Impurity quantum phase transitions: a quantum information perspective

Abolfazl Bayat

University College London

Quantum entanglement

> Full information about the whole system

> No information about the subsystem

Entanglement is a resource

Quantum computing:

• far beyond the best current supercomputers

Quantum communication:

Absolute secure communication (banks & military)

Quantum sensing:

- Magnetic sensors (military)
- Gravity sensors (oil and mining industries)

Quantum chemistry:

- efficient solar cells
- Personalized medicine

Delicate entanglement: no free lunch

Nature is generous

Strongly correlated many-body systems are highly entangled

Graphene

Molecular magnets

Solar cells

Can we use the freely available intrinsic entanglement of many-body systems for useful tasks?

Contents of the talk

- Impurity quantum phase transitions
- > Schmidt gap as an order parameter
- > Bipartite entanglement: negativity
- > Tri-partite entanglement

Non-equilibrium dynamics near criticality

Impurity systems

Our technology is based on impurities

Even a single impurity can change the properties of a material

Quantum Phase Transitions (T=0)

Landau-Ginzburg paradigm order parameter:

- **1- is local**
- 2- is associated with a spontaneous symmetry breaking
- **3- scales near criticality**

Bulk vs. Boundary QPT

Bulk phase transition: a global parameter induces the QPT

$$H_{I\sin g} = \sum_{i} \sigma_{z}^{i} \sigma_{z}^{i+1} + B \sum_{i} \sigma_{x}^{i}$$

Boundary phase transition: a local parameter induces the QPT

> There is no order parameter (either local or non-local)

> There is no spontaneous symmetry breaking

A new machinery needed to address impurity quantum phase transitions!!

Impurity models

Physical realization

Quantum phases in 2IKM

There is no symmetry breaking in the system but quantum states are fully restructured

Quantum phases in 2CKM

Symmetric couplings

Asymmetric couplings: single impurity Kondo model

Schmidt gap as an order parameter

Entanglement Spectrum

$$|GS
angle = \sum_{k} lpha_{ij} |\widetilde{L}_{i}
angle \otimes |\widetilde{R}_{j}
angle$$

 $|GS
angle = \sum_{k} \sqrt{\lambda_{k}} |L_{k}
angle \otimes |R_{k}
angle, \quad \lambda_{k} \ge 0$ Schmidt decomposition

$$ho_L = \sum_k \lambda_k |L_k\rangle \langle L_k|,
ho_R = \sum_k \lambda_k |R_k\rangle \langle R_k|$$

Entanglement spectrum: $\lambda_1 \ge \lambda_2 \ge \dots$

Von Neumann entropy: $s(\rho_L) = s(\rho_R) = -\sum \lambda_n \log(\lambda_n)$

Entanglement Spectrum

Thermodynamic Behaviour

In the thermodynamic limit Schmidt gap vanishes in the RKKY regime

Diverging Derivative

In the thermodynamic limit the first derivative of Schmidt gap diverges

Scaling at the Phase Transition

The critical RKKY coupling scales just as Kondo temperature does

Two channel Kondo model

 $\Delta_{s} = |K - K_{c}|^{\beta}$ $\xi = |K - K_{c}|^{-\nu}$ $\beta = 0.2$ $\nu = 2$

Schmidt gap suggests that 2CKM and 2IKM belong to the same universality class

Entanglement at criticality

 $\xi = |K - K_c|^{-\nu}$ Does entanglement peak at criticality?

Entanglement between what & what?

Transverse Ising

A. Osterloh, L. Amico, G. Falci, R. Fazio, Nature 416, 608 (2002)

Entanglement between one site and the rest does not peak at the critical point either

D. Larsson and H. Johannesson, Phys. Rev. A 73, 042320 (2006)

Total entanglement

$$\xi = |K - K_c|^{-\nu}$$

Conjecture: It is the total entanglement that is maximum at the critical point.

Quantification of multipartite entanglement is extremely difficult

Entanglement between microscopic constituents may not be practically accessible.

Coarse-grained entanglement

Negativity: a true bipartite entanglement measure

Separable States

Entangled states: $\rho_{AB} \neq \sum_{i} p_{i} \rho_{i}^{A} \otimes \rho_{i}^{B}$

Negativity

For any density matrix: $\rho \longrightarrow \rho^T$ is also a density matrix

Separable:

$$\rho = \sum_{i} p_{i} \rho_{i}^{A} \otimes \rho_{i}^{B} \longrightarrow \rho^{T_{A}} = \sum_{i} p_{i} \left(\rho_{i}^{A}\right)^{t} \otimes \rho_{i}^{B} \longrightarrow \rho^{T_{A}} \ge 0 \checkmark$$

Valid density matrices

Entangled:
$$ho^{T_A} ig| \lambda ig
angle = \lambda ig| \lambda ig
angle$$
 $(\lambda < 0)$

Negativity:
$$N(\rho) = 2\sum_{\lambda < 0} |\lambda|, \qquad \rho^{T_A} |\lambda\rangle = \lambda |\lambda\rangle$$

Bipartite entanglement

Impurities

Impurity-Block Entanglement

Negativity in 2CKM

Summary 1

- Bipartite entanglement (impurity-bulk & bulk-bulk) can detect iQPT.
- Bulk-bulk entanglement peaks at criticality

Tripartite entanglement

Tripartite entanglement

Three qubits

Class 1: GHZ-states $|GHZ\rangle_{ABC} = \frac{|000\rangle_{ABC} + |111\rangle_{ABC}}{\sqrt{2}} \Rightarrow \rho_{AB} = \frac{1}{2}|00\rangle\langle00| + \frac{1}{2}|11\rangle\langle11|$ Separable ➤ Class 2: w-states

$$|W\rangle_{ABC} = \frac{|001\rangle_{ABC} + |010\rangle_{ABC} + |100\rangle_{ABC}}{\sqrt{3}} \Rightarrow \rho_{AB} = \frac{1}{3}|00\rangle\langle00| + \frac{2}{3}|\psi+\rangle\langle\psi+|$$

Where: $|\psi+\rangle = \frac{|01\rangle + |10\rangle}{\sqrt{2}}$ Entangled

Such classification does not exist for higher dimensions

Quantification of tripartite entanglement

> Measure 1:
$$E_1 = [N_{A,BC} N_{B,AC} N_{C,AB}]^{1/3}$$

S. Campbell and M. Paternostro, Phys. Rev. A 82, 042324 (2010)

Measure 2:

$$\pi_A = N_{A,BC}^2 - N_{A,B}^2 - N_{A,C}^2$$

Conjecture: $\pi_A \ge 0$

Proved for three qubits: Y.-C. Ou and H. Fan, PRA A 75, 062308 (2007).

Numerically verified for 4-level systems: H. He and G. Vidal, PRA 91, 012339 (2015).

$$E_2 = \frac{\pi_A + \pi_B + \pi_C}{3}$$

2IKM

Tripartite entanglement diverges at criticality for 2IKM

Divergence at criticality

 $E_j(K_c) = N^{\lambda_j}$

Finite size scaling (2IKM)

$$E_{j} = N^{\beta_{j}/\nu} f(N^{1/\nu} | K - K_{c} |) \qquad \qquad \nu = 2$$

$$\beta_{1}^{2IKM} = 0.38$$

Critical exponents (2IKM)

$$v = 2$$

$$\beta_1^{2IKM} = 0.38, \quad \lambda_1^{2IKM} = 0.19$$

$$\beta_2^{2IKM} = 0.92, \quad \lambda_2^{2IKM} = 0.46$$

$$E_j = N^{\beta_j/\nu} f(N^{1/\nu} | K - K_c |) \xrightarrow{K=K_c} E_j = N^{\beta_j/\nu} f(0) \Rightarrow \lambda_j = \beta_j / \nu$$

$$\beta_1^{2CKM} = 0.38, \quad \lambda_1^{2CKM} = 0.19, \quad \nu = 2$$

$$\beta_2^{2CKM} = 1, \qquad \lambda_2^{2CKM} = 0.5, \qquad \nu = 2$$

2CKM

Tripartite entanglement diverges at criticality for 2CKM

Universality class

For E₁

2IKM	2CKM
v = 2	v = 2
λ_1 =0.19	$\lambda_1 = 0.19$
$\beta_1 = 0.38$	$\beta_1 = 0.38$

For E₂

2IKM	2CKM
v = 2	v = 2
λ_2 =0.46	λ_2 =0.5
$\beta_2 = 0.92$	$\beta_2 = 1$

The two measures give almost equal critical exponents for 2IKM and 2CKM

Quantum quench

Quantum quench

System is initialized in the RKKY phase (Impurities form a singlet)

$$K = K_1 > K_c : |\Psi(0)\rangle = |GS(K_1)\rangle$$
$$K = K_1 \to K = K_2 < K_c : |\Psi(t)\rangle = e^{-iH_2t} |\Psi(0)\rangle$$
$$|\Psi(t)\rangle = \sum_k \sqrt{\lambda_k(t)} |L_K(t)\rangle \otimes |R_K(t)\rangle$$

Non-optimality

Entanglement spectrum $\Lambda_n(f) \equiv \mathcal{F}[\lambda_n(t)] = \frac{1}{\sqrt{2\pi}} \int \lambda_n(t) e^{i2\pi f t} dt, \ n = 1, 2$ 10⁰ 40 (a) (i) f peak 30 $\Lambda_1(I)$ 10⁻¹ 20 peak 10 10⁻² 0.25 0.5 0.75 0 3 2 9 10 4 5 8 1/J' $f_{peak} \sim \frac{1}{\xi(K_2, J')} \sim e^{-\alpha/J'} \sim T_K$

Optimal Chain

Fourier transform

$$\Lambda_n(f) \equiv \mathcal{F}[\lambda_n(t)] = \frac{1}{\sqrt{2\pi}} \int \lambda_n(t) e^{i2\pi ft} dt, \ n = 1, 2$$

Independence of K1 & K2

The frequency fu is independent of K1 (we should only start from RKKY phase)

By changing K2 one can retune the impurity coupling J' to that:

$$\xi(K_2, J'_{opt}) = N$$

For instance in a chain of N=20 (Kc=0.2):

- K2=0.19, J'opt=0.300 → fu=0.11
- K2=0.10, J'opt=0.315 → fu=0.11

N	8	12	16	20	24	28	32	36	40
$f_u N$	2.250	2.184	2.192	2.180	2.136	2.100	2.080	2.01	2.000

The scale invariant dynamics

Von Neumann entropy

Singlet fraction

Summary

- Impurity systems show exotic quantum phase transitions which do not fit in the Landau-Ginzburg paradigm.
- The emergence of a diverging length scale near criticality implies that entanglement has to be multi-partite.
- In order to capture the multipartite entanglement one has to take more complex quantities such as Schmidt gap and Negativity.
- Schmidt gap plays like an order parameter for iQPTs.
- Negativity, as both bipartite and tripartite entanglement, provides a coarse-grained view of multipartite entanglement via scaling.

Sougato Bose UCL (UK)

Henrik Johannesson Gothenburg (Sweden)

Pasquale Sodano IIP Natal (Brazil)

Ian Affleck UBC (Canada)

Erik Sorensen McMaster (Canada)

Karyn Le Hur Ecole Polytechnique (Paris)

- Scaling of tripartite entanglement at impurity quantum phase transitions
 A. Bayat
 arXiv:1609.04421
- Entanglement structure of the two-channel Kondo model
 B. Alkurtass, A. Bayat, I. Affleck, S. Bose, H. Johannesson, P. Sodano,
 E. S. Sørensen, K. Le Hur
 Phys. Rev. B 93, 081106 (2016)
- An order parameter for impurity systems at quantum criticality
 A. Bayat, S. Bose, P. Sodano, H. Johannesson
 Nature Communications 5, 3784 (2014)
- Entanglement probe of two-impurity Kondo physics in a spin chain A. Bayat, S. Bose, P. Sodano, H. Johannesson
 Phys. Rev. Lett. 109, 066403 (2012)