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Do we need another quantum computer to testing a quantum computer or 
can we bootstrap a mini quantum device to test a bigger one
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Question

These devices become relevant at the moment they are no longer classically simulatable

Existing methods of Testing/Validation/Simulation/Monitoring/Tomography ... all become 
IRRELEVANT
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Goal 

Over the next decades, as quantum technology matures globally 
we will provide testing criteria for industry adaptation
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Should we pay $10000000 for 
a quantum computer

That kind of tests work only 
for a specific problem.

We don’t know if all the questions 
that quantum computer can solve 

are classically testable

Simple test: We ask the box to factor a big number 
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Quantum Turing test

• Can we classically communicate or do we need a bit
    of quantumness to test quantum computer

•  Can we do the test efficiently or do we need super 
    powerful computer to test quantum computer



Quantum Verification

• Computationally limited verifier

• Powerful quantum server(s)

• Certify the correctness of the computation



General Approaches

● State authentication-Based protocols

● Trapification based

● Measuring entanglement correlation protocols
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 Interactive Proof System   

 Cryptographic Toolkit

 Classically controlled QC

Formalising the Question
Combat the complexity

Implementation Platform
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Verifier Prover

X

Yes X satisfies some property NP -  problems

Complexity as Proof System

with short verifiable certificate proof
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Generalisation: Interactive Proofs 

Verifier Prover

X

Yes X satisfies some property

Prover can cheat with 
exponentially small probability

All problems
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A PROTOCOL between a 

computationally unrestricted prover P 
and 

a probabilistic polynomial-time verifier V 

(∀x ∈ L) Pr [(V ↔ P )(x) accepts] = 1Completeness: 

(∀x �∈ L)(∀P ′) Pr
[
(V ↔ P ′)(x) accepts

] ≤ 1
2

Soundness: 
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Graph Non-Isomorphism 

The common input 
The verifier chooses one of the two graphs randomly. 

Verifier chooses one of the two graphs randomly

Verifier constructs a graph isomorphic to her choice and send it to the Prover

≇If G    H  prover can find which of the two graphs was send by the verifier 

The verifier can check the answer easily 
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Classical Verifier Quantum 
Computer

X

Yes X satisfies some property

IP for Quantum Computing

Quantum Computer is not trusted

Classical 
Poly (input size)
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Classical Verifier Quantum 
Computer

X

Yes X satisfies some property

Gottesman (04) - Vazirani (07)- Aaronson $25 Challenge (07) 

Does BQP admit  an interactive protocol  

where the prover is in BQP and the verifier is in BPP? 

D. Aharonov and U. Vazirani, arXiv:1206.3686 (2012).

IP for Quantum Computing
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Quantum Verifier

Quantum Prover

Classical Verifier

IP for Quantum Computing
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Hiding Complexity

Encryption

Enables Secure Communication

Access to data is all or nothing

Modern Encryption

Enables arbitrary computation on encrypted data without decrypting
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Holy Grail of Cryptography since 1987 

Limited Client Untrusted Server

m E(m)

f(E(m))E(m)

D(f(E(m))) = f(m)f(E(m))

Rivest, Adleman and Dertouzos
Can we process encrypted data without decrypting it 
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Fully Homomorphic Encryption (FHE) 

Gentry 09: A Lattice-based cryptosystem that is fully homomorphic 

32787648736923843984794783947394872349979387983709470059830958309580948503498504984879ut9875937493

590094867-3498674-096759067458976459765-9067459685489765498765468978745943580487568760876508457095
+ %^&&£££$%

Long Key 
Complicated Server Operations

Computational Security 



Applications

Secure Cloud

Remote File Storage

Secure Multi Party Computation

Verification of Outsourced Computation

Short Proof of Knowledge 

....



Universal Blind Quantum Computing (UBQC) 

Broadbent, Fitzsimons and Kashefi 09:  Quantum Key Distribution + 
Quantum Teleportation

Classical Computer 
random single qubit  generator 

Unconditional Perfect Privacy 

Server learns nothing about client’s input/output/computation

Classical Communication



7

Measurement-based QC 

• New qubits, to prepare the auxiliary qubits: N

• Entanglements, to build the quantum channel: E

• Measurements, to propagate (manipulate) qubits: M

• Corrections, to make the computation deterministic: C
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resource state
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measurement

sites

control computer

resource state

measurement site

  Kashefi et.al.  Measurement Calculus JACM 2007 
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control computer

resource state
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  Kashefi et.al.  Measurement Calculus JACM 2007 

Program is encoded in the 
classical control computer

Computation Power is encoded in 
the quantum entanglement

7

Formal Calculus
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J(α) := 1√
2

(
1 eiα

1 −eiα

)

±

X|+〉

|φ〉

J(α)(|φ〉)X

gate teleportation

±|±α+θ〉Z(θ)
J(α+ θ)

gate teleportationHiding the Angles

Hiding in MBQC



J(α) := 1√
2

(
1 eiα

1 −eiα

)

Thinking inside the box

J(α)(|+〉)

±

X|+〉

|+θ〉
J(α+ θ + rπ)

⊕r

X

|±α+θ+rπ〉

 Hiding the measurement result
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X = (Ũ , {φx,y})

random single qubit  generator 

{1/√2
(|0〉 + eiθ |1〉)

θ = 0, π/4, 2π/4, . . . , 7π/4}



θ

(
θ′

Universal Blind Quantum Computing
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Universal Blind Quantum Computing

X = (Ũ , {φx,y})

rx,y ∈R {0, 1}
δx,y = φ′

x,y + θx,y + πrx,y∣ 〉 ∣

{
∣
∣+δx,y

〉
,
∣
∣−δx,y

〉}sx,y ∈ {0, 1}sx,y := sx,y + rx,y

δx,y

random single qubit  generator 

{1/√2
(|0〉 + eiθ |1〉)

θ = 0, π/4, 2π/4, . . . , 7π/4}



c    

d

Quarter/Half-wave Plate

Polarization Controller

Filter

Polarizing Beam Splitter 

BBO crystal

Bob

Alice

b

a

2

4

1

3
3 2

Experimental Implementation
S. Barz, E. Kashefi, A. Broadbent, J. Fitzsimons, A. Zeilinger, P. Walther, 
Science 2012
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Verification

• Correctness: in the absence of any interference, client accepts 
and the output is correct

• Soundness: Verifier rejects an incorrect output, except with 
probability at most exponentially small in the security parameter

Fitzsimons and Kashefi, arXiv:1203.5217, 2012
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k ∈ K k ∈ K
m-qubit message

m + d
Detect error

Alice Bob
|ψ〉Eve

U|ψ〉

Client
Eve = Server

k ∈ K
m-qubit message

Detect error
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ε-Verification

For any server’s strategy the 
probability of client accepting an 

incorrect outcome density 
operator is bounded by ε:

P ν
incorrect = (I− |Ψν

ideal〉 〈Ψν
ideal|)⊗ |rνt 〉 〈rνt |

Accept Key 

BobAlice
ν

random parameters ...
B(ν)

density operator of classical and quantum output

∑
ν p(ν) Tr (P ν

incorrect B(ν)) ≤ ε
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Adding Traps

|+θ〉, |−θ〉

Trap Measurements

M θ|+θ〉 → s = 0

M θ|−θ〉 → s = 1

|0〉, |1〉

θ

Trap positions and 
Measurement angles 

remain hidden



Verification with single trap

Theorem. Protocol is (1 − 1/2N)-verifiable in general, and in 
the case of purely classical output it is  (1 − 1/N)-verifiable, 
where N is the total number of qubits in the protocol.



Verification

         



Verification

         

Tape

          



Verification

         

Tape

          

Tap



ε-Verification

0〉⊗B

δ
〉

δ1〉

δk〉

δm−n〉

δ

δ

Mν

Bj(ν) = TrB

(∑
b |b+ cr〉 〈b|CνC ,bΩP((⊗B |0〉 〈0|)⊗ ∣∣Ψν,b

〉 〈
Ψν,b

∣∣)P†Ω†C†
νC ,b |b〉 〈b+ cr|

)
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∑
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∑
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αikα
∗
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〈ηνT

t |σi

(
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)
σi |ηνT

t 〉
)
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ε-Verification
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∑
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∗
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Blindness

ε-Verification

0〉⊗B

δ
〉

δ1〉

δk〉

δm−n〉

δ

δ

Mν

pincorrect ≤
∑
k,νT

∑
i∈Ei

αikα
∗
ikp(νT )Tr

(
〈ηνT

t |σi

(
|ηνT

t 〉 〈ηνT
t | ⊗ |δt〉 〈δt| ⊗ I

Tr(I)

)
σi |ηνT

t 〉
)

=
1

16m

∑
k

∑
i∈Ei

|αki|2
∑

t,rt,θt

(〈ηνT
t |σi|t |ηνT

t 〉)2

...
...

≤ 1− 1
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To increase the probability of any local error being detected 

O(N) many traps in random locations


To increase the minimum weight of any operator which leads to an incorrect outcome 

Fault-Tolerance



Probability Amplification
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Probability Amplification Challenge: Traps break the graph

=
MComp

MReduce

K̃5

Z Z

Z

Z

Y

ZZ

Y

YY

MP
Z Z

Z

Z

Z

ZZ

Z

ZZ

MA

Z

ZZ

Z Z

Required 3D lattice for Raussendorf, 
Harrington and Goyal Topological 
error-correcting code with defect 

thickness d
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What can we do with 4-qubits



Restricting to Classical Input and Output 



Restricting to Classical Input and Output 

trapification

trapification



A Complete new proof of verification was required

Pauli (σi) Trap Stabilizer Measurement Overall
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Blind Verification of Entanglement

Alice Bob

Referee
a 0,1 b 0,1

x 1,-1 y 1,-1

A
a
x B

b
y

AB

If server knows he is running Bell test, 

he can create fake outcomes to violate the inequality, 


the trapificaiton procedure in between prevents this to happen



Blind Verification of Entanglement
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Non-classical Correlation

Contextuality

Dimentionality

Superposition

Quantum Property Testing
CC
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VUBQC extension

Verification with minimal communication
Kapourniotis, Dunjko, Kashefi ASQIC15
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Robust and Device-independent Verification 
Gheorghiu, Kashefi, Wallden NJP15

Verification of one-pure-qubit computation
 Kapourniotis, Kashefi, Datta, TQC14  Q
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Adaptation to Computational Capacity of 
Intermediate Models of QC 

D-Wave
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Adaptation to Computational Capacity of 
Intermediate Models of QC 

D-Wave
Boson Sampling

Instantaneous QC
Quantum Simulator  

Model Dependent
CC

Simplified Noise Model  



Quantum Turing Test for One Pure Qubit

one pure qubit at a time 

 Q
 R

es
tr

ic
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d

Kapourtionis, Kashefi, Datta, TQC, 2014
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A runnable sequence of commands where for every elementary 
command the purity doesn’t exceed 
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many pure qubtis
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UBQC comes for free in 
MBQC with pure qubit
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Verified Delegated QC with One Pure Qubit

trapification

trapification
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Can we get ride of qubit ?

trapification

trapification

trapification

trapification

Blind Computation
with BPP* Alice

Quantum 
Obfuscation

Alagic, Feffermanffff , 2016
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Server’s Time

Universal Machine 

Interaction

Perspective
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