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Quantum light-matter interfaces

 Mapping quantum states of photons to stationary
qubits/matter (atoms, artificial atoms, vibrational
states of solids, ...)

* Manipulating photons while maintaining their
quantum properties/states, such as wavelength
conversion, bandwidth manipulation, qubit
conversion (e.g. time-bin to polarization)

* Inducing non-linear interaction between photons
for non-destructive detection, two-qubit quantum
gates, and preparing exotic states of photons or
atoms (e.g. GHz states)




Application areas for quantum—
Quantum Supremacy

* Quantum computation and simulation
* Quantum communications

* Quantum sensing and metrology



Implementations (g. computations &
simulations)

* Trapped ions
* Linear optical guantum computation

* Spin-based quantum computation — donors in
silicon, quantum dots

e Superconducting circuits

Scalability is a common technical limitation

Question: Distributed quantum computing and its
performance?



* Photons are good candidates to interconnect
different quantum systems

2016-December
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Quantum metrology

* Enhancing statistical precision using quantum

ensemble
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Quantum communications

» Superposition states of photons can be used to
encode and transmit secure information (Bennet-
Brassard 84, Ekert 91)

* Distances for direct transmission via fibers is limited
due to loss (e.g. distributing an entangled pair over
2000km through fibers with 0.15dB/km loss and
with a source operating at 1GHz rate takes more
than the age of universe!)

* Free-space communications through satellites or
fiber-based quantum repeater networks are the
alternatives




Quantum communication over long
distances

Direct transmission is only useful for local networks up to about 300-400 kms!

Quantum repeaters using guantum memories, pair sources and linear optics:
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Simon et al., PRL 98, 190503 (2007)

Quantum repeaters based on fibers can distribute entanglement up 1000-
2000 km.

N. Sinclair et al., Phys. Rev. Lett. 113, 053603 (2014).
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Other applications of quantum
memories

Deterministic single photon ¢ Processing quantum optical

sources pulses
/' Saglamyurek et al., New Journal of Physics 16 (6), 065019 (2014)
- Hosseini et al., Nature 461, 241 (2009)
K. Fisher et al., Nature Communications 7, Article number: 11200

S. Chen et al, PRL 97, 173004 (2006)

(2016)

* Quantum gates based on storage

e Quantum non-demolition
measurement based on storage



Quantum memories (definition)

* An ideal quantum memory takes an input state,
preserves it’s quantum state, and allows one to recall
and generate an output state.
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* Fidelity (this has to surpass fidelity of a measure-and-
prepare box or an optimal cloning device):
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Quantum memories for photons

* Information can be encoded in different degrees of
freedom of photons
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Quantum memory schemes

e Optically controlled guantum memories: Raman &
Electromagnetically Induced Transparency (EIT)

* Controlled inhomogeneous broadening: Gradient
Echo Memory (GEM) & Atomic Frequency Comb (AFC)

Review papers:

1) Heshami et al., Quantum memories: emerging applications and recent advances, arXiv:
1511.04018, Journal of Modern Optics (2016).

2) Bussieres et al., Journal of Modern Optics 60, 1519-1537 (2013).

3) Simon et al., Eur. Phys. J. D - At. Mol. Opt. Plasma Phys. 58, 1-22 (2010).

4) Tittel et al., Laser Photonics Rev. B, 244-267 (2010).

5) Lvovsky, Sanders, Tittel, Nat. Photonics B, 706—714 (2009).

This is not a complete list, and it only to describe some of the well-known quantum memory
schemes that are related to the remainder of this talk.



Raman quantum memories

* Raman quantum memory relies on optical coupling
* Allows on-demand recall
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AV Gorshkov, A André, MD Lukin, AS Sgrensen, Physical Review A 76 (3), 033805 (2007)

J. Nunn, I. A. Walmsley, M. G. Raymer, K. Surmacz, F. C. Waldermann, Z. Wang, and D. Jaksch, Phys. Rev. A 75,
011401(R) (2007)

DG England, KG Fisher, J-P W MacLean, PJ Bustard, K Heshami, KJ Resch, and BJ Sussman
Phys. Rev. Lett. 117, 073603 (2016)
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Raman storage in diamond
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* Input photons can be mapped to 122
optical phonons (vibrational modes) N weie
of the diamond omgut Read
e Lifetime is as short as 3.5 ps rasnm s00nm
e With time-bandwidth product of . T
over 10, this platform can be used = /

as testbed for many quantum
experiments

* This system has been used for
wavelength conversion and other
guantum signal processing tasks,
see Fisher et al, Nature
Communications 7, 11200 (2016)

Kent Fisher, PhD thesis, IQC, Waterloo
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Raman storage of polarization

gubits in diamond
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* Polarization encoding is converted
to path

* Each mode (path) is independently
stored inside the diamond

* Each mode is recalled and
recombined for state tomography
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Process fidelity
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Efficient and ultrafast conversion of
gubits between time-Bin and

polarization Encodings

* Time-bin encoding of information in photons are
useful for long-distance propagation in fibers

* Polarization encoding is desirable for
detection/processing

* An efficient time-bin to polarization conversion
requires active optical elements
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Optical Kerr Shutter

* A strong optical field can induce an asymmetry in
the optical response of the medium (generate
birefringence)

1 . . 500
: : DDD :
0.9 3 3 | O | | P
O Efficiency ? (m O : ;
@ Noise Counts | = : ; ; ; Q
0.7r ‘ ‘ :
> | 2
Q 06F T S S T 300 -
5 o 5
E 0.4f e N P o [ e 1200 o,
] ] f f ‘ ‘ f n
0.3 | a S
. D . . . . . z
o2k ... ST RUUORRRR T PR e U 4100
o1 O : : : o—>
O L O
o0 U

0 = 02 = 04 = 06 08 1 12 "””1'._40
Pump Pulse Energy (1J)

2016-December IPM's workshop on QIP



Time-bin to polarization conversion
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Quantum light-matter interfaces

 Mapping quantum states of photons to stationary
qubits/matter (atoms, artificial atoms, vibrational
states of solids, ...)

* Manipulating photons while maintaining their
quantum properties/states, such as wavelength
conversion, bandwidth manipulation, qubit
conversion (e.g. time-bin to polarization)

* Inducing non-linear interaction between photons
for non-demolition detection, two-qubit quantum
gates, and preparing exotic states of photons or
atoms (e.g. GHz states)
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