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Quantum Machines

These devices become relevant when they are no longer
classically simulatable

E�cient verification methods for testing quantum devices ?
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Quantum Verification

Computationally limited verifier

Powerful quantum server(s)

Certify the correctness of the computation
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Existing approaches (with Privacy)

Single server

Restricted quantum verifier
[Aharonov, Ben-Or, Eban ’10], [Fitzsimons, Kashefi ’12]

Measurement-only verifier
[Morimae ’14], [Hayashi, Morimae ’15]

Device-independent verifier
[Gheorghiu, Kashefi, Wallden ’15], [Hajdusek, Perez-Delgado,
Fitzsimons ’15]

Classical verifier
open problem
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Single server

Restricted quantum verifier
[Aharonov, Ben-Or, Eban ’10], [Fitzsimons, Kashefi ’12]

Measurement-only verifier
[Morimae ’14], [Hayashi, Morimae ’15]

Device-independent verifier
[Gheorghiu, Kashefi, Wallden ’15], [Hajdusek, Perez-Delgado,
Fitzsimons ’15]

Classical verifier
open problem

Non-communicating, entangled servers

Classical verifier, 2 servers
[Reichardt, Unger, Vazirani ’12]

Classical verifier, multiple servers
[McKague ’13]

Elham Kashefi (joint work with A. Gheorghiu and P. Walden) Price of Trust



Existing approaches (without Privacy)

Universal

Post hoc verification [Morimae, Fitzsimons ’16], [Fitzsimons,
Hajdusek ’15]

Direct certification of quantum simulations [Hangleiter,
Kliesch, Schwarz, Eisert ’16]
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Existing approaches (without Privacy)

Universal

Post hoc verification [Morimae, Fitzsimons ’16], [Fitzsimons,
Hajdusek ’15]

Direct certification of quantum simulations [Hangleiter,
Kliesch, Schwarz, Eisert ’16]

non-Universal

IQP Hypothesis Testing [Bremner, Shepherd ’08]

Boson Sampling Hypothesis Testing [Spagnolo et. al. ’14]

Verification of one-clean Qubit Model
[Kapourniotis, Kashefi, Datta ’14]
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Assumptions

Prepare and send vs.
entanglement-based

Single vs. multiple servers

Online vs. o✏ine

Device-independent vs. one-sided
device-independent

I.i.d. states vs. general states

Privacy preserving vs non-hiding

Universal vs non-universal

And others
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The price of trust

Central question

How do trust assumptions a↵ect the complexity of the protocol?
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Prepare and send - Outline

Protocols such as those of: [Aharonov, Ben-Or, Eban ’10],
[Fitzsimons, Kashefi ’12] (FK)

Verifier prepares and sends quantum states to server

Verifier instructs server on how to use the states for a
computation

They interact classically

W.h.p. verifier accepts correct result or aborts
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Prepare and send - Characteristics

Minimally quantum verifier
(trusted preparation device)

Prepared states are qubits or
qudits (no entanglement)
[Dunjko, Kashefi ’16]

Can achieve linear classical
round complexity and
one-shot quantum
communication complexity
[Kashefi, Wallden ’15]

Towards entanglement-based

Replace preparation device with trusted entanglement +
measurement device.
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Entanglement-based - Outline

Single server

Verifier has only measurement device

Shared entanglement between verifier and server

Measurement + entanglement mimic prepare and send

Multiple servers

Verifier has no quantum device

Servers share entanglement and cannot communicate

Verifier interacts classically with servers
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Multiple servers
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Multiple servers price of trust

Constant number of servers

Protocol: [Reichardt, Unger, Vazirani ’12]

Round complexity: O(N8192)

Based on rigidity of CHSH games

Certifying entanglement and measurements

Huge overhead for establishing tensor product of Bell pairs

Linear number of servers

Protocol: [McKague ’13]

Round complexity: O(N22)

Based on self-testing graph states

Reduced overhead because of assumed tensor product
structure

Measurements are always untrusted (performed by servers)
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Single server
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Single server price of trust

Protocols: [Gheorghiu, Kashefi, Wallden ’15], [Hajdušek,
Pérez-Delgado, Fitzsimons ’15], [Gheorghiu, Wallden, Kashefi ’15]

aaaaaaaaaaa
Measurements

Entanglement

Trusted
Semi-trusted

(i.i.d.)
Untrusted

Trusted O(N) O(N4logN) O(N13log(N))
Untrusted O(N4logN) O(N4logN) O(N64)

Bounds are not tight!

Assuming untrusted entanglement...

Untrusted measurements ! device independence

Trusted measurements ! one-sided device independence
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Device-independent single server verification

Based on rigidity of
CHSH games
[Reichardt, Unger,
Vazirani ’12]

Certify tensor product
of Bell pairs

Certify correct
measurements

Verified preparation =
prepare input states

Verified computation
= FK protocol

Similar in multi server
setting
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One-sided device-independent single server verification

Based on rigidity of
steering games
[Gheorghiu, Wallden,
Kashefi ’16]

Certify tensor product
of Bell pairs

Certify correct server
measurements

Analogous to DI
protocols

Reduced overhead
because of added
trust
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Rigidity

Saturating correlations
determines states and
strategy

Up to local isometry

DI ! non-local correlations
(CHSH)

1sDI ! steering correlations

Proof idea:

1 Self-testing with i.i.d. states

2 Removing i.i.d. assumption (one shot rigidity)

3 Game-based induction ! state and strategy determination
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Self-testing i.i.d. states

Suppose Alice and Bob share many copies of a state | i
Alice measures observables A0

0

, A0
1

Bob measures observables B 0
0

, B 0
1

h |A0
0

B 0
0

+ A0
0

B 0
1

+ A0
1

B 0
0

� A0
1

B 0
1

| i � 2
p
2� ✏ (1)

h |A
0

B 0
0

+ A
1

B 0
1

| i � 2� ✏ (2)

Self-testing theorem

If inequality 1 is satisfied in the DI case, or inequality 2 in the 1sDI
case, then there exists a local isometry � = �A ⌦ �B such that,
for all M 0

A 2 {I ,A0
0

,A0
1

}, N 0
B 2 {I ,B 0

0

,B 0
1

}:
||�(M 0

AN
0
B | i)� |junkiMANB |�

+

i ||  O(
p
✏)
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Removing i.i.d.

1 Model measurement process as a martingale
2 Use Azuma-Hoe↵ding inequality
3 Observed correlation close to true correlation for averaged

state: ⇢avg = 1

K

P
i ⇢i

4 From self-testing ⇢avg is close to |�
+

i (under isometry)
5 Optimization argument implies a randomly chosen ⇢i is also

close to |�
+

i

Non-i.i.d. self-testing theorem

If Alice and Bob’s correlation saturates the CHSH/steering
inequality to order ✏ then for a randomly chosen i :

||�(E 0
AB(⇢i ))� EAB(|�+i h�+|)||  O(✏1/6)
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State and strategy determination

Suppose we play K games to certify one Bell pair.
Does playing NK games certify N pairs?

Not implicitly, because of overlap...

Assume the state and strategy of Alice and Bob is
Sreal = (⇢AB , E 0

A, E 0
B)

Assume the ideal strategy is Sid = (⌦ |�
+

i , EA, EB)
Can consider intermediate strategies S (e.g. Alice guesses
Bob’s outcomes)
Use non-i.i.d. self testing to show Sreal ⇡ S ⇡ Sid

Closeness depends on whether Alice is trusted or not!
DI ! O(N64), 1sDI ! O(N13log(N))
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Necessity of Bell pairs
Assume we have an entanglement-based protocol, P, satisfying the
following:

One-sided device-independent

Shared entangled state consists of copies of 2-qubit state ⇢VP
Blindness, TrV (⇢VP) = ⇢P = I/2

Arbitrary quantum input

Maximal entanglement theorem

In P, ⇢VP is maximally entangled.

Proof: From the constraints, we find that:

⇢VP =
1

2(|f |2 + 1)

0

BB@

|f |2 f f e i�1 |f |2
f ⇤ 1 e i�2 �f
f ⇤ e�i�

2 1 �f
e�i�

1 |f |2 �f ⇤ �f ⇤ |f |2

1

CCA

Tr(⇢2VP) = 1 and TrV (⇢VP) = I/2 ! ⇢VP is maximally entangled!
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Conclusions

Prepare and send ! O(N)

Online, measurement-only ! O(N)

Entanglement-based, single server
aaaaaaaaaaa
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Entanglement-based, multiple servers

Constant number of servers ! O(N8192)
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Open problems

Tight bounds?

Bounded quantum memory adversary?

No communication vs. space-like separation

Fault tolerance?

Classical client single server verification?
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