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Fourier Heat Conduation Law (1808)

TL

J=—xVT
J: heat flux

V :temperature gradient
x . thermal conductivity

Jean Baptiste Joseph Fourier (1768-1830)



Fourier's Law: A Challenge to Theorists

(Review article)
F. Bonetto, J. L. Lebowitz, and L. Rey-Bellet,
Mathematical Physics (Imperial College Press, London 2000)

What is the underlying mechanism?

How to relate the macroscopic heat conduction behavior with microscopic
dynamics?

How do we know whether or not Fourier's law is valid in a given system
with specified Hamiltonian dynamics?



An old problem, and a long history

1808 - J.J. Fourier: study of the earth thermal gradient
19 century: Clausius, Maxwell, Boltzmann, kinetic theory

1914 - P . Debye: conjectured the role of nonlinearity for
guaranteeing finite transport coefficients

1936 - R. Peierls: reconsider Debye's conjecture

1953 - E. Fermi, J. Pasta and S.Ulam: (FPU) numerical
experiment: to verify Debye's conjecture

(the first numerical experiment)

Klages R, Radons G, Sokolov | M.
Anomalous Transport: Foundations and Applications (2008).



FPU model

1)@y @ @ @ @i

2
H = Z% V(X =X, ~1)

with V (X) = 1 —zx3+éx4
2 3 4

E. Fermi, J. Pasta, and S. Ulam, Report No. LA-1940, 1955 (unpublished).
M.A. Porter, N.J. Zabusky, B. Hu and D.K. Campbell, "Fermi, Pasta, Ulam and the
Birth of Experimental Mathematics"”, American Scientist, 97, 214-221 (2009),
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(after FPU experiment)

e 1968 - Z. Rieder, J. Lebowitz and E. Lieb:
harmonic chain 1

« 1984 - G. Casati et al.: ding—a—ling model K —~ LO
. 1997 - S. Lepri, R.L., A. Politi: FPU revisited z ~ | %4

. 1998- B. Hu, B.Li. H. Zhao, FK model  x ~ |°



For integrable system:

The heat conductivity Is a linear function of
the system size

K~ L

Fourier heat conduction Law Is not obeyed,
the heat conduction is anomalous.

S. Lepri, et al, Phys. Rep. 377, 1 (2003); A. Dhar, Adv. Phys. 57, 457 (2008)



For momentum non-conserving systems

0
Kk~ L

Fourier heat conduction Law is obeyed,
the heat conduction is normal

G. Casati, J. Ford, F. Vivaldi, and W.M. Visscher, PRL 52, 1861 (1984);
T. Prosen and M. Robnik, J. Phys. A 25, 3449 (1992).

B. Hu, B. Li, and H. Zhao, PRE 57, 2992 (1998);

B. Hu, B. Li, and H. Zhao, PRE 61,3828 (2000);

S. Lepri, et al, Phys. Rep. 377, 1 (2003);

A. Dhar, Adv. Phys. 57, 457 (2008)



For momentum conserving nonlinear system

3d K~ I_O (normal heat conduction)

PRL 104, 040601 (2010); PRL 105, 160601 (2010).

- 2d K~ In(l_) (anomalous heat conduction)

<

. 1d K ~ La (anomalous heat conduction)
a>0

(For 1D integrable case, K ~ L )

S. Lepri, et al, Phys. Rep. 377, 1 (2003); A. Dhar, Adv. Phys. 57, 457 (2008)



For 1D momentum conserving non-integrable system

K~ La o > O (anomalous heat conduction)

Universality of the exponent &

1
/[ Renormalization group analysis « = 3
PRL 89, 200601 (2002)
o 2
Kinetic theory a = c
< PRE 68, 056124 (2003), Commun. Pure Appl.Math. 61,1753 (2008)
1
o =— (for asymmetric potential)
Mode coupling theory 3
— E (for symmetric potential)
\ 2

PRE 73, 060201(R) (2006); J.Stat. Mech. (2007) P02007.
Phys. Rep. 377, 1 (2003); Adv. Phys. 57, 457 (2008), PRL 108, 180601 (2012).



Recent numerical results in contradiction with the theories

Normal heat conduction is observed in
1D momentum conserving lattice models
with asymmetric interparticle interactions.

Y. Zhong, Y. Zhang, J. Wang, and H. Zhao, Phys. Rev. E 85, 060102(R) (2012).

S. Chen, Y. Zhang, J. Wang, and H. Zhao, arXiv:1204.5933 (2012).
Y. Zhong, Y. Zhang, J. Wang, and H. Zhao,. Chin. Phys. B 22, 070505 (2013).

A. V. Savin and Y. A. Kosevich, Phys. Rev. E 89, 032102 (2014).



Our recent progress:

when a 1D momentum-conserving system

IS close to its integrable limit,

Normal heat conduction could be observed ,
for a wide range of system size,

for both gas and lattice models.

S. Chen, J. Wang, G. Casati, and G. Benenti, Phys. Rev. E 90, 032134 (2014)



Models

(1) 1D diatomic hard-point gas (Particle number density is 1, L=N)

---00 0 OO0 0O---

m M m M m M

(m=1)

If M=m, the system is integrable.

If M>m, the system is non-integrable.

S. Chen, J. Wang, G. Casati, and G. Benenti, Phys. Rev. E 90, 032134 (2014).



Models

(2) 1D diatomic Toda Lattice  (Particle number density is 1, L=N)

...... (m=1)

m M m M m M

2
H — z;_m +V (% =X —1)  with V (x) =exp(—x) + X

f M=m, the system Is integrable.

f M>m, the system is non-integrable.

S. Chen, J. Wang, G. Casati, and G. Benenti, Phys. Rev. E 90, 032134 (2014).



Methods

(1) Nonequilibrium simulations

»
»

Heat bath TH Heat flux J Heat bath TL

T+ Maxwellian heat baths for gas model

Langevin heat baths for lattice model

Temperature

T-
J=—xVT —)Kz—i
AT

X

S. Lepri, et al, Phys. Rep. 377, 1 (2003); A. Dhar, Adv. Phys. 57, 457 (2008)



Methods

(2) Equilibrium simulations
Green-Kubo formula:

T<J(t)J(O)>dt,

GK
77— N-—>oo

J(t)%%(t)

< 14 <1 anomalous heat conduction
<J{)J(O)>/N~t”7 {O

y>1 normal heat conduction

S. Lepri, et al, Phys. Rep. 377, 1 (2003); A. Dhar, Adv. Phys. 57, 457 (2008)



Results

Results of Nonequilibrium simulations for Harf-point gas model (m:]-)
10° =
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Phys. Rev. E 90, 032134 (2014)



Temperature profIIeS Fourier heat conduction Law

6.0 4
| / M=1.07 () 1
. (m=1)
~ 5.0 1 ---‘_'-""“**:?:::_"_:lt_‘
1 e Eq. (4) N T T
454 —— N=51201 T~
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x/N
i . 2/3
T(x)= [T“(l - i) + T“i} (4)
) - N RN

Phys. Rev. E 90, 032134 (2014)



Results of equilibrium simulations for Harf-point gas model

Current correlation functions M=1.07 (m:l)
Fast decay!
10’
] (a)
< m&
A, 3
Q:? _
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Phys. Rev. E 90, 032134 (2014)



Results for Harf-point gas model
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Phys. Rev. E 90, 032134 (2014)



(m=1)
M is, respectively,
1.07,1.10, 1.14, 1.22, 1.30, 1.40,
the golden mean (=1.618), and 3.
(From top to bottom)

B
10 3 .
0.2 0304

The corresponding tangent a
of the k-N curve is given
in (b) with the same symbols.

10 10° L0 10 10°

Phys. Rev. E 90, 032134 (2014)



Results of Nonequilibrium simulations for diatomic Toda lattice
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Results of equilibrium simulations for diatomic Toda lattice

Current correlation functions M=1.07

Fast decay!
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Phys. Rev. E 90, 032134 (2014)



Summary

Heat conduction problem is a very old problem.

The microscopic ingredients for Fourier heat conduction
law are still not clear.

Fourier heat conduction law Is obeyed in 1D
momentum-conserving systems, for a wide range of
system size, when the system is close to integrable
limit.

This Is a new connection between the macroscopic
thermal transport properties and the underlying nonlinear
dynamics. (More efforts are needed to reveal the deeper
underlying mechanisms.)



Thanks!



All the standard theories of transport involve
uncontrolled approximations and do not
provide a “proof” of Fourier’s law.



Mode-coupling theory---1

t

ko lim / (J(7)J(0))dr (36)
t—.*OC- D

where J(t) is the total heat current, and (---) brackets denote the equilibrium average.

A general expression for the heat current has been derived in [11]. For the determination

of the scaling behaviour it is sufficient to consider only the harmonic part. which can be

expressed as a sum over wavevectors:

J=>> bq)Qg.t)P(q.1) (37)

q

where (Q(q, 1), and P(q.t) = ()(q.t) are the canonical variables in Fourier space and
Ow(q)

b(q) =iw(q) a0

(38)

This amounts to disregarding higher-order terms which are believed not to modify the
leading behaviour. Under the same approximations as allow deriving the mode-coupling
equations, i.e. by neglecting correlations of order higher than two. one obtains

(J(t) Z\ Q)[4 {(Q(q.1)Q(q,0)) (P(q.1)P*(¢. 0)) + (Q(q.t) P*(¢,0))%}. (39)




Mode-coupling theory- ---2

This expression can be further simplified under the assumption P(q) ~ w(q)Q(q), which
is certainly valid in the small-¢g limit. Altogether. this leads to the expression proposed
in [17].

dw(q)\° ..
(T T(0)) xS ( dfjﬁ) G2(q.1). (40)

The main observable we are interested in is the normalized correlator G(g,t) =
(Q*(q,t)Q(q,0))/{|Q(q)]*), where Q(q,t) is the Fourier transform of the displacement
field w;(t). Assuming periodic boundary conditions for a chain made of N sites. the
wavennnber is given by g = 2nk/N, with —N/2 + 1 < k < N/2. Notice also that
G(g,t) = G(—q,t). We simplify the notation by setting to unity the particle mass, the
lattice spacing and the bare sound velocity. The equations for the correlator G(q,t) then
read [25, 15]

t
Cla.t) += [ Tt )C(g.5)ds +w*(@)Cla.1) = 0 (2)
0

where the memory kernel I'(gq,t) is proportional to (F(gq,t)F(q,0)) with F(g) being the
non-linear part of the fluctuating force between particles. Equations (2) must be solved
with the initial conditions G(g,0) = 1 and G(g, 0) = 0. Equations (2) are exact and they
are derived within the well-known Mori—Zwanzig projection approach [24].

The mode-coupling approach basically amounts to replacing the exact memory
function I' with an approximate one. where hicher-order correlators are written in terms
of G(qg.,t). This vields a closed system of non-linear integro-differential equations. For
potentials like (1) this has been worked out in detail in references [25,15]. Both the




“Heat, like gravity, penetrates every
substance of the universe, its ray occupy
all parts of space. “

The theory of of heat will hereafter form
one of the most important branches of
general physics ...

“But whatever may be the range of
mechanical theories, they do not apply
to the effects of heat. These make up a
special order of phenomena, which
cannot be explained by the principles of
motion and equilibria”

“Theorie analytique de la chaleur”

Jean Baptiste Joseph Fourier (1768-1830) ( “The Analytical Theory of Heat")



“It seems there is no problem in modern
physics for which there are on record as
many false starts, and as many theories
which overlook some essential feature, as
In the problem of the thermal conductivity
of (electrically) nonconducting crystals.”

R. E. Pelerls (1961),
Theoretical Physics in the Twentieth Century.



Los Alamos, Summers 1953-4 Enrico Fermi, John Pasta, and Stan Ulam
decided to use the world’s then most powerful computer, the

MANIAC-1
(Mathematical Analyzer Numerical |ntegrator And Computer)

to study the equipartition of energy expected from statistical mechanics in
the simplest classical model of a solid: a ID chain of equal mass particles
coupled by nonlinear® springs. Fermi expected "these were to be studied
preliminary to setting up ultimate models ...where “mixing” and
“turbulence” could be observed. The motivation then was to observe the
rates of the mixing and thermalization with the hope that the calculational
results would provide hints for a future theory.” [S. Ulam].

*They knew linear springs could not produce equipartition
Aside: Birth of computational physics (“experimental mathematics™)

(D.K. Campbell’s slide)



* FPU model

M- V(x)
@ @@z oo @ .‘
n=0 n=l n=2 n=N-1 n=N N=32 64
Fixed AT = Nonlinear Spring fixed '

V(x) = Y2 kx? + a/3 x3 + B/4 x4

“The results of the calculations (performed on the old MANIAC machine)
were interesting and quite surprising to Fermi. He expressed to me the
opinion that they really constituted a little discovery in providing
imitations that the prevalent beliefs in the universality of "mixing and
thermalization in non-finear systems may not always be justified.”

[S. Ulam]
(D.K. Campbell’s slide)
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(The algorithm used to code the first numerical experiment.)

T. Dauxois, Phys. Today, 61, 1, 55 (2008).



http://dx.doi.org/10.1063/1.2835154
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For integrable system:

The heat conductivity Is a linear function of
the system size

K~ L

Fourier heat conduction Law Is not obeyed,
the heat conduction is anomalous.

S. Lepri, et al, Phys. Rep. 377, 1 (2003); A. Dhar, Adv. Phys. 57, 457 (2008)



Recent numerical results in contradiction with the theories

2
H = Z;—m +V (% = X4 =1 with V (x) =%(X+ r)? +e™

Normal heat conduction is observed

In an 1D momentum conserving lattice
model with proper

asymmetric interparticle interaction

Y. Zhong et al, PRE 85, 060102(R) (2012)



Recent numerical results in contradiction with the theories

2
H = Z;—m PV (% =X, —1)

] X X
with V (x) = [(—2—)" — 2(—=—)" +1]
X+ XC X+ XC
1 Dd ; ./’.___..""'._F._._‘
,ﬁ"f Normal heat conduction is observed
\ mg_' Wl iIn 1d momentum conserving
,..P/, Lennard-Jones lattice
] »
1':]2‘5
L 4 | reey Al
10' 10° 10° 10" 10°

S. Chen et.al., arXiv:1204.5933V2 (2012)



Recent numerical results in contradiction with the theories

Normal heat conduction is observed in
1D momentum conserving lattice models
with asymmetric interparticle interactions.

Y. Zhong, Y. Zhang, J. Wang, and H. Zhao, Phys. Rev. E 85, 060102(R) (2012).

S. Chen, Y. Zhang, J. Wang, and H. Zhao, arXiv:1204.5933 (2012).
Y. Zhong, Y. Zhang, J. Wang, and H. Zhao,. Chin. Phys. B 22, 070505 (2013).

A. V. Savin and Y. A. Kosevich, Phys. Rev. E 89, 032102 (2014).



Our more recent progress:

The heat conductivity may keep significantly
unchanged over a certain range of the system size
In 1D momentum-conserving systems,

for a wide range of system size,

when the system is close to integrability.

The range for observing Fourier heat conduction behavior
may expand rapidly, as the system tends to integrability

S. Chen, J. Wang, G. Casati, and G. Benenti, Phys. Rev. E 90, 032134 (2014).



Methods

Equilibrium simulations
(with periodic boundary condition)

Green-Kubo formulas:

T<J(t)J(O)>dt,

GK
77— N-—>oo

J0=33,0

S. Chen et.al, PRE 89, 022111 (2014).

T~ , V., 1S sound vel ocity

2V

S

<J({t)J(O)>/N~t"" {O

< 14 <1 anomalous heat conduction

y>1 normal heat conduction



(m=1)
M is, respectively,
1.07,1.10, 1.14, 1.22, 1.30, 1.40,
the golden mean (=1.618), and 3.
(From top to bottom)

e e re—d - The turning point Nx, after which
1.0 To—= = a starts growing with N,
1< ® S as a function of M — 1.
. The best fitting (the dotted line)
%] Suggests Nx=54/(M - 1)*3.2

2 0304

The corresponding tangent a
of the k-N curve is given
in (b) with the same symbols.

10°

Phys. Rev. E 90, 032134 (2014)
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INTEGRABLE SYSTEMS

Maciej Dunajski

Department of Applied Mathematics and Theoretical Physics
University of Cambridge
Wilberforce Road, Cambridge CB3 0WA, UK



Graduate fexts
InMathematics

V. I. Arnold, (1989) Mathematical Methods of Classical Mechanics., second edition.
Graduate Texts in Mathematics, 60, Springer.



Solitons, Instantons
and Twistors

Maciej Dunajski (2009) Solitons, Instantons and Twistors, Oxford Graduate
Texts inMathematics 19, OUP, Oxford.



Integrable svstems are nonlinear differential equations which ‘in principle’ can be solved analvt-
icallv. This means that the solution can be reduced to a finite mumber of algebraic operations
and integrations. 5Such svstems are verv rare - most nonlinear differential equations admit
chaotic behaviour and no explicit solutions can be written down. Integrable svstems never-
theless lead to a very interesting mathematics ranging from differential geometrv and complex
analysis to quantum field theory and fluid dynamics. The main reference for the course 15 [6).
There are other books which cover particular topics treated in the course:

o Integrability of ODEs 4] (Hamiltonian formalism, Arnold-Liouville theorem, action—
angle variables). The integrability of ordinary differential equations is a fairly clear con-
cept (i.e. it can be defined) based on existence of sufficiently many well behaved first
mtegrals, or (as a physicist would put it) constant of motions.

¢ Integrability of PDEs [15], [3](Solitons, Inverse Scattering Transform). The universally
accepted definition of integrabilitv does not exist in this case. The phase space is infinite
dimensional but having ‘infinitely many’ first integrals mav not be enough - we could
have missed everv second one. Here one focuses on properties of solutions and solutions
generation techniques. We shall study solitons - solitarv non-linear waves which preserve
their shape (and other characteristics) in the evolution. These soliton solutions will be
constructed by means of an inverse problem: recovering a potential from the scattering
data.

¢ Lie symmetries [9], [16] (Group invariant solutions, vector fields, symmetry reduction,
Painlevé equations). The powerful symmetrv methods can be applied to ODEs and
PDEs alike. In case of ODEs a knowledge of sufficientlyv large svmmetrv group allows a
construction of the most general solution. For PDEs the knowledge of svmmetries i1s not
sufficient to construct the most general solution, but it can beused to find new solutions
from given ones and to reduce PDEs to more tractable ODEs. The PDEs integrable bv
inverse problems reduce to equations with Painlevé property.



Integrable systems are nonlinear differential equations which “in principle’ can be solved analyt-
icallv. This means that the solution can be reduced to a finite mumber of algebraic operations
and integrations. Such svstems are very rare - most nonlinear differential equations admit
chaotic behaviour and no explicit solutions can be written down. Integrable svstems never-
theless lead to a very interesting mathematics ranging from differential geometry and complex
analysis to quantum field theory and fluid dynamics. The main reference for the course is [6].
There are other hooks which cover particular topics treated in the course:

e Integrability of ODEs 4] (Hamiltonian formalism, Arnold-Liouville theorem, action—
angle variables). The integrability of ordinary differential equations is a fairly clear con-
cept (i.e. it can be defined) based on existence of sufficiently many well behaved first
integrals, or (as a physicist would put it) constant of motions.

e Integrability of PDEs [15], [5](Solitons, [nverse Scattering Transform). The universally
accepted definition of integrability does not exist in this case. The phase space is infinite
dimensional but having ‘infinitely many’ first integrals mayv not be enough - we could
have missed everv second one. Here one focuses on properties of solutions and solutions
generation techniques. We shall study solitons - solitary non-linear waves which preserve
their shape (and other characteristics) in the evolution. These soliton solutions will be
constructed by means of an inverse problem: recovering a potential from the scattering
data.

Maciej Dunajski (2009) Solitons, Instantons and Twistors, Oxford Graduate
Texts inMathematics 19, OUP, Oxford.



Integrability in classical
mechanics

Integrable systems are non-linear differential equations (DEs) which ‘in princi-
ple’ can be solved analytically. This means that the solution can be reduced to
a finite number of algebraic operations and integrations. Such systems are very
rare — most non-linear DEs admit chaotic behaviour and no explicit solutions
can be written down. Integrable systems nevertheless lead to very interesting
mathematics ranging from ditferential geometry and complex analysis to quan-
tum field theory and fluid dynamics. In this chapter we shall introduce the
integrability of ordinary difterential equations (ODEs). This is a fairly clear
concept based on existence of sufficiently many well-behaved first integrals, or,
as a physicist would put it, constants of the motion.



