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We are now very close to being able to select a unique theory of the strong interac-
tions. This theory should be a non-Abelian gauge theory. The quarks should be in a
representation of the gauge group G of this gauge theory. The only degree of freedom
available is color. In fact, this explains the presence of the color quantum number of
quarks as the quantum number to which gluons and the strong interactions couple.
Then G should have 3-dimensional irreducible representations. The only choices are
SU(3) and SO(3) or SU(2). I will argue in a moment that hadrons should be in
singlet states of G. In SU(3), we can make color singlets using the invariants d;; and
€5 These correspond exactly to mesons (q7) and baryons (¢gq). With SO(3), we
can also make a G-invariant by combining two 3-dimensional representations (gg);
this would make a fractionally charged hadron, and no such particles are observed.

By this logic, we obtain a single candidate for the theory of strong interactions,
the SU(3) Yang-Mills theory with quarks as Dirac fermions in the 3-dimensional rep-
resentation. This theory is called Quantum Chromodynamics (QCD). Its Lagrangian
is
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This unique theory gives us many predictions that can be tested. I will present a
number of them in the next three lectures.

We can study QCD either in the large-distance, strong coupling regime or at
high energies where it is weakly coupled. It is very difficult to make quantitative
caleulations in QCD in the strong coupling regime. One approach is to approximate
QCD by replacing continuum space-time by a discrete lattice. In this approach,
invented by Wilson and Polyakov, the theory can be studied in an expansion about
strong coupling (¢ — o00). In this expansion, it is manifest that the only states of
finite energy are G singlets. If one attempts to separate a quark and an antiquark, a
physical string forms that joins them, and the energy of this configuration increases
linearly with the distance of separation. Using numerical simulations, it is possible to
compute the hadron masses in lattice gauge theory. The first approximation gives a
spectrum that resembles the quark model states discussed in the first lecture. With
more detailed numerical work, it is possible to approach the limit in which the lattice



spacing goes to zero, and, in that limit, the masses of the low-lying mesons and
baryons are reproduced to a few percent accuracy. I apologize that I will not have
time to discuss lattice gauge theory in this course. I will discuss some further strong-
coupling aspects of QCD in Thursday’s lecture.

Now I would like to turn to the high-energy properties of QCD. Most of this
discussion will be at energies larger than 10 GeV where the five quarks u, d, s, ¢, b
can be treated as approximately massless. In this region, the running QCD coupling
constant behaves as
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For guidance, the value of a,; that will emerge from the measurements I will describe
gives
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This is a weak coupling, so we should be able to see the effects of gluons directly
through weak-coupling perturbation theory.

One place to look for gluons is in the final states of e*e™ annihilation to hadrons.
Quarks are charged and so they radiate photons. Quarks should be able to radiate
gluons in a similar way. The rate of this process is given by the Feynman diagrams
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It is not difficult to compute these diagrams. Choose the kinematics to be
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If Ej is the electron or positron beam energy in the center of mass frame, the energy
of each parton in this frame is F; = 2;F}. Then if
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is the leading-order cross section for e*e~ annihilation to hadrons, the cross section
for gluon radiation is
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The cocflicient 2¢,/37 = 2-4%, but the denominator contains small factors, so
roughly 10% of eTe™ annihilation events should contain a visible gluon. Figs p. 2
shows a typical 2-jet event as observed by the SLD detector at 91 GeV. Figs p. 3
shows an event with 3 visible jets. Figs p. 4 shows an event with 4 jets, presumably
corresponding to double gluon radiation.

To test QCD more quantitatively, we need to compare the rate of observed multi-
jet events to an integral over the predicted cross section. There are two problems
here: First, we need to define more precisely what we mean by a jet. Second, the
cross section formula is divergent as ; — 1 or z; — 1, and we need to control this
singularity.

It should be no surprise that the cross section for gluon radiation is divergent.
In QED, the first-order diagram for radiation predicts an infinite probability for the
radiation of soft photons. A more complete analysis shown that what is really pre-
dicted is the radiation of an infinite number of soft photons. We should see similar
issues in QCD.

To quantify the probability of gluon emission, we define variables that characterize
the shapes of final states in ete™ annihilation that are computable and finite in QCD
perturbation theory. Many such observables have been proposed. The single most
useful one thrust, invented by Farhi. To compute this observable, we choose an axis
7 for each event that maximizes the projection of particle momenta onto that axis.
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This quantity can be computed at the quark-gluon level and at the hadron level.
As long as the nonperturbative part of the strong interactions does not generate
large momentum transfers, these two estimates should approximately coincide. From
the quark-gluon side, this statement relies on the fact that thrust is infrared-safe, a
property that will be explained below.

In a 3-parton event, viewed in the center of mass frame, the three momentum
vectors sum to zero and therefore lie in a planc. In this plane, the configuration of
momenta is



If the thrust axis is chosen to lie along the direction of the longest of the three vectors,
then 71 - kyar = TmaxEs, the projections of the other two vectors on # also gives Zmaz,
and this is the largest possible value for this configuration. Then
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For 3-parton states, T varies from 1 for a back-to-back configuration with a very soft
third parton to % for a ‘Mercedes’ configuration in which the three vectors have equal
length. Multiparticle events with partons of random momentum and orientation have
T=1
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It is not difficult to integrate the QCD cross section for ete™ — ggg over z; and
xy subject to the condition that T' = z,,,, is fixed. Note that if T < 1 then neither
of the two singularities can be reached. The result is
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The shape of this distribution is



In real data, the thrust can never be exactly 1. In addition, multiparticle events will

populate the region (1 -7") > % to some extent. Models that include the transition
from quarks and gluons to hadrons can be used to estimate these effects. Figs p. 5
show a comparison of SLD data to two such simulation programs. The simulation
results in the region 0.1 < (1 — T) < 0.3 are close to the lowest-order result from
perturbative QCD, so in that region this comparison is a test of QCD.

The normalization of the QCD prediction gives us a vale of ;. As the center of
mass energy increases, the thrust distribution becomes narrower, and other measures
of event shape also indicate that fewer partons are being radiated. So, the value of a;
is observed to decrease. The red points in Figs p. 6, from an analysis by Bethke, show
a number of these o, determinations as a function of the momentum transfer in the
ete~ annihilation reaction. Notice how nicely these and the other o, measurements
shown follow the (-dependence of the solution of the QCD renormalization group
equation.

We should now look more closely at the infrared singularities in the cross section
for gluon radiation. Normally, we think of infrared singularities as being associated
only with soft radiation. However, we have a special situation here in which a massless
particle turning into two massless particles. Label the momenta involved in this
process
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If k2 =0 and ¢%> =0, then
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So the denominator of the Feynman diagram vanishes if the final quark and gluon
are collinear, even if both partons carry substantial momentum. I will call such a
process, a conversion of a massless parton to two collinear massless partons carrying
fractions z and (1 — 2} of its momentum, a collinear splitting.

Such collinear splittings clearly have high probability in QCD. Thus, QCD can
only predict the values of event observables that are unchanged when we replace a
parton by a set of two collinear partons. This is the definition of infrared safety
referred to above. Thrust is infrared safe, since a collinear splitting converts a factor
# -k into (fa- zk+ 7 (1— z)l_;) An alternative measure of event shape, the sphericity
defined by
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is not infrared safe and thus cannot be predicted in QCD.

I will now compute the probability for an approximately collinear splitting ¢ —
g+ g. As above, I denote the momenta as
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I will assume that p is directed parallel to 3 and that ¢ and k have some small
transverse momentum in the (3,1) plane. The 4-vectors of ¢ and % are
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where the last term in each line insures that the vectors are on mass shell, that is,

g> = k? = 0, including terms of order k%. By momentum conservation,
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Then p will be off-shell (as expected for an intermediate line in a Feynman diagram)
with
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If k7 is small, we can approximately factorize the gluon emission diagram by replacing
the fermion propagator by

Then

In the result, the diagram on the left is the lowest-order diagram for ete™ — ¢7.

The diagram on the right is a new amplitude that we need to compute. It is given
by
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Helicity conservation implies that the helicities of p and k are the same. I will do
the computation for left-handed quarks; the results for right-handed quarks will be
the same by parity.



Reduce the expression above to 2-component spinors
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where
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The spinor u(k) is rotated by the small angle # = —kr/(1 — z)E. The emitted gluon
can have either polarization. The possible polarization vectors are
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These also reflect a small rotation in the (3,1} plane. Then
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Now we can compute the amplitude for eg,
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and for ¢z,
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The sum of the squares of these amplitudes is
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where I have used the relation for SU(3) generators
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Notice that the cross section for gp emission is suppressed at large z. A soft gluon
can be emitted with any helicity, but a hard gluon (z — 1) must carry the spin of
the emitting quark.

To compute the emission probability, we need to integrate over the final state
phase space. This, in particular, involves emission over ¢ and k. To do this, consider
p as a shift of k, so &3k = d°p. However, the value of the energy of k is E}, = (1 -2)E,.
For g, divide the integral into an integral over transverse momentum and longitudinal
momentum. For the latter dgy = E,dz. Then
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The phase space integral over p can be combined with the integral over the antiquark
momentum to build the complete phase space for the leading order process. Then
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Finally,
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From this formula, we find that collinear gluons are produced with a dkr/kr
distribution in transverse momentum. This integrates up to a logarithmic infrared
singularity. The longitudinal momentum distribution of the gluons is given by
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The coupling constant «, should be evaluated at the scale of kr. Py_g(2) is called
the Altarelli-Parisi splitting function. Figs p. 7 shows the x;, 23, z3 distributions of
3-jet events as measured by the SLD experiment. You can see that x3, which typically
corresponds to the gluon, reflects the shape of this function.

It is instructive to compare the formula we have just derived to the formula written
earlier for the complete ete™ — qfg cross section. We can take that formula and
specialize to the region of a collinear splitting
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The variable z; is very close to 1 in this kinematics. Its distance from 1 is measured
by

2 J _ L - k-?'
(Q_-‘h.) = Q(' X-L) = U‘ul'l'k‘g,) ’-'E(T:L)

so that

|
L
=
5

Then that expression has as its limit
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which agrees with the analysis that we have just completed.

Once a quark has radiated a collinear gluong, it can radiate another one. Similarly,
a gluon can split to a collinear ¢g pair or to a collinear gluon pair. It is not so hard
to work out the Altarelli-Parisi splitting functions for these transitions.
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The delta functions in these expressions remove the quark or gluon that split to
a 2-parton state. For a discussion of how to treat these delta functions and the
singularities as z — 1, see Peskin and Schroeder, Section 17.5.
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Almost collinear emissions have probability proportional to
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With the logarithmic enhancement, this factor can be of order 1, and so we should
sum these contributions to all orders. The dominant contribution comes from a
particular region of phase space. Consider the diagram with successive emissions
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The value of p? for each successive fermion propagator reflects the transverse mo-
menta of all gluons emitted beyond that point. Thus, if ¢; has a large transverse
momentum, all denominators are large. However, if g, has a large transverse momen-
tum and ¢; has a smaller transverse momentum, the transverse momentum of g, will
dominate p?, the transverse momentum of g, will dominate p2, and each emission will
have a logarithmic integral over transverse momentum. This situation in which the
transverse momenta are ordered from inside to outside

k() > kal) > klg)

is called strong ordering. In that region of phase space, the emission of each successive
gluon is logarithmically enhanced.

We can use strong ordering to sum up the contributions of many collinear splittings
by accounting the probability of splitting systematically from small to large k. For
a process where a quark has multiple emissions that eventually produce a gluon, let

42 { g O

be the probability of finding this gluon at a fraction z of the momentum of the
original quark, including the effects of all emissions with k7 < . We can define this
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object similarly for any initial and final partons, or even for the production of a final
hadron from an initial quark or gluon.
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These functions are called fragmentation functions. We can now consider the change
in a fragmentation function when we add a collinear splitting with transverse mo-
mentum kg ~ (). The additional contribution is
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The integral over longitudinal variables can be rearranged by
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Finally, we can describe the change in the fragmentation function by a differential
equation in the variable )
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This is called the Altarelli-Parisi equation. It builds the fragmentation functions
systematically in an ordered progression of emissions in kr.

Another way to look at the development of a quark by successive collinear split-
tings is to model it as a Markov process, in which the Altarelli-Parisi equation gives
the probability of an emission at a particular kr and z. Carrying out this process, an
initial quark is converted to a stream of approximately collinear quarks, gluons, and
antiquarks. This set of particles is called a parton shower. The shape of the shower
is set by the k7 scale of the hardest emission. The internal structure of the shower
will be complex.
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If a, were constant, this structure would be scale-invariant or fractal. Since a;
runs, the shower is more diffuse at the beginning and becomes very dense at small
angles. Eventually, as we reach kr ~ 1 GeV, we can no longer use perturbation
theory to determine the evolution of the shower, and we must turn instead to a more
phenomenological approach of modelling the transition of quarks and gluons into
hadons.

The shower of partons is what I have previously called a jet. In last week’s lecture,
it wanted to view a jet as a single quark or gluon. Now we see that a jet contains
more partons the more finely we resolve its structure, in a way that is predicted by
perturbative QCD. We can relate this to experiment by constructing jets in the final
states of ete™ annihilation events with varying resolution.

Here is a way to do that, called the JADE algorithm. From among the final
state particles in an event, choose the two ¢, j such that m% = (k; + k;)? is minimal.
Typically, these will be particles close together in angle. Combine these to a single
particle. Repeat this operation until mZ; > m2,,, then stop and identify the particles
that remain at that stage as the jets. Usually, the stopping condition is expressed in
terms of
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For ete™ events at 100 GeV, Y = 1072 corresponds to a clustering mass of 10 GeV.
As y.; is decreased, we resolve the event more finely.

Figs p. 6 compares real events analyzed by the OPAL experiment at 91 GeV to
the QCD prediction. At large y..:, most events are 2-jet events, but as this parameter
is decreased, the events are resolved into 3-, 4- and even 5-jet events. We see that the
process of quark and gluon splitting predicted by QCD does a good job of describing
this evolution.



