uantum Cryptography with

tructured photons

Présenté par : Ebrahim Karimi | Presented by: Ebrahim Karimi

sqogroup.ca

IPM December 2016

Photon: The Quanta of Light

2

Photon: The Quanta of Light

Photon: The Quanta of Light

3

 $\tilde{p} = \hbar \tilde{k}$

$$\tilde{p} \propto \left(\widetilde{E}^{\star} \times \widetilde{B} \right)$$

sqogroup.ca

3

4

$$\tilde{j} = \frac{1}{2\mu_0} \left(\tilde{r} \times (\tilde{E}^{\star} \times \tilde{B}) \right)$$

$$\tilde{j} = \frac{1}{2\mu_0} \left(\tilde{r} \times (\tilde{E}^{\star} \times \tilde{B}) \right)$$

$$\tilde{j} = \frac{-i}{2\mu_0\omega} \left(\tilde{r} \times (\widetilde{E}^{\star} \times (\widetilde{\nabla} \times \widetilde{E})) \right)$$

4

$$\tilde{j} = \frac{1}{2\mu_0} \left(\tilde{r} \times (\tilde{E}^* \times \tilde{B}) \right) \qquad \qquad \tilde{j} = \frac{-i}{2\mu_0 \omega} \left(\tilde{r} \times (\tilde{E}^* \times (\tilde{\nabla} \times \tilde{E})) \right)$$

Angular momentum decomposition

$$\widetilde{J} = \widetilde{S} + \widetilde{L}$$

$$S_i = \frac{1}{2\mu_0\omega} \int d^3r E_j^*(-i\epsilon_{i,j,k})E_k \qquad L_i = \frac{1}{2\mu_0\omega}$$

$$L_i = \frac{1}{2\mu_0\omega} \int d^3r \, E_j^\star (-i\,\tilde{r}\times\widetilde{\nabla})_i E_j$$

$$\tilde{j} = \frac{1}{2\mu_0} \left(\tilde{r} \times (\tilde{E}^* \times \tilde{B}) \right) \qquad \qquad \tilde{j} = \frac{-i}{2\mu_0 \omega} \left(\tilde{r} \times (\tilde{E}^* \times (\tilde{\nabla} \times \tilde{E})) \right)$$

Angular momentum decomposition

$$\widetilde{J} = \widetilde{S} + \widetilde{L}$$

Spin term

$$S_i = \frac{1}{2\mu_0\omega} \int d^3r E_j^{\star}(-i\epsilon_{i,j,k})E_k \qquad \qquad L_i = \frac{1}{2\mu_0\omega} \int d^3r E_j^{\star}(-i\tilde{r}\times\tilde{\nabla})_i E_j$$

$$\tilde{j} = \frac{1}{2\mu_0} \left(\tilde{r} \times (\tilde{E}^* \times \tilde{B}) \right) \qquad \qquad \tilde{j} = \frac{-i}{2\mu_0 \omega} \left(\tilde{r} \times (\tilde{E}^* \times (\tilde{\nabla} \times \tilde{E})) \right)$$

Angular momentum decomposition

$$\widetilde{J} = \widetilde{S} + \widetilde{L}$$

OAM term

 $S_i = \frac{1}{2\mu_0\omega} \int d^3r E_j^{\star}(-i\epsilon_{i,j,k}) E_k$

$$L_i = \frac{1}{2\mu_0\omega} \int d^3r \, E_j^\star (-i\,\tilde{r}\times\widetilde{\nabla})_i E_j$$

5

Longitudinal component of angular momentum

5

Longitudinal component of angular momentum

$$S_z = \hbar \int d\sigma_\perp (|E_L|^2 - |E_R|^2)$$

$$\begin{split} L_{i} &= \frac{1}{2\mu_{0}\omega} \int d^{3}r \, E_{j}^{\star} (-i\,\tilde{r}\times\widetilde{\nabla})_{i}E_{j} \\ & \\ \widehat{L}_{z} = -i\partial_{\phi} \end{split}$$

 $L_z = \hbar \int d\sigma_{\perp} (E_L^* \partial_{\phi} E_L + E_R^* \partial_{\phi} E_R)$

5

Photon: Spin Angular Momentum

- Circular polarisations: (Left and Right)
- Spin angular momentum may take two values of

• Optical field expression in the cylindrical coordinate is

 $\widehat{L}_z = -i\partial_\phi$

$$E(r,\varphi,z,t) = E(r,z)e^{i\ell\varphi} e^{i(kz-\omega t)}$$
$$J_z = \ell\hbar$$

In the contrast, orbital angular momentum may take any of the infinite values $\ell = ... - 2, -1, 0, 1, 2, ...$

Laguerre-Gaussian modes are one set of paraxial wave mode which carry the OAM.

$$\ell = -2 \qquad J_z = -2\hbar$$

$$\ell = -1 \qquad J_z = -\hbar$$

$$\ell = 0 \qquad J_z = 0$$

$$\ell = +1 \qquad J_z = +\hbar$$

$$\ell = +2 \qquad J_z = +2\hbar$$

Photon: Degrees of Freedom

Structural Photons

Application of Structural Photons

Quantum Computation

Optical Microscopy

Optical Manipulation

Hig-dimensional entengelement

Classical communication

Quantum Cryptography

J Harris, V Grillo, E Mafakheri, GC Gazzadi, S Frabboni, RW Boyd, <u>E Karimi</u> Nature Physics 11, 629 (2015)

12

Let us send letter \boldsymbol{M}

12

Let us send letter M

Letter M in the binary code is 01001101

Let us send letter ${\bf M}$

Letter M in the binary code is 01001101

Quantum Cryptography

THERE IS NO DEFINITE REALITY

Conjugate Quantities Cannot Be Measured Simultaneously

THERE IS NO DEFINITE REALITY

14

Conjugate Quantities Cannot Be Measured Simultaneously

QUANTUM INFORMATION CANNOT BE CLONED WITHOUT INTRODUCING ERRORS sqogroup.ca THERE IS NO DEFINITE REALITY

Cryptography

15

Public Channel

15

Public Channel

Eve

wsqi jsv xli kpsvmiw sj xlmw asvph; erh wsqi wmkl jsv xli tvstlix'w tevehmwi xs gsqi; el, xeoi xli gewl, erh pix xli gvihmx ks, rsv liih xli vyqfpi sj e hmwxerx hvyq!

15

PUBLIC CHANNEL

Eve

wsqi jsv xli kpsvmiw sj xlmw asvph; erh wsqi wmkl jsv xli tvstlix'w tevehmwi xs gsqi; el, xeoi xli gewl, erh pix xli gvihmx ks, rsv liih xli vyqfpi sj e hmwxerx hvyq!

SECURE CHANNEL

15

PUBLIC CHANNEL

wsqi jsv xli kpsvmiw sj xlmw asvph; erh wsqi wmkl jsv xli tvstlix'w tevehmwi xs gsqi; el, xeoi xli gewl, erh pix xli gvihmx ks, rsv liih xli vyqfpi sj e hmwxerx hvyq!

SECURE CHANNEL

Bob

sqogroup.ca

some for the glories of this world; and some sigh for the prophet's paradise to come; ah, take the cash, and let the credit go, nor heed the rumble of a distant drum!

Eve

16

0 1 2 3 4 5 6

sqogroup.ca

sqogroup.ca

sqogroup.ca

$$\begin{cases} |\psi\rangle_i \} \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \{ |\phi\rangle_j \} \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 &$$

 $|\langle \psi | \phi \rangle|^2 = \frac{1}{7}$

Experimental results

sqogroup.ca

Encryption results

Encrypted message

Sender (Alice)

Receiver (Bob)

19

Cloning Attack

Cloning Attack

sqogroup.ca

sqogroup.ca

See

Optimal Cloning Attack: Experimental Setup

Optimal Cloning Attack: Experimental Setup

Second

Optimal Cloning Attack: Experimental Results

Secure Channel under Cloning Attack

Encrypted message

Sender (Alice)

Receiver (Bob)

Secure link

Cloning attack

QKD over the city of Ottawa

28

Intra-city QKD experiment

sqogroup.ca

A. Sit, F. Bouchard, R. Fickler, J. Gagnon-Bischoff, H. Larocque, K. Heshami, D. Elser, C. Peuntinger, K. Günthner, B. Heim, C. Marquardt, G. Leuchs, R. W. Boyd, and <u>E. Karimi</u>, arXiv:1612.05195.

Degrees of freedom of light

sqogroup.ca

A. Sit, F. Bouchard, R. Fickler, J. Gagnon-Bischoff, H. Larocque, K. Heshami, D. Elser, C. Peuntinger, K. Günthner, B. Heim, C. Marquardt, G. Leuchs, R. W. Boyd, and <u>E. Karimi</u>, arXiv:1612.05195.

Laboratory results

Theory

Experiment

sqogroup.ca

A. Sit, F. Bouchard, R. Fickler, J. Gagnon-Bischoff, H. Larocque, K. Heshami, D. Elser, C. Peuntinger, K. Günthner, B. Heim, C. Marquardt, G. Leuchs, R. W. Boyd, and <u>E. Karimi</u>, arXiv: 1612.05195.

1

0

Experimental results of intra-city QKD

sqogroup.ca

A. Sit, F. Bouchard, R. Fickler, J. Gagnon-Bischoff, H. Larocque, K. Heshami, D. Elser, C. Peuntinger, K. Günthner, B. Heim, C. Marquardt, G. Leuchs, R. W. Boyd, and E. Karimi, arXiv: 1612.05195.

Experimental results of intra-city QKD

sqogroup.ca

A. Sit, F. Bouchard, R. Fickler, J. Gagnon-Bischoff, H. Larocque, K. Heshami, D. Elser, C. Peuntinger, K. Günthner, B. Heim, C. Marquardt, G. Leuchs, R. W. Boyd, and <u>E. Karimi</u>, arXiv:1612.05195.

QKD

MORE INFORMATION PER CARRIER

THEY ARE ROBUST IN A NOISIER CHANNEL

SECURE CHANNEL

CLONING ATTACK

sqogroup.ca

Funding agencies

Canada Excellence **Research Chairs**

Chaires d'excellence en recherche du Canada **Canada Research Chairs**

www.chairs-chaires.gc.ca

FOR INNOVATION

POUR L'INNOVATION

sqogroup.ca

Collaborators

..., and many junior members of these research teams

sqogroup.ca