DARK MATTER AND ITS CANDIDATES

- Behnoosh Khavari
- Institute for research in Fundamental Sciences
- 1391

Outline

- Why Dark Matter?
- What does a high energy physicist have to do with dark matter?
- WIMP dark matter
- How about other possibilities?
- Summary

WHY Dark Matter is necessary?

Inconsistent observations with Newtonian gravity

- Coma cluster (1933) observed by Zwicky
- Velocities too high to be produced by the gravitation of observed matter
- Luminous matter
 ~0.5% of required

Evidence from galactic rotation curves

Prediction of Newton's law of gravity

The Ultimate picture

- Other explanations than the Dark Matter proposal
- Today Dark Matter is well accepted by the community and is supposed to constitute about 22% of our universe.

http://www.daviddarling.info/encyclopedia/D/dark_halo.htmlCr edit: Jose Wudka

http://www.homodiscens.com/home/embodied/mortalis_astonishing /landmarks_sub/matter/index.htm Image source: Edelweiss II

What does a high energy physicist have to do with dark matter?

What does Dark Matter consist of?

- Baryonic matter :
- Massive compact halo objects(MACHOs)
- Black holes
- Neutron stars
- Brown dwarfs
- These can provide only about 10% Of expected DM

Non-baryonic DM is needed to
 Account for the remaining fraction

GENERAL properties of DM

No EM interactions

Stable: Life time of the order of the universes age

• Should make around 22 percent of our universe

http://scienceblogs.com/startswithabang/2011/05/25/do-more-planets-gas-and-stars/

NON-baryonic DM candidates

 the most popular candidate : Weakly Interacting Massive Particles (WIMPs)

Other BSM candidates

WIMP Dark Matter

Freeze out of WIMPs

Boltzmann equation $\frac{dn}{dt} + 3Hn = -\langle \sigma v \rangle \left(n^2 - (n^{eq})^2 \right)$ $H(t) \equiv \frac{\dot{R}(t)}{R(t)}$

For WIMP mass~100GeV

The result will be:

 $\Omega_X h^2 pprox rac{3 imes 10^{-27} {
m cm}^3 {
m s}^{-1}}{\langle \sigma v
angle}$ WIMP miracle

An appealing WIMP candidate from SUSY

- Lightest supersymmetric particle (LSP)
- Electrically uncharged
- Z₂ symmetry : interacting with SM particles in such way that always an even number of LSPs participate.

How to detect these WIMPs?

 Direct detection Indirect detection Particle colliders No firm evidence till now for the existence of such WIMPs

thermal freeze-out (early Univ.) indirect detection (now) DNdirect detection production at colliders

How about other possibilities?

Freeze-in vs Freeze-out

L. J. Hall, K. Jedamzik, J. March-Russell and S. M. West, JHEP 1003, 080 (2010) [arXiv:0911.1120 [hep-ph]]

- Freeze-in of FIMP DM $\lambda \sim 1.5 \times 10^{-12}$
- Experimental evidence: Long-lived LOSP decays at the LHC

- FIMP freeze-in and decay to LOSP DM $_{\mathbf{Y}}$
- Experimental evidence:

Enhanced direct and indirect detection signals of DM

Summary

DM is well accepted by the community.

Particle phenomenologists are making a big jungle of models explaining non-baryonic DM.

WIMP particles from supersymmery provide some appealing candidates for Dark Matter satisfying all needed criteria.

references

- Todd Duncan, Craig Tyler, Your Cosmic Context: An Introduction to Modern Cosmology, Pearson Addison Wesley, ©2009
- B. Gianfranco, ed., Particle Dark Matter. Cambridge University Press
- Dark Matter Candidates from Particle Physics and Methods of Detection Jonathan L. Feng
- L. J. Hall, K. Jedamzik, J. March-Russell and S. M. West, JHEP 1003, 080 (2010) [arXiv:0911.1120 [hep-ph]]

I would like to aknowledge my supervisor, Dr Yasaman Farzan who helped me in starting this research.