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Mechanical resonators
Vibrational modes of any object is given by Euler beam theory
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Quantum regime
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Why mechanical resonators? applications

Bridges different systems with different charactristics [Phys. Scr. T 137 014001(2009)]:
a. Coupling with several qubits: atom, ion, and molecule

b. Coupling with BECs

c. Superconducting qubits(transmon)

Quantum information processing [Phys. Rev. Lett. 110, 120503(2013)]

Optical-microwave conversion [ShB, Phys. Rev. Lett. 109, 130503 (2012)]

Strong Nonlinearity [Phys. Rev. B 67 134302 (2003)]
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Radiation pressure 
Simplest form of radiation pressure coupling is the momentum transfer due to 
reflection. 

Single photon transfers the momentum 

the cavity round trip time

the radiation pressure force caused by one intracavity photon

Rev. Mod. Phys. 86, 1391(2014) 30
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Optomechanical cavity
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Optomechanical cavity

1ng mass and 1MHz frequency
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Si3N4 electromechanics
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SOI electromechanics
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Optomechanical Quantum equations of motion
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Optomechanical Quantum equations of motion

Optomechanical Classical equations of motion

no vacuum fluctuations
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Optomechanical Quantum equations of motion

Optomechanical Classical equations of motion

no vacuum fluctuations

Classical random force

multistability, self induced oscillations, 
chaos,…

l i bil
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Linearization 
Analyze the quantum dynamics around classical mean values due to classical random forces 
and quantum noise on mirror and cavity

62



Linearization 
Analyze the quantum dynamics around classical mean values due to classical random forces 
and quantum noise on mirror and cavity

63



Linearization 
Analyze the quantum dynamics around classical mean values due to classical random forces 
and quantum noise on mirror and cavity

Small nonlinear term

64



Linearization 
Analyze the quantum dynamics around classical mean values due to classical random forces 
and quantum noise on mirror and cavity

Small nonlinear term
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Cavity field mediates mechanical cooling, weak coupling 
regime  
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Cavity field mediates mechanical cooling, weak coupling 
regime  

backaction

Optical spring effect(softening)
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low-pressure chemical vapor deposition
(LPCVD) 

(i) LPCVD of stoichiometric Si3N4 on both sides of a 200 μm thick silicon substrate, 
(ii) C4F8:SF6 plasma etch through the nitride membrane defining the mechanical beam 
resonator and pull-in cuts on the top side, and membrane windows on the bottom side,
(iii) electron beam lithography, aluminum deposition, and lift-off steps to pattern the 
microwave circuit
(iv) final release of the nitride membrane using a silicon-enriched tetramethylammonium
hydroxide (TMAH) solution
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1 cm × 1 cm chips diced from a high-resistivity siliconon-insulator (SOI) wafer manufactured by SOITEC using
the Smart Cut process [22]. The SOI wafer consists of
a 300 nm thick silicon device layer with (100) surface
orientation and p-type (Boron) doping with a specified
resistivity of 500 Ω-cm. Underneath the device layer is
a 3 μm buried silicon dioxide (SiO2) BOX layer. The
device and BOX layers sit atop a silicon (Si) handle wafer
of thickness 675 μm and a specified resistivity of 750 Ω-
cm. Both the Si device layer and handle wafer are grown
using the Czochralski crystal growth method.
Fabrication of the coupled coil resonator and H-slot
resonator can be broken down into the following six steps.
In step (1), we pattern the H-slot resonator using electron beam (e-beam) lithography in ZEP-520A resist, and
etch this pattern into the Si device layer using an inductively coupled plasma reactive ion etch (ICP-RIE). After
the ICP-RIE etch, we clean the chips with a 4 min piranha bath and a 12 sec buffered hydrofluoric acid (BHF)
dip. In step (2), we pattern the capacitor electrodes and
ground plane region using ZEP-520A resist and use electron beam evaporation to deposit 60 nm of Al on the
chip. In step (3), we define a protective scaffold formed
out of LOR 5B e-beam resist to create the crossover re-
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