Dec.4

Deep Inelastic Scattering

In this lecture, we continue our study of the quark structure of the proton. One
way to learn about this structure is to scatter electrons from a proton and try to
interpret the resulting cross section.

Electron scattering from a proton was studied in the 1950’s by Hofstadter. He
discovered that the elastic e”p cross section falls off very quickly as the momentum
transfer becomes large, with a form factor F(¢?) ~ ¢~%.
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For hard scattering, with momentum transfer of the order of 1 GeV and above, the

dominant processes are inelastic scattering reactions, mainly e”p — e p + nm. At
first, the hadronic final states can be understood as nucleon resonances such as the
A. Even these disappear for very hard scattering.

What happens then? I would like to analyze this process using the very naive
picture that the proton is a soft bag containing quarks and gluons. The electron does
not see the gluons, but it can scatter electromagnetically from the quarks. In this
QED reaction, the dominant process is elastic electron-quark scattering. We should
obtain the QED cross section for that process; then we can compute the e™p cross
section in our simple model and compare it to experiment.

Electron-quark scattering proceeds through the diagram
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This diagram is very similar to the diagram for ete™ — qg, and we could easily
compute it directly. However, I would like to note that the value of this diagram
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can be obtained more simply by recognizing that the two processes e”¢ — e~¢ and
ete™ — ¢q are in a certain way identical. They are related by changing the final
e~ in the first process to an initial-state et and an initial ¢ in the first process to
a final-state §. Since the same operator creates a final e~ as destroys an initial e*,
and the same operator destroys an initial ¢ as creates a final g, the amplitudes for
these two processes are derived from the same operator matrix elements. Processes
connected in this way are said to be related by crossing.

To see how crossing works explicitly, consider the quark current matrix elements
in the two processes. In ete~™ — ¢7, the quark current matrix element, squared and
summed over polarizations, gives
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In e~q — e7g, the quark current gives
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These expressions are identical after the substitution kK = —% and multiplication by
(—1). The substitution replaces a vector with a positive time component (for the final
state) with one with a negative time component (for the intial state). The general rule
is that we can obtain the amplitude for any process from that of a crossed process by
substitution of the momentum vectors, adding an overall factor (—1) in the squared
amplitude for each crossed fermion. In particular, we can obtain the matrix elements
for e ¢ — e ¢ from those for ete™ — ¢7 by the substitutions

% 3 ky = =~ ka CIAL
by W /ﬂlq‘ k?_" —L; A\ /}:
e 2 K¢ )
Q -
¥, kq k3= ky e ’k, “k,_ 1



Crossing relations can be implemented very simply for 2 — 2 scattering processes
by considering the basic Lorentz invariant combinations of momenta. In the process
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define the Mandelstam variables
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I have already been using this definition of s. The two definitions of each invariant
are equal by momentum conservation, k; + ko = k3 + £4.

Adding the six formulae above gives a useful identity
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For all massless particles in the center of mass frame,
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Then the invariants s, £, u are
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These explicitly satisfy s +¢ +u = 0.

In terms of s, £, u, the substitution that relates the crossed reactions ete™ — qg
and e~ ¢ — e~ ¢ becomes simply

In the discussion above, I have derived the crossing relation for the squares of matrix

elements summed over polarizations. Crossing relations are not necessarily valid for
individual helicity amplitudes. However, for massless particles, where the helicity
states correspond to well-defined representations of the Lorentz group, the crossing
relations do hold, with an amplitude with a final e}, for example, being related to
the amplitude with an initial ey .

We can now very simply obtain the helicity amplitudes for e~q — ¢~ ¢q. We need
only recall the helicity amplitudes computed on Wednesday and apply crossing. Here
are the formulae we derived for ete™ — ¢7:
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Then, by crossing,
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By parity, the same formulae apply when all helicities are reversed. Processes in which
the helicity of the e~ or the ¢ flips from the initial to the final state are forbidden in
the zero mass limit.

The polarized differential cross section for e7 q; — erqp is then given by
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For e} gr, we replace s> by u? in the last term. The cross section for unpolarized
initial states is
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It will be convenient to modify this formula in one more way. The differential cross
section is expressed in terms of the scattering angle in the center of mass frame. In

this frame
dt = ks des®

Then we can recast the formula as
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and it will be valid in any frame.

We can now embed this calculation in our simple model of proton structure. To
set up the model, 1 would like to think of the proton as colliding with the electron
at high energy. The proton has a total momentum P. I will model the proton as
a collection of quarks, antiquarks, and gluons, each of which moves approximately
collinearly with the proton and carries a fraction £ of its momentum
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I will assume that we are considering such high energies and momentum transfers that
we can ignore the masses of the quarks and also that of the proton. The probability
to find a quark of flavor f at momentum fraction £ will be
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This model is called the parton model. It was formalized by Feynman. The constituent
quarks, antiquarks, and gluons in the proton are called partons. The functions f¢(£)
are called parton distribution functions. They are derived from the square of the
proton wavefunction, that is, they depend on the aspects of the strong interactions
that involve strong coupling and quark confinement. However, in this model, we
assume that the partons do not have large momenta transverse to the direction of the
proton, as might result from a strong-interaction hard-scattering process.

In the parton model, the cross section for e™p scattering is given by
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where §, £, @ are the invariants for the e~¢ reaction. We now need to simplify this
formula so that it can be compared to experimental data. The original experiments
on very hard e p scattering were done at SLAC. In these experiments, only the mo-
mentum of the scattered electron was measured; the final hadronic state was ignored.
So, let us consider how much information we can obtain from the electron side only.

Here is the kinematics of the full e”p scattering process and its parton model
representation:
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The 4-momentum measured for the final ¢~ is k. The 4$momentum transfered to
the proton can then be determined: ¢ = k — k’. From g and the initial-state vectors,
we can construct the following invariants
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In the lab frame where the proton is at rest, P = (mp,ﬁ). Then, in this frame,
y = q°/kP, the fraction of the original energy of the electron that is transfered to
the proton. Thus, 0 < y < 1. We will see in a moment that also 0 < 2 < 1. Let
s = (P + k)2 = 2P - k be the square of the total center of mass energy for the e™p
reaction. Then @? = zys. The full kinematics of the inelastic electron scattering can
be described by the dimensionless variables 2 and y.

We now need to find the values of 3, £, 4 in terms of experimental observables. This
can be done using a beautiful bit kinematics due to Feynman. In the e”q scattering
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the final quark must be on its mass shell. Thus
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When we measure = from the scattered electron, we are picking out the momentum
fraction £ of the quark that was scattered in that event.

Now
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In the expression for the cross section, df can be replaced by dx and dt can be
replaced by d@Q? = d{zys) = dy-zs. Then the parton model formula for the e p cross
section becomes
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Simplifying, and adding the possible contribution of antiquark partons in the proton,
we arrive at the formula
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This expression shows a very beautiful factorization. The expression in brackets
is called Fy(z,@?). However, we see that, in the parton model, this quantity is
independent of @2 and is a function of z only. This behavior is called Bjorken scaling.
It was derived by Bjorken from a more abstruse theory before the formulation of the
parton model.

How well does this theory work? The cross sections for very large momentum
transfer e p scattering—deep inelastic scattering—were measured at SLAC in the
1960°s. Figs p. 2 shows a photograph of the apparatus. A liquid Hydrogen target,
off to the left, was exposed to the 17 GeV electron beam. The blue magnets form
a spectrometer for the scattered electron. The orange box to the right is an electro-
magnetic calorimeter that was used to distinguish e”s from 7~s. The spectrometer
is mounted on railroad tracks so that it can be rotated to different angles.

Some of the data is shown in Figs p. 3. Large Q? corresponds to higher energy
and higher angle for the scattered electron. In the lower energy and angle regions,
we see distinct nucleon resonances, but at high Q2 these smear out into a smooth
differential cross section.



Where the data is smooth (Q? > 1 GeV?), construct
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The result is shown in Figs p 4. The data obeys Bjorken scaling! The form of
Fy(z) gives the distribution of quark momenta in the proton. If the proton contained
only 3 quarks and some gluons, we might expect that this function would peak at
z ~ 0.2 —0.3. In fact, it shows many extra quarks and antiquarks at small fractions
2. Feynman called these wee partons.

Figs p. 5 shows a modern determination of F;(x) measured at the e p collider
HERA at DESY in Hamburg, Germany. You can see that the density of low-
momentum quarks and antiquarks in the proton continues to increase at small z.
Thus, we should best think of the proton as containing a net number of 3 quarks,
plus many ¢g pairs. The quantum numbers of the proton are expressed as sum rules
for the parton distribution functions
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In addition, the statement that the partons, together, carry the full momentum of
the proton is expressed by the sum rule
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From the distribution functions for quarks, we learn that the quarks carry only about
half of the total momentum of the proton; the gluons must account for the rest.

I will discuss the determination of parton distribution functions in more detail next
week. I will also reveal that the parton distributions are not actually independent of
@?2. Instead, they evolve slowly as a function of log Q%. We will see that this effect is
predicted by QCD and is confirmed by more detailed experiments.

Finally, we should ask what the hadronic final states look like in deep inelastic
scattering. It was necessary to go to much higher energies than those of the SLAC



experiments before this became clear. However, the experiments at HERA clearly
show that the struck quark deep inelastic scattering materializes as a hadronic jet
very similar to those in ete™ — ¢§. An example of a HERA event, from the H1
detector, is shown in Figs. p.6. The single track is the scattered electron, which is
seen to make a shower in the electromagnetic calorimeter. The cluster of tracks going
downward is the jet.

We have now seen several examples of the rule that the strong interactions, how-
ever strongly they might pull on quarks at large distances, act weakly at short dis-
tances and, equivalently, do not transfer large momenta between quarks. In the next
lecture, I will explain how this odd behavior can make sense.
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