\omega,T) \right] \right. \\ &\left. + \Theta(\omega - v_{\mathrm{F}}q) q^2 f(\omega,v_{\mathrm{F}}q) \left[-\frac{\pi}{2} \delta_{\alpha,-} + H_+^{(\alpha)}(q,\omega,T) \right] \right\} \end{split}$$

$$\begin{aligned} \operatorname{Re} \, \chi^{(0)}(q, \omega, T) &= \frac{g}{4\pi} \sum_{\alpha = \pm} \left\{ \frac{-2k_{\mathrm{B}}T \ln[1 + e^{\alpha \mu_{0}/(k_{\mathrm{B}}T)}]}{v_{\mathrm{F}}^{2}} + \Theta(\omega - v_{\mathrm{F}}q) \\ &\times q^{2} f(\omega, v_{\mathrm{F}}q) \Big[G_{-}^{(\alpha)}(q, \omega, T) - G_{+}^{(\alpha)}(q, \omega, T) \Big] \\ &+ \Theta(v_{\mathrm{F}}q - \omega) q^{2} f(v_{\mathrm{F}}q, \omega) \left[-\frac{\pi}{2} \delta_{\alpha, -} + H_{-}^{(\alpha)}(q, \omega, T) \right] \right\}. \end{aligned}$$

Ramezanali, Vaziefeh, Asgari, Polini, MacDonald, J. Phys. A **42**, 214015 (2009) Faridi, Pashangpour, Asgari, Phys. Rev. B **85**, 045410 (2012)

Electron specific heat and spin susceptibility at low temperature

$$C_V = -T \partial^2 [n \delta f(T)] / \partial T^2$$

$$\delta f_{\rm int}(T \to 0) = \varepsilon_{\rm F} \frac{\pi^2}{3} \left(\frac{T}{T_{\rm F}}\right)^2 \frac{\alpha_{\rm gr}[1 - \alpha_{\rm gr}\xi(\alpha_{\rm gr})]}{4g} \ln\Lambda + \text{R.T.}$$

$$\frac{1}{\chi_s(T)} = \frac{1}{n\mu_B^2} \frac{\partial^2 [f_0(T,\zeta) + f_{\text{int}}(T,\zeta)]}{\partial \zeta^2} \bigg|_{\zeta=0}$$

$$\delta\chi_s^{-1}(T) = \chi_s^{-1}(T) - \chi_s^{-1}(T=0)$$
$$= \frac{\varepsilon_F \pi^2}{8n\mu_B^2} \left(\frac{T}{T_F}\right)^2 \left[\frac{g_v}{3} - \eta \ln\Lambda\right]$$

Ramezanali, Vaziefeh, Asgari, Polini, MacDonald, J. Phys. A **42**, 214015 (2009) Faridi, Pashangpour, Asgari, Phys. Rev. B **85**, 045410 (2012)

Outlook

I. Introduction

- brief overview on electronic cooling and ultrafast spectroscopy
- 2. Electronic cooling and different mechanisms electron-phonon interactions electron-impurity interactions electron-electron interactions Multilayer epitaxial graphene
- 3. Conclusion

Epitaxial graphene on C-terminated SiC

Hass, et al Phys. Rev. Lett **100**, 125504 (2008)

Epitaxial MLG on C-face SiC

Sun, et al Phys. Rev. Lett **104**, 136802 (2010)

Sprinkle, et al Phys. Rev. Lett **103**, 226803 (2009)³²

Electron-electron interactions: Two-layers

$$\frac{\mathcal{Q}^{el}}{L^2} = \frac{\hbar}{4\pi^3} \int_{-\infty}^{\infty} \omega \, d\omega \int d\vec{q} \, |v_{LD,HD}^{sc}|^2 \left[n_B(T_{LD}) - n_B(T_{HD}) \right] \\ \times \quad \text{Im}\chi_{LD}(q,\omega,T_{LD}) \text{Im}\chi_{HD}(q,\omega,T_{HD})$$

$$v_{LD,HD}^{sc} = v_q / \epsilon^{RPA}(q, \omega, T_{LD}, T_{HD})$$

$$\epsilon^{RPA}(q,\omega,T_{LD},T_{HD}) = (1 - v_q \chi_{LD}(q,\omega,T_{LD}))(1 - v_q \chi_{HD}(q,\omega,T_{HD}))$$
$$- v_q^2 e^{-2qd} \chi_{LD}(q,\omega,T_{LD}) \chi_{HD}(q,\omega,T_{HD})$$

M. Mihney, J. Tolsma, C. David, D. Sun. R. Asgari, M. Polini, C. Berger, W. A. de Heer, A. H. MacDonald, T. Norris, Nature Commun. (2015)

Electron-electron interactions: two layers

$$k_{F,LD}d \ll 1$$
 and $q_{HD}^{TF}/k_{F,LD} >> 1$

$$q_i^{TF} = q v_q \nu_i$$

$$\frac{\mathcal{Q}^{el}}{L^2} = \frac{E_{F,LD}^4 \nu_{LD}}{2\pi^2 v_F^2 \hbar^3 \nu_{HD}} \int_0^\infty \Omega d\Omega \int_0^\infty Q dQ \left(\frac{1}{e^{\Omega/t} - 1}\right) \left(\frac{\Omega}{Q}\right)^2$$

$$\frac{\mathcal{Q}^{el}}{L^2} = -\frac{E_{F,LD}^4 \pi^2 \nu_{LD}}{15 v_F^2 \hbar^3 \nu_{HD}} t^4 \ln t.$$

$$t = k_B T / E_{F,LD}$$

Electron-electron interactions: Interlayer

M. Mihney, J. Tolsma, C. David, D. Sun. R. Asgari, M. Polini, C. Berger, W. A. de Heer, A. H. MacDonald, T. Norris, Nature Commun. (2015)

Cooling lifetime in MEG

Power rate in MEG

 $\times \operatorname{Im}\chi_i(q,\omega,T_i)\operatorname{Im}\chi_j(q,\omega,T_j)$

$$\mathbf{v}_{ij}^{sc} = \left(\mathbf{v}^{-1} - \delta_{i,j} \,\chi_i(q,\omega,T_i)\right)_{ij}^{-1}$$

Cooling in multilayer: approximation

$$\begin{aligned} \mathcal{Q}_{ij}^{el} = & \frac{\hbar}{\pi} \int_{-\infty}^{\infty} \omega d\omega \sum_{\vec{q}} |v_{ij}^{sc}|^2 \\ & \times \frac{\hbar\omega}{4T_L^2} \frac{\delta T}{\sinh^2(\hbar\omega/2T_L)} \\ & \times \operatorname{Im}\chi_{i}(\mathbf{q},\omega,\mathbf{T}_{L}) \operatorname{Im}\chi_{j}(\mathbf{q},\omega,\mathbf{T}_{L}). \end{aligned}$$

$$\epsilon^{MEG}(q,\omega) = 1 - \frac{2\pi e^2}{\kappa q} \sum_{j \in HD} \chi_j(q,\omega,T_j).$$

$$\partial_t T_{LD} = \left(\sum_{j \in HD} \mathcal{Q}_{LD,j}^{el}(T_{HD} = T_L, T_{LD}, d_{j,LD}) \right) / \mathcal{C}_{LD}$$

$$C_{LD} = 18\zeta(3)T_{LD}^2/(\pi v_F^2)$$

T(t) in MEG

$$\partial_t T_{LD} = \left(\sum_{j \in HD} \mathcal{Q}_{LD,j}^{el}(T_{HD} = T_L, T_{LD}, d_{j,LD}) \right) / \mathcal{C}_{LD}$$

$$\partial_t T_c = \left(\sum_{i \in LD} \sum_{j \in HD} \mathcal{Q}_{ij}^{el}(T_L, T_{LD} \to T_c, d_{ij}) \right) / N\mathcal{C}_{LD}$$

$$C_{LD} = 18\zeta(3)T_{LD}^2/(\pi v_F^2)$$

T(t) in MEG

Cooling lifetime in MEG

M. Mihney, J. Tolsma, C. David, D. Sun. R. Asgari, M. Polini, C. Berger, W. A. de Heer, A. H. MacDonald, T. Norris, Nature Commun. (2015)

Conclusions

- Electron cooling mechanisms: e-ph, e-imp and e-e interactions
 δ =2+d ?
- Epitaxila graphene: C-face multilayer graphene on SiC substrate electronic cooling times ranging from a few to hundreds of picoseconds that strongly depend on the lattice temperature and the number of epitaxial graphene layers
- Developed a theory of hot-carrier equilibration based on interlayer energy transfer via screened Coulomb interactions
- Energy transfer between the LD layers is much stronger than between LD and HD layers
- The theoretically calculated thermal equilibration times are free of any fitting parameters, compare closely with the experimental relaxation times

Thanks for your attention

