

Institute of Science and Technology

Microwave Quantum Illumination(Quantum Sensor)

Shabir Barzanjeh

Institute of science and technology (IST) Austria

IPM(29.12.2016)

Presentation outline

Optical Quantum Illumination

Microwave-Optical Convertor

Quantum Illumination at the Microwave Wavelengths

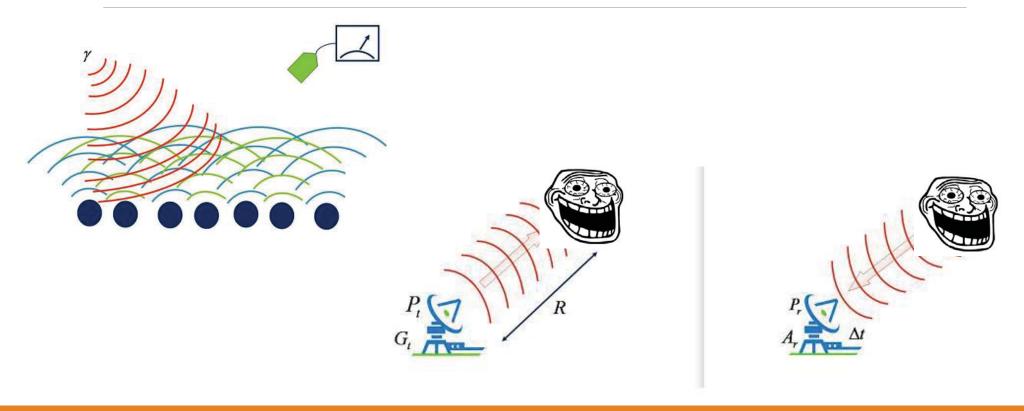
Presentation outline

✓ Optical Quantum Illumination

Microwave-Optical Convertor

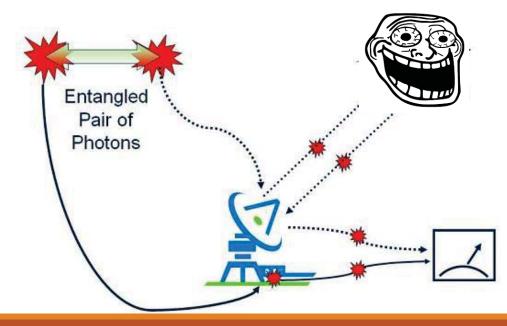
Quantum Illumination at the Microwave Wavelengths

Standard Illumination(Sensor)



Quantum Illumination

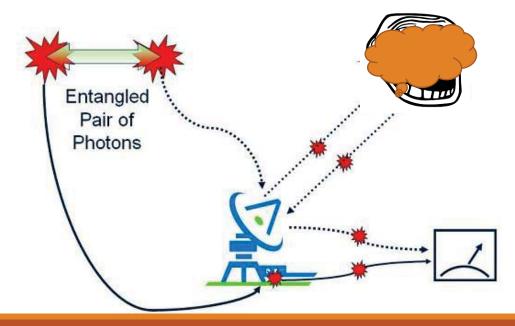
Quantum illumination is a quantum-optical sensing technique in which an entangled source is exploited to improve the detection of a low-reflectivity object that is immersed in a bright thermal background.

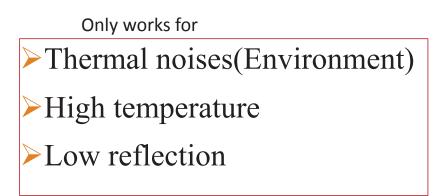


S. Lloyd, Science, **321**, 1463(2008).

Quantum Illumination

Quantum illumination is a quantum-optical sensing technique in which an entangled source is exploited to improve the detection of a low-reflectivity object that is immersed in a bright thermal background.

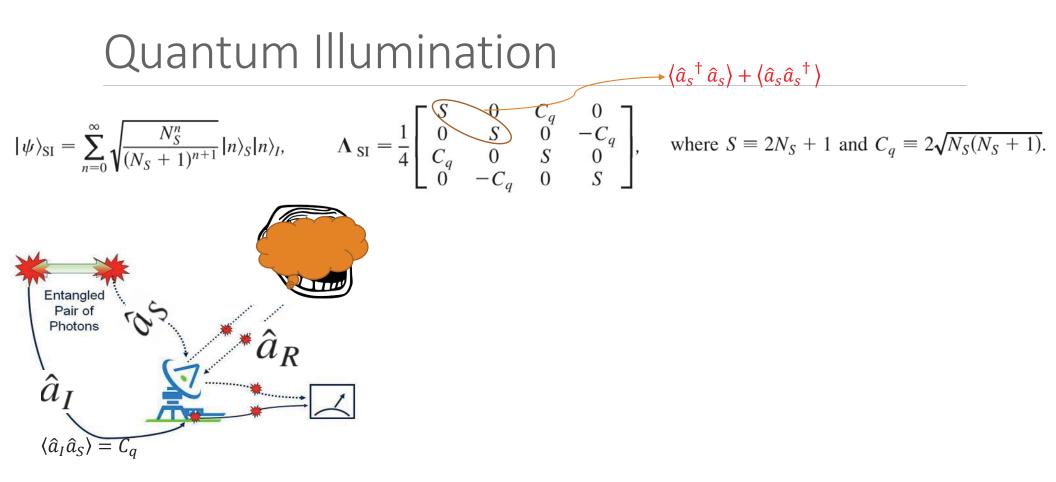


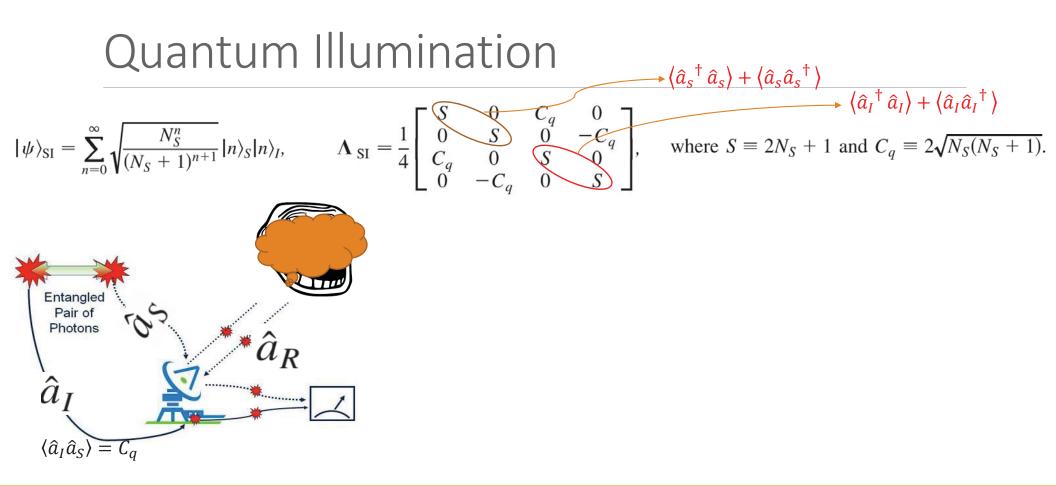


S. Lloyd, Science, **321**, 1463(2008).

Quantum Illumination

$$|\psi\rangle_{\rm SI} = \sum_{n=0}^{\infty} \sqrt{\frac{N_{S}^{n}}{(N_{S}+1)^{n+1}}} |n\rangle_{S} |n\rangle_{I}, \qquad \Lambda_{\rm SI} = \frac{1}{4} \begin{bmatrix} S & 0 & C_{q} & 0 \\ 0 & S & 0 & -C_{q} \\ C_{q} & 0 & S & 0 \\ 0 & -C_{q} & 0 & S \end{bmatrix}, \qquad \text{where } S \equiv 2N_{S} + 1 \text{ and } C_{q} \equiv 2\sqrt{N_{S}(N_{S}+1)}.$$

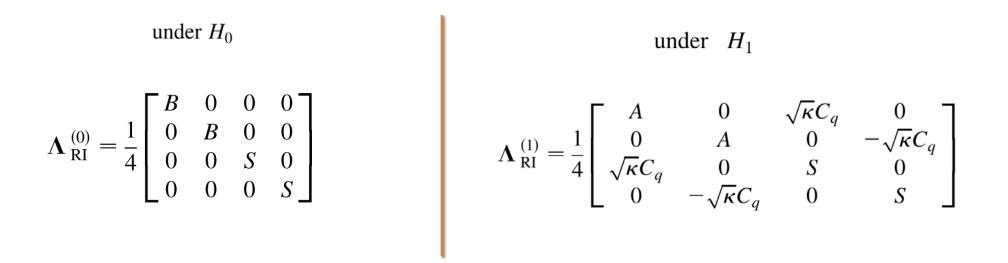




Quantum Illumination

$$|\psi\rangle_{SI} = \sum_{n=0}^{\infty} \sqrt{\frac{N_s^n}{(N_s+1)^{n+1}}} |n\rangle_S |n\rangle_I, \quad \Lambda_{SI} = \frac{1}{4} \begin{bmatrix} S & 0 & C_q & 0 \\ 0 & S & 0 & -C_q \\ 0 & -C_q & 0 & S \end{bmatrix}, \text{ where } S \equiv 2N_S + 1 \text{ and } C_q \equiv 2\sqrt{N_S(N_S+1)}.$$

Covariance matrix after reflection



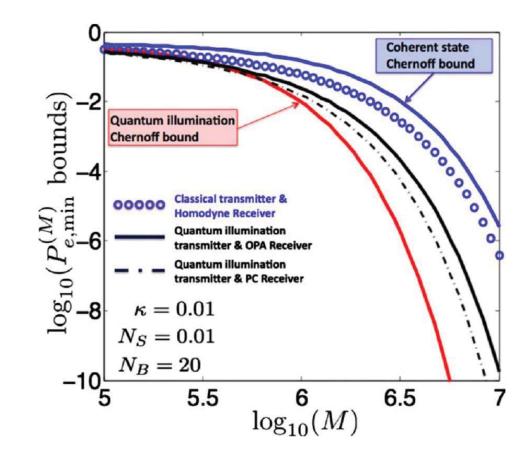
$$B \equiv 2N_B + 1$$
 and $A \equiv 2\kappa N_S + B$

12

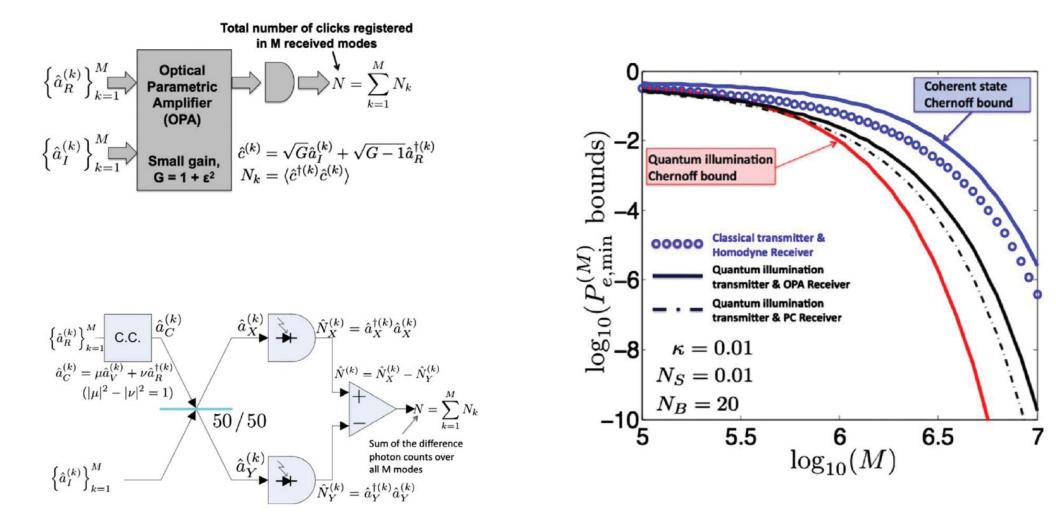
$$\Pr(e)_{\text{QI}} \leq e^{-M\kappa N_{S}/N_{B}}/2.$$

$$\Pr(e)_{\text{CS}} \leq e^{-M\kappa N_{S}(\sqrt{N_{B}+1}-\sqrt{N_{B}})^{2}}/2$$

$$\approx e^{-M\kappa N_{S}/4N_{B}}/2, \quad \text{when} \quad N_{B} \gg 1.$$



Phys. Rev. Lett. 101, 253601 (2008).

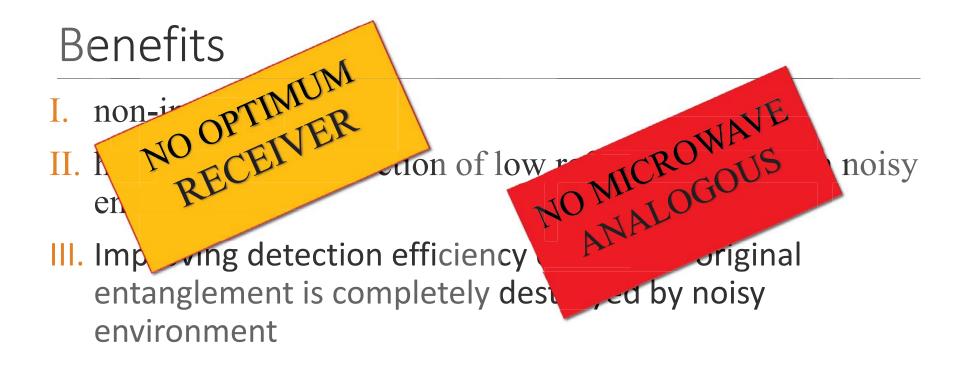


Phys. Rev. Lett. 101, 253601 (2008).

Benefits

- I. non-invasive,
- II. high-resolution detection of low reflective objects in noisy environment.
- III. Improving detection efficiency even if the original entanglement is completely destroyed by noisy environment

Benefits I. non-in OPTIMUM II. NO OPTIMUE III. NO OPTIMUE III. NO OPTIMUE III. NO OPTIMUE III. Implement detection of low reflective objects in noisy environment



In Optical domain $10^{15}Hz$ $N_B \sim 0$

What about Microwave frequencies $\sim 10^9 Hz$?

• Very noisy environment $N_B \gg 0$

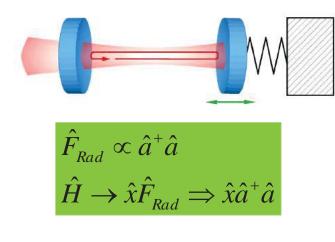
Presentation outline

✓Optical Quantum Illumination

Microwave-Optical Convertor

Quantum Illumination at the Microwave Wavelengths

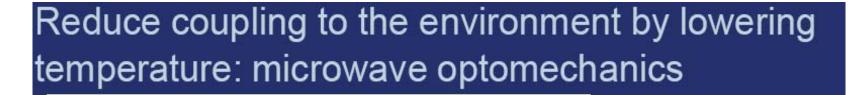
Optomechanics



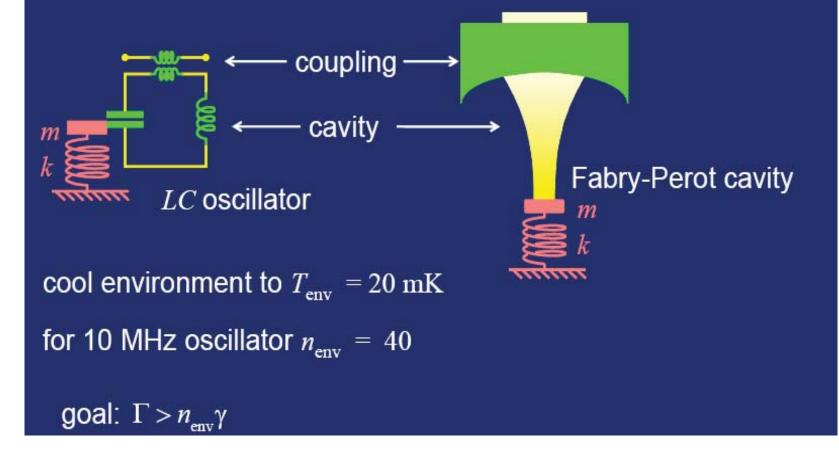
$$H = \hbar \omega_c(x) a^+ a + \frac{1}{2} \hbar \omega_m (x^2 + p^2) + i\hbar E (a^+ e^{-i\omega_L t} - a \ e^{i\omega_L t})$$
$$= \hbar \omega_c a^+ a + \frac{1}{2} \hbar \omega_m (x^2 + p^2) + i\hbar E (a^+ e^{-i\omega_L t} - a \ e^{i\omega_L t}) - \hbar G_0 a^+ a \ x$$
$$G_0 = (\omega_c / L) \sqrt{\hbar / m\omega_m} \qquad |E| = \sqrt{2P\kappa / \hbar\omega_L}$$

J. D. Mc. Cullen, P. Meystre and E. M. Wright, Opt. Lett. 9, 193 (1984).

20



Microwave "light" in ultralow temperature cryostat



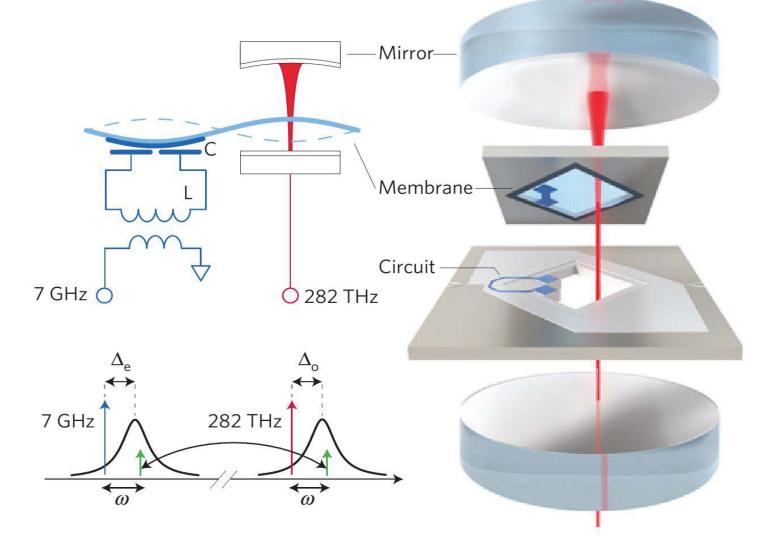
Optical to Microwave interface

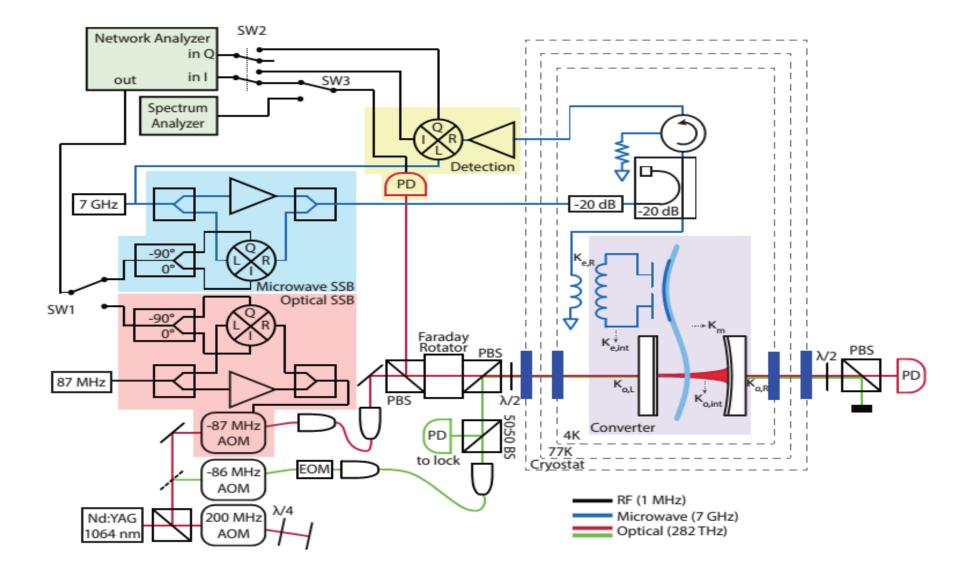
$$C_{\Sigma} = C + C_0$$
 and $\mu = C_0 / C_{\Sigma}$

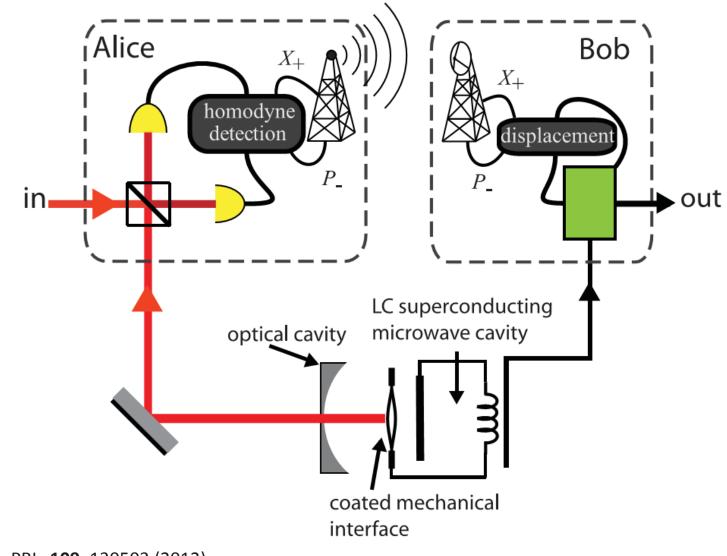
ShB. et. al., Rev. A 84, 042342 (2011).

22

Nature Physics 10, 321–326 (2014)







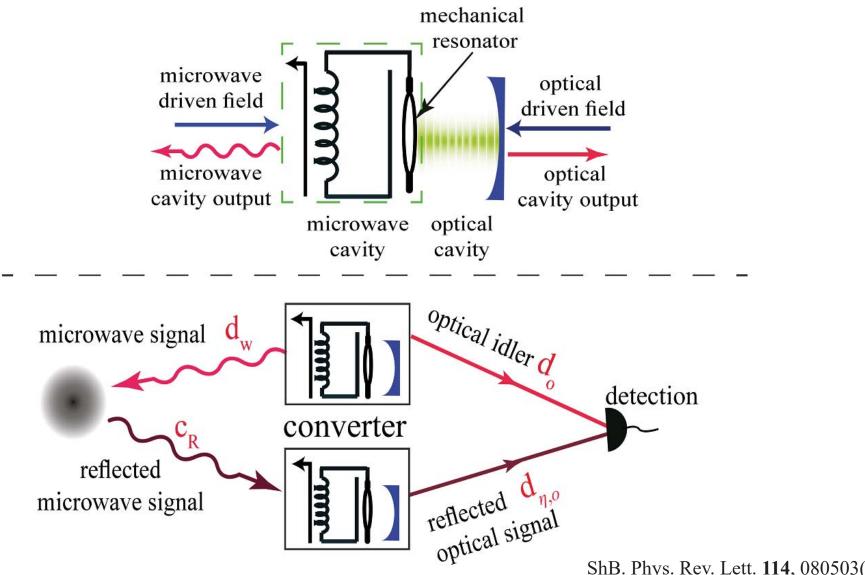
ShB, et.al, PRL, 109, 130503 (2012).

Presentation outline

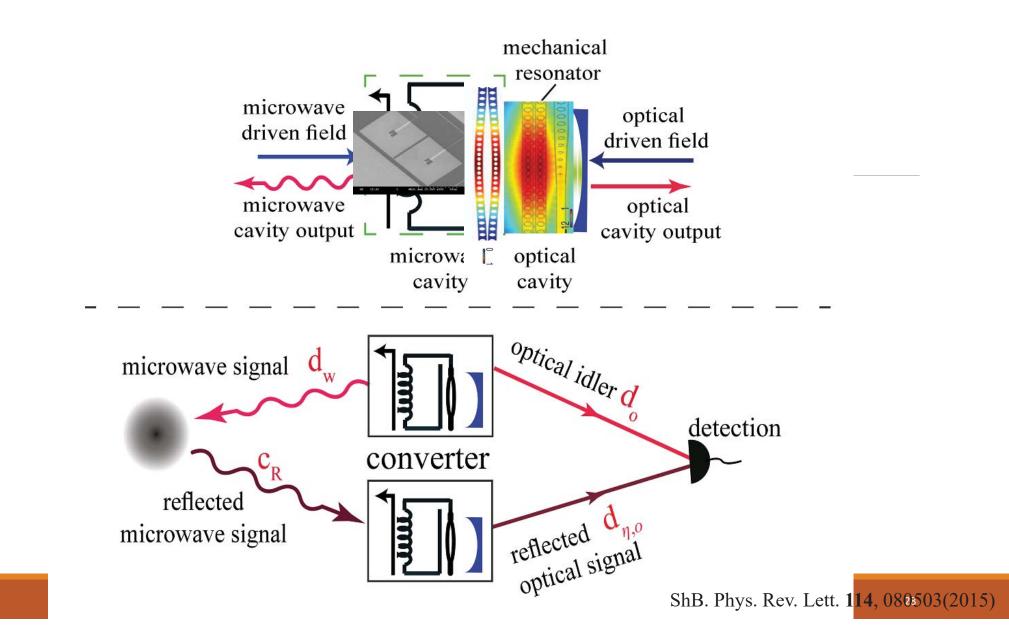
✓Optical Quantum Illumination

✓ Microwave-Optical Convertor

✓ Quantum Illumination at the Microwave Wavelengths



ShB. Phys. Rev. Lett. **114**, 080503(2015)



$$\hat{H} = \hbar \omega_M \hat{b}^{\dagger} \hat{b} + \hbar \sum_{j=\mathrm{w},o} \omega_j \hat{a}_j^{\dagger} \hat{a}_j + \frac{\hbar g_{\mathrm{w}}}{2} (\hat{b}^{\dagger} + \hat{b}) (\hat{a}_{\mathrm{w}} + \hat{a}_{\mathrm{w}}^{\dagger})^2 + \hbar g_o (\hat{b}^{\dagger} + \hat{b}) \hat{a}_o^{\dagger} \hat{a}_o$$
$$+ i\hbar E_{\mathrm{w}} (e^{i\omega_{\mathrm{d},\mathrm{w}}t} - e^{-i\omega_{\mathrm{d},\mathrm{w}}t}) (\hat{a}_{\mathrm{w}} + \hat{a}_{\mathrm{w}}^{\dagger}) + i\hbar E_o (\hat{a}_o^{\dagger} e^{-i\omega_{\mathrm{d},o}t} - \hat{a}_o e^{i\omega_{\mathrm{d},o}t}),$$

In a rotating frame with respect to $\ \hbar\omega_{
m d,w}a_{
m w}^{\dagger}a_{
m w}+\hbar\omega_{
m d,o}a_{o}^{\dagger}a_{o}$

$$H = \hbar \omega_M \hat{b}^{\dagger} \hat{b} + \hbar \sum_{j=\mathrm{w},o} \left[\Delta_{0,j} + g_j (\hat{b}^{\dagger} + \hat{b}) \right] \hat{a}_j^{\dagger} \hat{a}_j + H_{\mathrm{dri}},$$

the interaction picture with respect to the free Hamiltonian

$$H = \hbar \sum_{j=w,o} G_j (\hat{b} e^{-i\omega_M t} + \hat{b}^{\dagger} e^{i\omega_M t}) (\hat{c}_j^{\dagger} e^{i\Delta_j t} + \hat{c}_j e^{-i\Delta_j t}),$$

By setting the cavity detunings $~~\Delta_{
m w}\,=\,-\Delta_{
m o}\,=\,\omega_{M}$

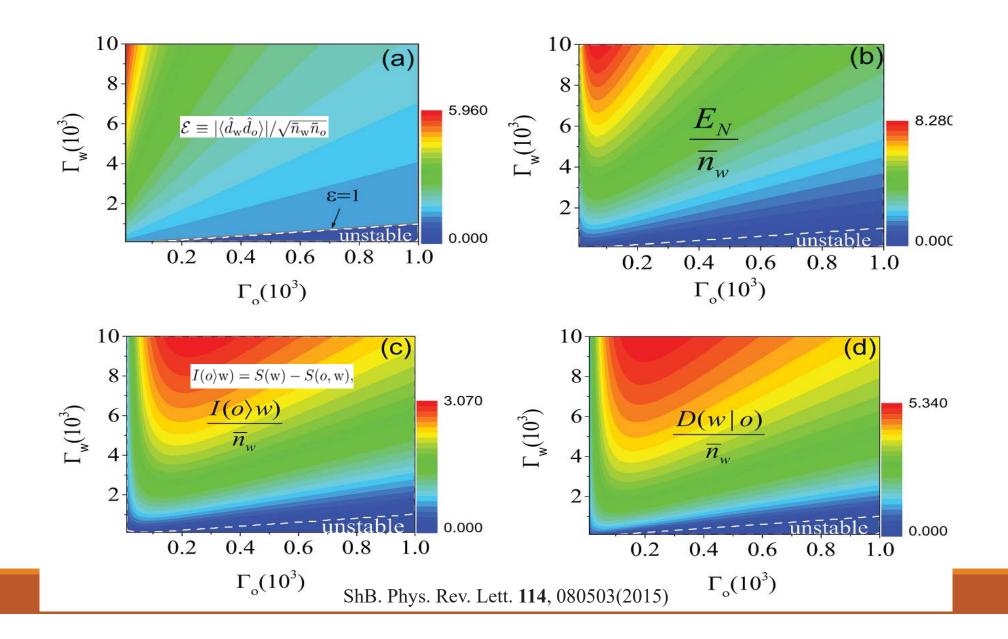
$$\hat{H} = \hbar G_o(\hat{c}_o\hat{b} + \hat{b}^{\dagger}\hat{c}_o^{\dagger}) + \hbar G_w(\hat{c}_w\hat{b}^{\dagger} + \hat{b}\hat{c}_w^{\dagger}).$$

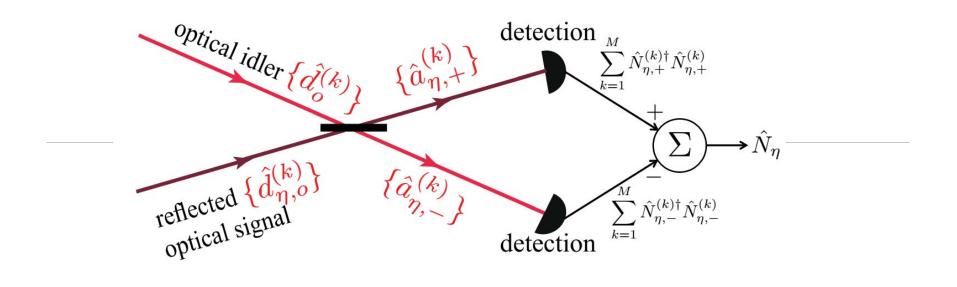
$$\mathbf{V}(\omega) = \begin{pmatrix} V_{11} & 0 & V_{13} & 0 \\ 0 & V_{11} & 0 & -V_{13} \\ V_{13} & 0 & V_{33} & 0 \\ 0 & -V_{13} & 0 & V_{33} \end{pmatrix}, \qquad \qquad V_{11} = \frac{\langle X_{w}(\omega)X_{w}(\omega')\rangle}{\delta(\omega+\omega')} = \bar{n}_{w} + 1/2, \\ V_{33} = \frac{\langle X_{o}(\omega)X_{o}(\omega')\rangle}{\delta(\omega+\omega')} = \bar{n}_{o} + 1/2, \\ V_{13} = \frac{\langle X_{w}(\omega)X_{o}(\omega') + X_{o}(\omega')X_{w}(\omega)\rangle}{2\delta(\omega+\omega')} = \langle \hat{d}_{w}\hat{d}_{o} \rangle,$$

$$E_N = \max[0, -\log(2\zeta^{-})], \qquad \zeta^{-} = 2^{-1/2} \left(V_{11}^2 + V_{33}^2 + 2V_{13}^2 - \sqrt{(V_{11}^2 - V_{33}^2)^2 + 4V_{13}^2(V_{11} + V_{33})^2} \right)^{1/2}$$

smallest partially-transposed symplectic eigenvalue of $\mathbf{V}(\omega)$

TUDELFT-FEB 9 30

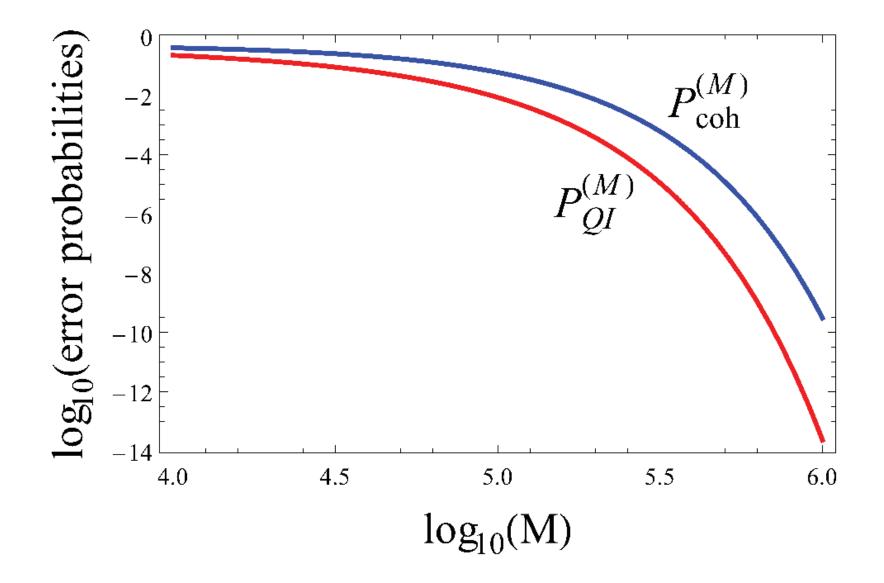


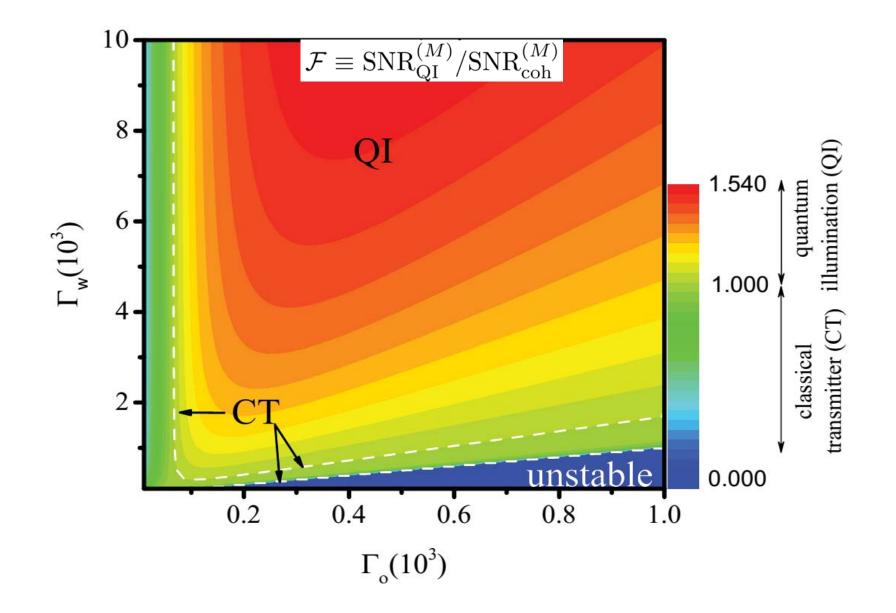


$$\hat{N}^{(k)} = \hat{a}_{\eta,+}^{\dagger(k)} \hat{a}_{\eta,+}^{(k)} - \hat{a}_{\eta,-}^{\dagger(k)} \hat{a}_{\eta,-}^{(k)}. \qquad P_{\rm EOM}^{(M)} = \frac{1}{2} \mathrm{erfc} \Big(\sqrt{\frac{M}{2}} \gamma \Big),$$

where the signal-to-noise ratio γ is defined as

$$\gamma = \frac{(\bar{N}_{\eta \neq 0} - \bar{N}_{\eta = 0})}{(\Delta \bar{N}_{\eta \neq 0} + \Delta \bar{N}_{\eta = 0})}.$$

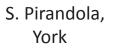




Conclusion

- I. Quantum Illumination is superior to classical illumination
- II. Microwave-optical converter is an interesting device for implementing microwave quantum illumination
- III. Microwave quantum illumination shows 3dB improvement compare to standard microwave illumination

Thank you



C. Weedbrook, Toronto

S. Guha, Raytheon

D. Vitali, Camerino

J. Shapiro, MIT

RWTHAACHEN UNIVERSITY D. DiVincenzo Aachen

ShB. Phys. Rev. Lett. 114, 080503(2015)

36