Holographic Renormalization Group

Ali Mollabashi

18/12/2011

12/18/2011

1

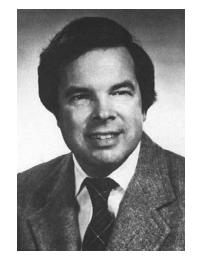
Outline

- Wilsonian Renormalization Group (WRG)
- AdS/CFT Correspondence
- Construction of Holographic WRG
- Open Issues

Wilsonian Renormalization Group

Integrating out high energy degrees freedom of a microscopic Theory

Effective field theory



K. Wilson (1936)

3

$$Z = \int \mathcal{D}\phi \Big|_{k > \Lambda} \mathcal{D}\phi \Big|_{k < \Lambda} e^{-S[\phi]} = \int \mathcal{D}\phi \Big|_{k < \Lambda} e^{-S_{\Lambda}[\phi]}$$
12/18/2011

Wilsonian Renormalization Group

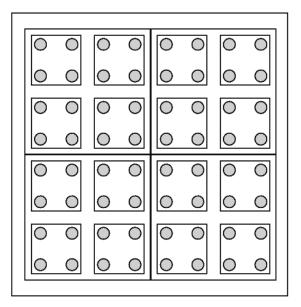
$$Z = \int \mathcal{D}\phi \Big|_{k > \Lambda} \mathcal{D}\phi \Big|_{k < \Lambda} e^{-S[\phi]} = \int \mathcal{D}\phi \Big|_{k < \Lambda} e^{-S_{\Lambda}[\phi]}$$

- Separate the path integral variables into high and low energy.
- Integrate out the high energy variables. Result: action with an infinite number of couplings.
- Cutoffs do not play nicely with symmetries (gauge, coordinate, extended supersymmetry, dualities!).

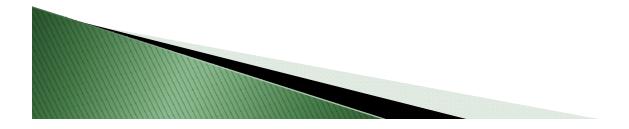
Wilsonian Renormalization Group

Considering all sites, the physics is described by H(T,J).

Now consider the blocks, if the physics is described by H(T',J'), the theory describing the system is renormalizable.



 $H(T,J) \rightarrow H(T',J') \rightarrow H(T'',J'') \rightarrow \dots \rightarrow flowing toward a fixed point$



RG Equations

Physics does not depend on the energy scale leads to Callan-Symanzik equation:

$$\frac{d}{d\Lambda}G^{(n)}(x_1,...,x_n) = 0$$

- Fix the value of the parameters at an arbitrary energy scale.
- Solve CS equation using the renormalization conditions.
- Result: running of the parameters.

AdS/CFT Correspondence

A classical weakly coupled theory of gravity living in d+1 dimension is dual to a strongly coupled conformal field theory in large N limit living in d dimension.

$$\left\langle \exp\left\{\int d^d x \,\phi_0(x)\mathcal{O}(x)\right\}\right\rangle_{\rm CFT} = Z_{\rm gravity}[\phi_0]$$

Holographic WRG

Idea: pull the Wilson RG back to the gravity theory, where it becomes the holographic RG.

Holographic WRG

AdS/CFT maps, CFT energy to 1/z, where z is the emergent coordinate:

$$ds^{2} = \frac{L^{2}}{z^{2}} \left(dz^{2} + dx^{\mu} dx_{\mu} \right)$$

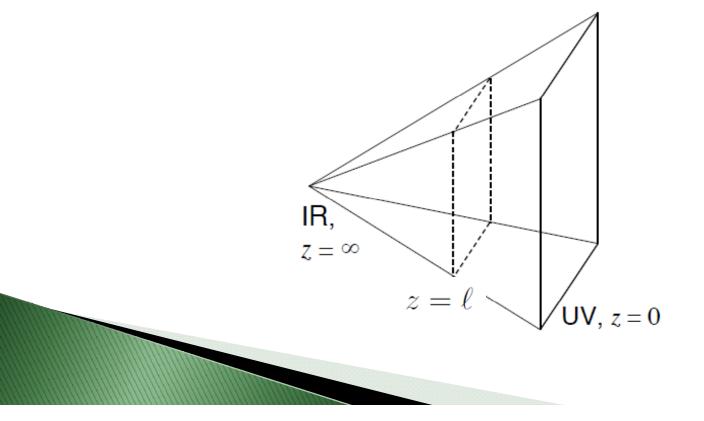
$$|\mathbf{R}|_{z=\infty}$$

$$|\mathbf{U}|_{z=0}$$

$$|\mathbf{U}|_{z=0}$$

Holographic WRG

This suggests that we should integrate fields at small z first, and progressively move the cutoff to the IR.



Outline for construction of HWRG

1 – Splitting the path integral in the bulk.

2- Splitting the path integral in the field theory, and looking for parallels.

Splitting the bulk path integral

• Consider some scalar fields in a *fixed* AdS background:

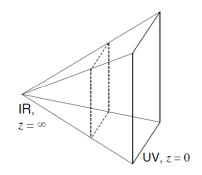
$$Z = \int \mathcal{D}\varphi \, e^{-\int_0^\infty dz \, \mathcal{L}(z)}$$

=
$$\int \mathcal{D}\varphi |_{z>\ell} \mathcal{D}\tilde{\varphi} \, \mathcal{D}\varphi |_{z<\ell} \, e^{-\int_\ell^\infty dz \, \mathcal{L}(z) - \int_0^\ell dz \, \mathcal{L}(z)}$$

=
$$\int \mathcal{D}\tilde{\varphi} \, \Psi_{\mathrm{IR}}(\ell, \tilde{\varphi}) \Psi_{\mathrm{UV}}(\ell, \tilde{\varphi}) \, .$$

where $\tilde{\varphi}(x) = \varphi(z = \ell, x)$

$$Z = \int \mathcal{D}\tilde{\phi} \Psi_{\mathrm{IR}}(\ell, \tilde{\phi}) \Psi_{\mathrm{UV}}(\ell, \tilde{\phi})$$



13

 It is plausible to interpret the large-z part of the path integral in terms of a CFT with a UV cutoff (Susskind & Witten, 1998)

$$\Psi_{\mathrm{IR}}(\ell,\tilde{\varphi}) = \int \mathcal{D}M|_{k\ell<1} \exp\left\{-\int d^d x \,\tilde{\varphi}^I(x) \mathcal{O}_I(x)\right\}$$

Where *M* stands for matrix fields of the CFT. This is the usual dictionary between bulk fields and single-trace boundary interactions but this time with a UV cutoff.

$$Z = \int \mathcal{D}\tilde{\phi} \Psi_{\mathrm{IR}}(\ell, \tilde{\phi}) \Psi_{\mathrm{UV}}(\ell, \tilde{\phi})$$

• In this stage assume that $\Psi_{\rm UV}$ has a local representation in scale ℓ so it can be expanded in an infinite number of higher derivative local terms (like the Wilsonian action).

$$Z = \int \mathcal{D}\tilde{\phi} \Psi_{\rm IR}(\ell, \tilde{\phi}) \Psi_{\rm UV}(\ell, \tilde{\phi})$$

The role of the functional integral over ϕ on the interface looks like some weighted average over couplings.

$$Z = \int \mathcal{D}\tilde{\phi} \Psi_{\rm IR}(\ell, \tilde{\phi}) \Psi_{\rm UV}(\ell, \tilde{\phi})$$

 For example considering a single scalar with a Gaussian UV factor

$$\Psi_{\rm UV}(\ell,\tilde{\varphi}) = \exp\left\{-\frac{1}{2h}\int d^d x \,(\tilde{\varphi}(x) - g(x))^2\right\}$$

Using our postulate for $\Psi_{\rm IR}\,$ and carrying out the integral over $\tilde{\phi}\,$ gives

$$Z \propto \int \mathcal{D}A|_{k\ell < 1} \exp\left\{-\int d^d x \left(g(x)\mathcal{O}(x) - \frac{h}{2}\mathcal{O}(x)^2\right)\right\}$$

Double-trace terms are generated!

$$Z = \int \mathcal{D}\tilde{\phi} \Psi_{\rm IR}(\ell, \tilde{\phi}) \Psi_{\rm UV}(\ell, \tilde{\phi})$$

> In general if we read off the field theory effective action using our postulate on $\Psi_{\rm IR}\,$ it leads to

$$e^{-S_{\ell}} = \int \mathcal{D}\tilde{\varphi} \exp\left\{-\int d^d x \,\tilde{\varphi}^I(x) \mathcal{O}_I(x)\right\} \Psi_{\rm UV}(\ell,\tilde{\varphi})$$

Thus the Wilsonian action contains multi-trace terms, localized on scale ℓ .

HRG Equations

Varying ℓ gives radial Schrodinger equations

$$\partial_{\ell} \Psi_{\mathrm{IR}}(\ell, \tilde{\varphi}) = H(\tilde{\varphi}, \delta/\delta \tilde{\varphi}) \Psi_{\mathrm{IR}}(\ell, \tilde{\varphi}) , \partial_{\ell} \Psi_{\mathrm{UV}}(\ell, \tilde{\varphi}) = -H(\tilde{\varphi}, \delta/\delta \tilde{\varphi}) \Psi_{\mathrm{UV}}(\ell, \tilde{\varphi})$$

The 'Wilsonian action' is the integral transform of UV and satisfies.

$$\partial_{\ell} e^{-S_{\ell}} = -H(\delta/\delta \mathcal{O}, \mathcal{O})e^{-S_{\ell}}$$

This should be compared with the RG on the path integral is independent of where the splitting is done, e field theory side.

$$0 = \frac{d}{d\ell} Z = \frac{d}{d\ell} \left\langle e^{-S_{\ell}} \right\rangle_{\ell}$$

Outlook

- WRG leads to the running of the parameters.
- AdS/CFT is correspondence between a gravity theory with a QFT (without gravity).
- Applying the AdS/CFT recipe to a part of AdS space leads to a recipe for HWRG.
- The relation between the cutoffs (AdS space and QFT) is not determined yet.
- We don't have a recipe of HWRG for the general gauge/gravity duality.

