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Overview



What is Entanglement? 
Pure bi-partite states

Note: A pure state is entangled if and only if the two subsystems are correlated. This is not true in the case 
of mixed states. 

|Φ±〉 = |00〉 ± |11〉√
2

|Ψ±〉 = |01〉 ± |10〉√
2

Bell basis
Examples of Maximally Entangled states

|Ψ〉AB = |φ〉A ⊗ |θ〉BUnetangled state 

Entangled state |Ψ〉AB �= |φ〉A ⊗ |θ〉B
There is no correlation between the outcomes of measurements on A and B.

|φ〉A |θ〉B



Tensor Product Decomposition

Tensor product decomposition is defined based 
on the notion of  Spatially Local Subsystems.

|Φ±〉 = |00〉 ± |11〉√
2

|Ψ±〉 = |01〉 ± |10〉√
2

|Φ〉 ⊗ |±〉

|Ψ〉 ⊗ |±〉

Why not? ?

?



A little bit of History

Entanglement as a resource, as real as energy.

Entanglement theory should be understood as a framework to study questions about manipulating 
resource states for performing certain tasks, similar to the theory of thermodynamics. 

1935 Einstein-Podolsky-Rosen paper

1964 Bell’s theorem 

1991             Ekert’s key distribution protocol
1992             Superdense coding (Bennett-Wiesner)
1993 Teleportation (Bennett-Brassard-Crepeau-Jozsa-Peres-Wootters)
…....



How to transfer Quantum Information?
Quantum Channel

|ψ〉Unknown 
State 



No-signaling and No-cloning are not violated.

A
A|ψ〉Unknown 

State 

|Φ+〉 = |00〉+ |11〉√
2

|Φ±〉 = |00〉 ± |11〉√
2

|Ψ±〉 = |01〉 ± |10〉√
2

|Φ

|Ψ

c0c1

(i)   Local Measurement on A side.
(ii)  Classical Communication (two bits of information)
(iii) Local Operation on B side  

How to transfer Quantum Information?
Teleportation

{I, σx, σy, σz}

{00, 01, 10, 11}

|ψ〉Unknown 
State 

c0c1



A
A

Entanglement as a Resource

Classical Channel

+
Entanglement

Quantum Channel

What if the state is not a maximally entangle state? What if it is mixed? What if we have multiple 
copies of a mixed state?

To implement teleportation we need to consume a maximally entangled state.



All and the only operations we can do in the absence 
of a quantum channel.
LOCC do not generate Entanglement. 
LOCC is used in teleportation.

Local Operations and Classical Communication

(I) Local Unitary operations on A and B
(II) Local Measurements on A and B 
(III) Coupling to local ancillary systems
(IV) Discarding local subsystems
And
(V) Classical Communication

LOCC Paradigm

ρAB
LOCC−−−−→ σAB



Equivalence classes of states

Separable states (Unentangled states): The set of states which are in the equivalence class of product 
states.

Any pair of separable states can be transformed to each other via LOOC.
Separable states may contain correlations (i.e. nonzero Mutual information). 

σAB
LOCC−−−−→ ρABρAB

LOCC−−−−→ σAB

The two states are equivalent resources. E.g., if one can be used as a resource for teleportation, then the 
other one can also be used for teleportation.

ρAB =
∑
i

pi ρ
(i)
A ⊗ σ

(i)
B |φ〉A ⊗ |θ〉BLOCC



Schmidt Decomposition

|ψ〉AB =
∑
i

√
λi |φi〉A ⊗ |θi〉B

λi ≥ 0
∑
i

λi = 1

〈θj |θi〉 = δi,j 〈φj |φi〉 = δi,j

Schmidt Coefficients (Eigenvalues of the reduced states)

ρB = TrA(|ψ〉〈ψ|AB) =
∑
i

λi|θi〉〈θi|B

ρA = TrB(|ψ〉〈ψ|AB) =
∑
i

λi|φi〉〈φi|A



Equivalence classes of pure states

Equivalence classes of pure states are uniquely specified by their Schmidt coefficients. 

Two pure states can be transformed to each via LOCC reversibly, 
if and only if they have the same Schmidt coefficients. 

|ψ〉AB
LOCC−−−−→ |φ〉AB

|φ〉AB
LOCC−−−−→ |ψ〉AB

{λψ
i } = {λφ

i }

|ψ〉AB =
∑
i

√
λψ
i |φi〉A ⊗ |θi〉B



|ψ〉AB
LOCC−−−−→ |φ〉AB

{λψ
i } {λφ

i }

This transformation can be implemented via LOCC if and only if there exists a mixture of 
random permutations which transforms the probability distribution           to the probability 
distribution          .

Single-copy Transformations
Nielsen’s theorem

Mixture of random 
permutations

{λψ
i }

{λφ
i }

i i

AB
LOCC

AB

{λψ
i } {λφ

i }

This transformation can be implemented via LOCC if and only if there exists a mixture of 
random permutations which transforms the probability distribution           to the probability 
distribution          .

Mixture of random Mixture of random
permutations

{  λ    ψi }  
{  λ    φi  }  

ii



Majorization

p(i)q(i)

p↓(1) ≥ p↓(2) ≥ · · · ≥ p↓(N)q↓(1) ≥ q↓(2) ≥ · · · ≥ q↓(N)

	p =

⎛
⎜⎜⎜⎜⎜⎜⎝

p(1)
p(2)
·
·
·

p(N)

⎞
⎟⎟⎟⎟⎟⎟⎠

	q =

⎛
⎜⎜⎜⎜⎜⎜⎝

q(1)
q(2)
·
·
·

q(N)

⎞
⎟⎟⎟⎟⎟⎟⎠?

Mixture of random 
permutations

	q ≺ 	p

q↓(1) + q↓(2) ≤ p↓(1) + p↓(2)

q↓(1) ≤ p↓(1)

	q is majorized by 	p.

	q = A	p

For a doubly stochastic matrix A

?

Aij ≥ 0
∑
j

Aij = 1
∑
i

Aij = 1



Partial Order



|ψ〉AB
LOCC−−−−→ |φ〉AB

This transformation can be implemented via LOCC if and only if there exists a mixture of 
random permutations which transforms the probability distribution           to the probability 
distribution          .{λψ

i }
{λφ

i }

Single-copy Transformations
Nielsen’s theorem

|ψ〉AB
LOCC−−−−→ |φ〉AB|ψ〉AB
LOCC−−−−→ |φ〉AB {λψ

i } ≺ {λφ
i }

λψ↓
1 ≤ λφ↓

1

λψ↓
1 + λψ↓

2 ≤ λφ↓
1 + λφ↓

2

λψ↓
1 ≤ λφ↓

1

λψ↓
1 + λψ↓

2 ≤ λφ↓
1 + λφ↓

2



Partial Order

Maximally Entangled
states 

Unentangled
states 

|φ〉A ⊗ |θ〉B

Entangled
states 

∑
i

√
λi |φi〉A ⊗ |θi〉B

1√
d

∑d
i=1 |ii〉

i

∑
i

√
λ′
i |φ′

i〉A ⊗ |θ′i〉B



Catalytic Transformations

|ψ〉AB
LOCC−−−−→ |φ〉AB

|ψ〉AB ⊗ |η〉AB
LOCC−−−−→ |φ〉AB ⊗ |η〉AB

LOCCCCCCCCCCCCC−−−−−−−−−−−→ {λψ
i } ≺ {λφ

i }} ≺≺≺≺≺≺≺≺≺≺≺

{λψ
i } × {λη

j } ≺ {λφ
i } × {λη

j }



Asymptotic Transformations
|Φ+〉 = |00〉+ |11〉√

2

|ψ〉AB
LOCC−−−−→ |Φ+〉AB

Entanglement Purification

|ψ〉⊗n
AB

LOCC−−−−→ |Φ̃〉AB ≈ |Φ+〉⊗m(n)
AB

S(ρA) = −Tr(ρA log ρA) = −
∑
i

λψ
i log λψ

i

Entanglement Dilation ρA = trB(|ψ〉〈ψ|AB)

S(ρA) = −Tr(ρA log ρA) = −
∑
i

λψ
i log λψ

i

ρA = trB(|ψ〉〈ψ|AB)

Entanglement Entropy

|Φ+〉⊗m(n)
AB

LOCC−−−−→ |Ψ̃〉AB ≈ |ψ〉⊗n
AB

|Φ+〉 = |00〉+ |11〉√
2

R(|ψ〉AB
LOCC−−−−→ |Φ+〉AB) = lim

n→∞
m(n)

n
= S(ρA)

R(|Φ+〉AB
LOCC−−−−→ |ψ〉AB) = lim

n→∞
n

m(n)
= S−1(ρA)



|Φ+〉AB|ψ〉AB

+
AB

ABAB

S(ρA)

Reversible transformations have optimal conversion rate.

|Φ+〉 = |00〉+ |11〉√
2

S−1(ρA)

Purification

Dilation

S(ρA) = −Tr(ρA log ρA)

ρA = trB(|ψ〉〈ψ|AB)

|Φ+〉 = |00〉+ |11〉√
2

S(ρA) = −Tr(ρA log ρA)

ρA = trB(|ψ〉〈ψ|AB)



Asymptotic Transformations

|ψ〉AB
LOCC−−−−→ |φ〉AB

|Φ+〉AB|ψ〉AB

|ψ〉AB
L−−−−→ |φ〉AB
LOCCCCCCCCCCCCCC−−−−−−−−−−−−−−→

||ΦΦ+〉AB
AB

〉

S(ρA)

Purification Dilation

S−1(σA)

|φ〉AB

ρA = trB(|ψ〉〈ψ|AB) σA = trB(|φ〉〈φ|AB)ρA = trB(|ψ〉〈ψ|AB) σA = trB(|φ〉〈φ|AB)

|ψ〉⊗n
AB

LOCC−−−−→ |Φ̃〉AB ≈ |φ〉⊗m(n)
AB R(|ψ〉AB

LOCC−−−−→ |φ〉AB) = lim
n→∞

m(n)

n
=

S(ρA)

S(σA)

In the asymptotic regime any entangled state can be transformed to any other entangled state with a nonzero rate. 



Multi-partite Entanglement

|GHZ〉 = 1√
2
(|000〉+ |111〉)

|W〉 = 1√
3
(|100〉+ |010〉+ |001〉)

They cannot be transformed to each other via LOCC, even in the asymptotic regime.



Measures of Entanglement
A function from states to real numbers is an entanglement monotone if it is non-increasing 
under LOCC. 

f(ELOCC(ρAB)) ≤ (ρAB)

In other words,
ρAB

LOCC−−−−→ σAB

Any entanglement monotone takes the same value on all separable states. Therefore, by 
adding a constant to the monotone we can make it zero on all separable states. 

Therefore,

σAB
LOCC−−−−→ ρAB

ρAB
LOCC−−−−→ σAB

f(ρAB) = f(σAB)

f(ρAB) = 0ρAB is separable (unentangled)

f(ρAB) ≥ f(σAB)



Measures of Entanglement

Entanglement entropy is non-increasing in pure to pure state transformations. 

|ψ〉AB
LOCC−−−−→ |φ〉AB S(ρA) ≥ S(σA)

ρA = trB(|ψ〉〈ψ|AB) σA = trB(|φ〉〈φ|AB)ρA = trB(|ψ〉〈ψ|AB) σA = trB(|φ〉〈φ|AB)

But, in general, the entropy of the reduced states of  A and B can increase under LOCC. 



Example: Negativity 

ρAB =
∑
i,j

Xi ⊗ Yj ρTA

AB =
∑
i,j

XT
i ⊗ Yj

Partial Transpose

ρAB =
∑
i

pi ρ
(i)
A ⊗ σ

(i)
B

Partial Transpose ρ̃AB =
∑
i

pi ρ
(i)
A

T ⊗ σ
(i)
A

‖ρTA

AB‖1 − 1

2



Resource Entanglement Asymmetry

Free states

Free operations

Separable states

Local Operations &
Classical Communications

Symmetric states*

Symmetric Operations

Physical justification
of free operations*

Lack of quantum 
channels

E.g. lack of shared 
reference frames

F. Brandão, G. Gour , The general structure of quantum resource theories, Phys. Rev. Lett. (2015).

Summary
Resource Theory of Entanglement 

Note that the set of LOCC does not include all non-entangling operations.
* By physical justification we mean a restriction on experimental capabilities that yields all and only the set of free operations.



Summary
Resource Theory of Entanglement 

Two pure bi-partitie states have the same entanglement properties, i.e. can be transformed to 
each other via LOCC reversibly, iff their Schmidt coefficients are the same. 

A pure bi-partite state can be transformed to another pure bi-partitie state via deterministic 
LOCC transformations, if and only if the Schmidt coefficients of the former state are majorized
by the Schmidt coefficients of the latter state (Nielsen’s theorem).

Some state transformations which are not possible under LOCC, can be implemented using 
another entanglement state as catalyst.

In the asymptotic regime, where we are given many copies of states, any pure bi-partite 
entangled state can be transformed to any other state via LOCC. The optimal rate of conversion  
is equal to the ratio of the entanglement entropies of the input and output states.

Quantum Entanglement, Horodecki4, Rev. Mod. Phys. 81, 865 (2009).



Resource Theory of Asymmetry

Resource theory of clocks, gyroscopes, and 
other reference frames 



Resource Entanglement Asymmetry

Free states

Free operations

Separable states

Local Operations &
Classical Communications

Symmetric states*

Symmetric 
Operations

Physical justification
of free operations

Lack of quantum 
channels

E.g. lack of shared 
reference frames

Resource Theory of Asymmetry

* Different symmetry groups define different resource theories of asymmetry.



Example: SO(3)
What kind of transformations can be implemented on the system if we are restricted to rotationally 
invariant Hamiltonians, and we can only prepare ancillas in rotationally invariant states?

Under this kind of restriction, a symmetry-breaking state is a resource.

Free state

Resource state



A
A A

A
SO(3)

ẑ ẑ

Quantum Gyroscope

Resource theory of asymmetry for group SO(3) is useful in the study of quantum gyroscopes.

A gyroscope should break rotational symmetry. 

Asymmetry relative to SO(3)



Asymmetry relative to time translation

|E0〉+ |E1〉√
2

|E0

H|E0〉 = E0|E0〉
H|E1〉 = E1|E1〉

|E0〉+ |E1〉√
2

|E0〉〈E0|+ |E1〉〈E1|
2

e−iE0δt|E0〉+ e−iE1δt|E1〉√
2

Time-independent state

Time-dependent state (Breaks time-translation symmetry                              ){e−iHt : t ∈ R}

A clock should break time-translation symmetry. 

Quantum Clock



Asymmetry relative to phase shift
Symmetric state

Asymmetric state (Breaks phase shift  symmetry                                 )

A phase reference should break phase shift symmetry. 

e−in0δφ|n0〉+ e−in1δφ|n1〉√
2

{e−iNφ : φ ∈ (0, 2π]}

|n0〉+ |n1〉√
2

|n0〉〈n0|+ |n1〉〈n1|
2

|n0〉+ |n1〉√
2

N |n0〉 = n0|n0〉
N |n1〉 = n1|n1〉



Asymmetry as a Resource

Symmetry Reference Frame

3D Rotations Gyroscope

Time translation Clock

Phase shift Phase reference



Resource Entanglement Asymmetry

Free states

Free operations

Separable states

Local Operations &
Classical Communications

Symmetric states*

Symmetric 
Operations

Physical justification
of free operations

Lack of quantum 
channels

E.g. lack of shared 
reference frames

Resource Theory of Asymmetry

* Different symmetry groups define different resource theories of asymmetry.



U(g)[E(ρ)]U †(g) = E [U(g)ρU †(g)]

Symmetric Time Evolution

∀ρ, ∀g ∈ G :

g ∈ G → U(g)

(g

U(g)ρU †(g)
(g

? 

time

(g(g

ρ

E(ρ)

time

U(g)ρU†(g) = ρ∀g ∈ G : G-invariant state

G-covariant operation

Free States

Free Operations



1. What are the conditions for state interconversions? (Single-copy 
deterministic, stochastic, rate of asymptotic transformations, etc)           
How to quantify asymmetry? 

2. How can we simulate asymmetric operations using only symmetric 
operations and asymmetric states? How much resources do we need to 
simulate a given asymmetric operation? (similar to simulating quantum 
channels using entangled states via teleportation)

Resource Theory of Asymmetry

ρ
G-cov−−−−→ σ



Asymmetry of pure states

ψ
G-cov−−−→ φ

φ
G-cov−−−→ ψ

χψ(g) ≡ 〈ψ|U(g)|ψ〉.

ψ
G-cov−−−→ φ

φ
G-cov−−−→ ψ

∀g ∈ G, 〈ψ|U(g)|ψ〉 = eiθ(g)〈φ|U(g)|φ〉

Characteristic Function

θ( )



Measures of Asymmetry

A function from states to real numbers is an asymmetry monotone if it is non-increasing under covariant 
operations. 

In other words,

Any asymmetry monotone takes the same value on all symmetric states. Therefore, by adding a constant 
to the monotone we can make it zero on all symmetric states. 

Therefore,

is symmetric

Asymmetry cannot be generated by symmetric time evolutions.

f(EG-cov(ρ)) ≤ f(ρ)

ρ
G-cov−−−−→ σ f(ρ) ≥ f(σ)

σ
G-cov−−−−→ ρ

ρ
G-cov−−−−→ σ

f(ρ) = f(σ)

ρ f(ρ) = 0



Closed system dynamics 
+

Symmetry

σ
G-cov−−−−→ ρ

ρ
G-cov−−−−→ σ

f(ρ) = f(σ)

Conservation of measures of 
Asymmetry 

Closed system dynamics 

Symmetry

Conservation of measures of 
Asymmetry 



How to Find measures of Asymmetry?

|tr(ρLz)| � |tr(σLz)|ρ
G−cov−−−−→ σ

Theorem: Any measure of asymmetry which can be expressed as function of the
expectation values of angular momentums or the expectation values of any
function of angular momentums is a constant function.

Theorem: Any measure of asymmetry which can be expressed as function of the
expectation values of angular momentums or the expectation values of any
function of angular momentums is a constant function.

|tr(ρLz)|



Information Theoretic Approach

The asymmetry properties of ρ is specified by the information theoretic properties of the

encoding

g ∈ G −→ U(g)ρU †(g)



Γ(ρ) ≡ inf
ω∈sym(G)

S(ρ‖ω) = S(ρ‖G(ρ)) = S(G(ρ))− S(ρ)

Example 1: Relative Entropy of Asymmetry 

S(ρ‖σ) = Tr(ρ log ρ)− Tr(ρ log σ)

G(σ) = 1

|G|
∑
g∈G

U(g)σU†(g)

S(σ) = −Tr(σ log σ)

Γ(ρ) ≡ inf
ω∈sym(G)

S(ρ‖ω) = S(ρ‖G(ρ)) = S(G(ρ))− S(ρ)

Symmetric States

ρS(ρ‖σ) = Tr(ρ log ρ)− Tr(ρ log σ)

G(σ) = 1

|G|
∑
g∈G

U(g)σU†(g)

S(σ) = −Tr(σ log σ)

Γ(EG-cov(ρ)) ≤ Γ(ρ)



ΔL,α(ρ) = Tr(ρL2)− Tr(ραLρ1−αL) α ∈ (0, 1)

Example 2: Wigner-Yanase-Dyson skew information

ΔL,1/2 = −1

2
Tr([

√
ρ, L]2) L is a generator of the symmetry.

ΔL,α(EG-cov(ρ)) ≤ ΔL,α(ρ)



Applications



Closed system dynamics + Symmetry          Conservation laws 

Finding the consequences of 
symmetry of dynamics

Closed system dynamics + Symmetry          Conservation laws          

Symmetry Conserved quantity

Spatial translations Linear Momentums 

3D rotations Angular Momentums

….. …

Noether’s theorem



f(ρ(t)) ≤ f(ρ(0))

f(ρ(t)) = f(ρ(0))

Finding the consequences of 
symmetry of dynamics



∀k : tr(ρLk) = tr(σLk)

IM, RW Spekkens, Extending Noether's theorem by quantifying the asymmetry of quantum states, Nature Comm.  (2014).

ρ =
1

2
[ | ↑〉〈↑ | ⊗ |1〉〈1|+ | ↓〉〈↓ | ⊗ |2〉〈2| ]

σ =
1

2
[| →〉〈→ | ⊗ |1〉〈1|+ | ←〉〈← | ⊗ |2〉〈2| ]



Catalytic Transformations
τR

Covariant−−−−−−→ τR ⊗ σS

Theorem: There exists a G-covariant channel              such that ER→RS

F (ER→RS(τR), τR ⊗ σS) ≥ 2−
ΔΓ
2

where ΔΓ = Γ(τR ⊗ σS) − Γ(τR)

is the increase in the relative entropy of asymmetry in the desired state transition.

F (ρ1, ρ2) ≡ ‖√ρ1
√
ρ2‖1Γ(ρ) ≡ inf

ω∈sym(G)
S(ρ‖ω) = S(ρ‖G(ρ)) = S(G(ρ))− S(ρ)

Theorem: There exists a G-covariant channel              such that R RS

F (ER→RS(τR), τR ⊗ σS) ≥ 2−
ΔΓ
2

where ΔΓ = Γ(τR ⊗ σS) − Γ(τR)

is the increase in the relative entropy of asymmetry in the desired state transition.

Follows from a recent result of Fawzi and Renner on approximate recoverability.

E.g. State preparation using a clock, cloning of unknown quantum states

τR ⊗ ρSsym
Covariant−−−−−−→ τR ⊗ σS



Conclusion
1) Resource theory of asymmetry is a framework for classifying and 

quantifying asymmetry of quantum states relative to a given symmetry.  
This framework is useful, for instance, in the context of quantum 
reference frames, and finding the consequences of symmetry of 
dynamics.

2) Noether’s theorem does not capture all the consequences of symmetry 
of closed systems. The conservation of measures of asymmetry can give 
independent constraints. 



Resource Entanglement Asymmetry

Free states

Free operations

Separable states

Local Operations &
Classical Communications

Symmetric states*

Symmetric 
Operations

Physical justification
of free operations

Lack of quantum channels E.g. lack of shared 
reference frames

Resource Theory of Asymmetry

* Different symmetry groups define different resource theories of asymmetry.
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