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A Nanofluid heat transfer
measurements
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International Journal of Heat and Mass Transfer 61 (2013) 439-448

Contents lists available at SciVerse ScienceDirect

International Journal of Heat and Mass Transfer

¥

ELSEVIER journal homepage: www.elsevier.com/locate/ijhmt

Influence of particle size and shape on turbulent heat transfer characteristics
and pressure losses in water-based nanofluids

Arttu Merildinen®*, Ari Seppdld ?, Kari Saari?, Jani Seitsonen ®, Janne Ruokolainen, Sakari Puisto®,
Niko Rostedt €, Tapio Ala-Nissila ¢
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measurements
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International Journal of Heat and Mass Transfer 81 (2015) 246-251

A Nanofluid heat transfer

Contents lists available at ScienceDirect

ELSEVIER journal homepage: www.elsevier.com/locate/ijhmt

International Journal of Heat and Mass Transfer

Turbulent heat transfer characteristics in a circular tube and
thermal properties of n-decane-in-water nanoemulsion fluids

and micelles-in-water fluids

Sampo Saarinen?, Salla Puupponen?, Arttu Merildinen ", Aliakbar Joneidi®, Ari Seppald **, Kari Saari?,

Tapio Ala-Nissila ““
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A Miracles happen at nanoscale!
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Arrow of time
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Suppose the piece is a cube of aluminium, edge length x
fx=5cm=> P,/P,=10"
fx=5nm=> P,[P,=4.5

Tehran April 15, 2015
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Stochastic thermodynamics

Thermodynamic quantities (heat, energy, entropy) become
fluctuating stochastic quantities, which in many (but not in
all) cases obey fluctuation relations

Jarzynski (1997): (e~ FPWda) =1 i T f
Crooks FT (1998): AT
Control
PF(_Wd) _ 6—5Wd L0 <R parameter

Pr(Wa)
Seifert (2005): <6_AST> — 1 (generally true)

etc. Wd:W—AF

“dissipative work”

Tehran April 15, 2015



A Derivation of Fluctuation relations
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Stochastic forward and reverse paths X and X s érow
for a driven (open) system with states x;

System
states

xr; = x(7;)

Control parameter
(drive protocol)

'd Tehran April 15, 2015



Derivation of Fluctuation relations

Path probabilities with transition rates
ij s Lgj—1 (AJ)

alto University
of Science

Tehran April 15, 2015



A Derivation of Fluctuation relations
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The total entropy change can be written as (Seifert (2005))
PZI()PX‘J()
P[70|P[X | %]

(x)AS7[X] = In

Tehran April 15, 2015



A Derivation of Fluctuation relations

Aalto University
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The total entropy change can be written as (Seifert (2005))
PZI()PX‘J()

)ASTIX|=In ———————
( ) T[ ] P_,{if()-P_X‘ZE()_

This can be split as

P|xg) I P }’f To

ASIX] = ASs[X] + ASpX] = In 5 +In oo X

Tehran April 15, 2015



A Derivation of Fluctuation relations
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The total entropy change can be written as (Seifert (2005))
P:ZEO: P)f‘a:(] (**)<(_)—ASJ[X]> — 1
P _.fif()_ P X ‘sz()_ 4

Mathematical identity
Conservation of probability

P|xg) I P }’f To

(x)AS7[X] = In

This can be split as

AS7[X] = ASs[X] + ASg[X] = In

Tehran April 15, 2015



A Derivation of Fluctuation relations
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The total entropy change can be written as (Seifert (2005))

PZIOP{QJO (**)<€—AST[X]> —1
P f() P X ‘sz(): 4

Mathematical identity
Conservation of probability

P|xg) I P }’f To

PlZolv — P[X|&o;

N\

(x)AS7[X] = In

This can be split as

AS7[X] = ASs[X] + ASg[X] = In

Assuming “local” detailed balance and Boltzmanﬁ\\distribution

ij yLj—1 ()\]) _ e—,B(Emj —Emj_1 Y(Aj)
ij—l,ﬂb‘j ()‘J)

Tehran April 15, 2015



A Derivation of Fluctuation relations

Aalto University
School of Science

Using (local) detailed balance & canonical equilibrium:

ASr[X] = BAE[X] — BAF — BQ[X] = B(W[X] — AF)

Plxo| Pl X |zp)
The total entropy expression (x)AS7|X| = In j~0j - ‘~0j
becomes the Crooks FT Plxo|P|X|Zg
Pr(-Wa) _ —sw,
Pr(Wy)

The Seifert integral FT () (e~ 257Xy =1
becomes the Jarzynski eqn.

(e=PWa) = 1

Tehran April 15, 2015
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- WOrk in Quantum Systems
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Problem: There is no (unique) Hermitian
"work” operator IV (there is only the energy
operator H )

Solution(?): Several possible definitions of
guantum work have been proposed:

M. Esposito, U. Harbola, and S. Mukamel, Rev. Mod. Phys. 81, 1665
(2009)

P. Solinas, D.V. Averin, and J.P. Pekola, Phys. Rev. B 87, 060508 (2013)
J.M. Horowitz and J.M.R. Parrondo, New J. Phys. 15, 085028 (2013)

S. Suomela, P. Solinas, J.P. Pekola, J. Ankerhold and T. Ala-Nissila,
Phys. Rev. B 90, 094304 (2014)

Tehran April 15, 2015



A Work in unitary quantum system

Aalto University

School of Science Prup
Assume unitary time evolution with
U(t) = Toe 7 Je P dt" H(t')
t=1p
| )‘(t)> Hp :=H(t=tp)
) t A = 0
Ha = H(t =0)
HalpiV)y = BV i) = Uts)lp)

Tehran April 15, 2015



A Work in unitary quantum system

Aalto University

School of Science t _ tB "
A(t) Hp:=H(t=tp)
' >
) tA = 0
His:=H(t=0)
HalpMy = BSV [piY) - Ultp)|wi)

The probability to be in state|y$™)

_BEgbA)
pA) — & _ o~ BFA—EM)
n

FA = —]CBTlIlZA
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A Work in unitary guantum system

Aalto Universi

Uni
School of Science

t=1p
A(t) Hp:=H(t=tp)
| > -
ta=0
His:=H(t=0)
HalpiMy = SV 10 Y) - Utp)|lwi)

The probability to be in state |¢,,(;4)> The probability to be in state

—BELY Py with energy E(P)
p(A) _ & n _ e—ﬁ(FA—EéA)) A
n ZA Dim, = |<77b7(nB)|U(tB)|¢?(1A)>|2

FA = —]CBTanA

Tehran April 15, 2015



A Work in unitary quantum system
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 The work done on the system is given by
W = Efr(nB) o Eq(v,A)a
since the system is isolated

MSP r'oup

. The Jarzynski average

ZP(A) > Prmne W

_ _ (A;m 2 — (B) _ p(A)
= BFAZe PE N0 (tp) g [Pem 0 =)

= eIy W0 (L) [ 0) (WO (t5) [0 57 e

n.m

= PFa " o BES) _ BFA y o—BFp _ ,~BAF

m
Tehran April 15, 2015



A Work in unitary quantum system
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<6—5W> _ e—BAF

« Jarzynski equation is recovered in the two-point
measurement protocol (TMP) in the case where

the dynamics is unitary

« Similar to the classical case, if the system is not
Isolated during the drive, there are problems with
the Jarzynski equation...

Tehran April 15, 2015



A Work in open quantum
systems

ool of Science

« Consider an open quantum system driven by a
classical protocol \(t). The total Hamiltonian

H(t) = Hg(t) + Hp + He v —U_ g
e e DRIVE —>I R
system bath system-bath coupling QUANTUM
SYSTEM
[Hekking & Pekola PRL
. ~ (2013)]

Hs(t) = Hy+ V() = Hy + A1)V
where

[Quantum drive considered in J. Salmilehto et al., PRE 89, 052128 (2014)]

Tehran April 15, 2015



A Work in open quantum
systems

 To consider work on an O.Q.S., define the
Power Operator [Solinas et al. PRB (2013)]:
. OH . OH

PO =532 = %

 The average power is given by

(P(t)) = Tx[p(t)P(t)

and the work (W) := /tB (P(t))dt

ta

Tehran April 15, 2015



Work in open quantum i
systems

If the dynamics can be described by a master
equation with dissipation operator Z(p), then

A

(W) = (H(tg)) — (H(ta)) — / " dt Te[£ (o) H (1)

ta
vanishes for isolated /

systems (“heat” term)

Power operator approach gives work different
from TMP even for closed systems when at
coherent superposition of eigenstates

Tehran April 15, 2015



A Stochastic guantum
dynamics

ool of Science

* The classical stochastic dynamics can be

generalized to the quantum case by considering
iInstantaneous transitions induced by (weak)
coupling to the environment

* For open systems, the Lindblad master

equation contains coupling terms with the
environment

* For single realizations: Stochastic evolution
[Horowitz & Parrondo, New J. Phys. (2013)]

Tehran April 15, 2015



Stochastic quantum
dynamics

Tehran April 15, 2015



Stochastic quantum
dynamics

alto University
of Science

* The Lindblad master equation:

%ﬂ = — = [Hs(0), (1)) + ; Con(D)P(1)C, (1)
_ % 3 (C’];,L(t)CA’m(t),é(t) + [’)(t)CIn(t)Cm(t))
- )

Main assumptions: Weak coupling to the heat bath,
memory-free heat bath, and neglecting fast oscillations

N\ J

Tehran April 15, 2015



Stochastic quantum
dynamics

* The Lindblad master equation:

g Main assumptions: Weak coupling to the heat bath, A

memory-free heat bath, and neglecting fast oscillations
- Y

Tehran April 15, 2015



Stochastic quantum
dynamics

alto University
of Science

* The Lindblad master equation:

g Main assumptions: Weak coupling to the heat bath, A

memory-free heat bath, and neglecting fast oscillations
- Y

Tehran April 15, 2015



A Stochastic quantum

cunversy dynamics
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* Quantum jump (Monte Carlo wave function)
method: Stochastic unraveling of the Lindblad
equation

« Semi-Classical: Bath acts as a classical measurer

Heat Bath Quantum /Classical
« Interface

- /

[Malmer, Castin & Dalibard, JOSA B (1993); Badescu, Ying & TA-N, PRL (2001); Hekking & Pekola, PRL (2013)]

Tehran April 15, 2015



1. Derivation of Integral
Fluctuation Theorem for
stochastic quantum
dynamics

[S. Suomela, J. Salmilehto, I.G. Savenko, T.A-N & M. Mottonen,
Phys. Rev. E 91, 022126 (2015)]

Tehran April 15t, 2015



A Stochastic quantum

School of Science dynamics: IFT
R ém — VvV mezlm N
U(tla O) U(T7 tl)
EO °- O > ET Forward path

Between jumps the time evolution is given by

3 _ i [t (F iR A
U<tj—|—17tj) =T_ e hftjj (Hs(t) > 2am Cmcm)dt

Tehran April 15, 2015



Stochastic quantum

A

Sehool of Science dynamics: IFT
R ém —V mezlm A
U(tla O) U(Ta tl)
Eye O » [/ Forward path
t=20 t =1 t=rT1
C! = \/T/ Al
UT(tl,O) UT(T,tl)
EO -— @ — ET Reverse path ()
t =0 = tl t =1

Tehran April 15, 2015



Stochastic quantum

A

School of Science dy nam i CS: I FT

ém — \/mezlm A

Ult,0) U7, t)
Eye O » [/ Forward path
t=20 t =1 t=rT1
C! = \/T/ Al
UT(tl,O) UT(T,tl)
EO e ® —e ET Reverse path ()
t p— t — tl t —

v RS 5
S\orA 30
CHLALS R

MSP Group
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Stochastic quantum

I dynamics: IFT
A ém —V mezlm A
U(tla O) U(Ta tl)
Eye O » [/ Forward path
t=20 t =1 t=rT1
! = \/T Al
UT(tl,O) " mUT(T,tl)
EO -— @ — ET Reverse path ()

MSP Group
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A Stochastic quantum
= dynamics: IFT

Pr/(E(r AEEEN AN
(Frte e i) -

J

Assuming Boltzmann distribution and that the noise source
follows detailed balance s.t. the ratio of the transition rate gives
dissipated heat, gives the Jarzynski eq.

<6—6W> _ G—BAF

Tehran April 15, 2015
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2. Derivation of
generating functional and
moments of work

[S. Suomela, P. Solinas, J.P. Pekola, J. Ankerhold & T.A-N,
Phys. Rev. B 90, 094304 (2014)]

Tehran April 15th, 2015



TMP

etc.

[Generalization of Esposito, Harbola, Mukamel, RMP (2009)]
Tehran April 15, 2015



Generating functional within
TMP: Moments of work

Wy = / Lt (P (),

(W?) = 2/(: dt; /Otl dtQRe{<15H(t1)15H(t2)>},

Tehran April 15, 2015



A Generating functional within
R TMP: Moments of work

Aalto
Scho

/ dt / dts / tzdthe H () PH (t5) PH (t3))
(t2)) ) i [H(0).0,H (1)) = 0

(W3 = (W + - / aH(CH (1))

/ dm/tl dtzRe Cil (t1)Cy' (t2)>},

Tehran April 15, 2015



Moments of work: Weakly
= driven & coupled 2-level OQS

Y v Y.
MSP Group

He =) (a'+a) ® (gib) + ;b
Vo=@ e :
= hwoa'a

A(t) = Ag sin(wgt)

’\/> '
DRIVE E ENVIRONMENT

QUANTUM L
SYSTEM

[F.W.J. Hekking and J.P. Pekola, PRL 111,
093602 (2013)]

Tehran April 15, 2015



Moments of work: Weakly
we driven & coupled 2-level OQS

o Quantum — W) J
Jjump 141 —— (W)
. (W?)
8 Numerical 13l (W3
Master Eqgn.
=~1.2

1.1

(W) / (hwo
\\" '

1

)\() — 0.05h¢d0, 0.97

woT = 207 0.8 - —R— -5
0 0.005 0.01 0.015 0.02
[ /wo
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3. Nearly adiabatically
driven OQS

[S. Suomela, J. Salmilehto, I.G. Savenko, T.A-N & M. Mé6ttonen, Phys.
Rev. E 91, 022126 (2015)]

Tehran April 15, 2015



Diabatic basis

A!!
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 Adiabatic renormalization of the
time-dependent basis gives the Lindblad
equation (Samu Suomela’s talk on Thu.) ()

B )
ps =—% [H S ,05]
= 1
- N N
+ Z (L(n z)pSL(n i) 9 {L(mi)L(n,i)a pS})
1=0 First super-
adiabaic basis
e

Linoy = \/Tolg™)(e™], Ly =

Lin2y = /T2y (1) (™ ] = 19™) (g

-

Tehran April 15, 2015




Adiabatic renormalization

MSP Gr'oup

The adiabatic renormalization gives the following master
equation:

2
A ~ 1
N ]L Jf R

. . )
L(n,O) — F(n,())\g( )>< (n )| L(n,l) _ F(n,1)|e(”)><g(”)|,

Lin,2) = \/Tin2y([e™) (™[ = [¢")(g™)))

J

Tehran April 15, 2015



A Adiabatic renormalization
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. Recall the IFT: <Pr’<E<T> — E,) ﬂ I, (t;)
P?“(E(to) p— Eo)

Tehran April 15, 2015
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59
A Adiabatic renormalization .
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. RecalltheIFT< P (B(r) = ﬁ I, (t >

Pr(E(

Tehran April 15, 2015
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A _ Single Electron Box (SEB)

Aalto University
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Electrons are driven one by one from lead to island
and stochastically undergo transitions

Tehran April 15, 2015



A Single Electron Box (SEB)
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Dissipation In single-electron

¢, c c transitions

|—m£| Heat generated in a tunneling event /.
SEB
Qi = E2Ec(ng; —1/2)

N Total heat generated in a process:
LL]U
: Q=) Q
& i

0 : 1 Work in a process:

n, 5
ng =CyV,/e “ — (2 + A(]
(s 2 \
H = E(-'(” — ”_(1) Change in internal
(charging) energy

[D. Averin and J. Pekola, EPL 96, 67004 (2011)]
Tehran April 15, 2015



A SEB in Equilibrium: Experimental
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Results

[O.-P. Saira et al., PRL 109, 180601 (2012); J.V. Koski et al., Nat. Phys. 9, 644 (2013)]

]

Distributions satisfy the Jarzynski ean:
(e PW=AF) — 1034003 ==

b SET

=T petector Wm
-
| ﬂ | current

CL C; Cr| catedrive /\/\/\/\/\

TIME (s) |

0.01
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A SEB Overheating by Transitions

N
Aalto University \ .;‘.,/

Sehootofseience [J.P. Pekola, A. Kutvonen, T.A-N., JSTAT P02033 (2013)] mup
Heat bath Transition rates
Gr
r£(t) = =L E)[1— E+ AU(t)|dE
Strong Weak 5= [ fulBu DL 118 (1))
couplin coupling Electron-electron relaxation is the
n fastest timescale in the problem
| Big Small Depends on the energy
piece (I)f piece of of the tunneling electron
meta metal \
fu(E,8)  f1(E,B) o fuEB) [i(E, B+ AB)

Tunneling event

Initial equilibrium  perturbs the system  Non-equilibrium

w — eﬁAU(t)[l — %(Q>AB + ]

Tehran April 15, 2015



A Analytic and Numerical Results for
Overheated SEB

School of Science

ngn(t) B+AB(C.Q) Analytically assume single (double) jump
] ’ trajectory, expand tunneling rates in ARB:

/w (e7PW=20)) = —@WQV +O[(AB)’]

1.00 } 30 () fg
20
<6—B(W—AF)> o
0.98 E SN 0
TN } —0.4 —-0.35
MOnte CarlO.' 0.96 108 \\\‘\ 4
* 10" repetitions 12
« 8000 time steps g4 1 (8) -
* 95 % single o0
jumps 0.92 0 05
0.00 0.02 0.04 0.06 0.08 0.10 0.12
%
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stounvesy Summary and Thanks

M

For driven, open quantum systems it’s possible to derive
fluctuation relations for work in the TMP (Lindblad)
setting

The power operator naturally appears in the (exact)
expressions for the moments of the work distribution
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Jukka Pekola (Aalto) Mikko Mottonen (Aalto)
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Joachim Ankerhold (Ulm) Frank Hekking (Lorraine)
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