Dec. 9

Parton Distribution Functions

In the previous lecture, we saw how radiation of almost collinear partons forms the
shapes of jets and organizes the final states in ete™ annihilation. You might expect
that, in processes with initial hadrons that we describe with the parton model, there
should be a similar effect on initial state partons.

We can analyze this for deep inelastic scattering. Our formula for the cross section
was
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Now include radiation of a collinear gluon from the initial quark.

e
L v

Again, we can factorize this diagram on a quark propagator that is nearly on shell.
The kinematics is slightly different from that in final state radiation. Now it is the
initial quark p that is on shell and the quark & after radiation that is off shell. The
momentum ¢ of the emitted gluon is on shell. Then the three momenta are
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Note that, for convenience here, I have exchanged z < (1 — z). Since, aside from
this, the vectors above differ from the ones we used in the previous lecture only in
order k%, our calculation of the gluon emission matrix element in the previous lecture
can be used here without change.

]

ks = ky

Factorizing the matrix element for e™¢ — e~gg on the propagator of k, we find
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where dII, is the phase space integral over the final electron and quark. The giluon
phase space can be rewritten as
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Then the cross section for the e™¢ scattering process becomes
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Integrating this over the parton distribution for the quark in the proton, we find
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In principle, the initial parton could also be a gluon that splits to a quark or antiquark.
For the full contribution to deep inelastic scattering with radiation, we must sum over
all possibilities.

Again, we find a logarithmically infrared divergent cross section. I will control
this divergence just as I did for the fragmentation function, by summing up the
contributions of multiplet emissions using a differential equation.

The collinear divergence in this equation is building up structure in the parton
distribution function. Thus, we should sum it as an evolution of the parton distribu-
tions. In the equation above, the quark that enters the e™q scattering process comes
from a quark radiating a gluon, but there is another contribution in which the struck
quark comes from a gluon splitting. Thus, we should include all possible partons in
the proton as initial partons from which this quark might be obtained. The we can
follow the logic of the previous lecture and derive the Altarelli-Parisi equation
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where now
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is the probability of finding the parton P at the fraction x of the proton’s momentum

when emissions with k7 < @ are accounted. Since the transverse momentum of the
emission will not be greater than the momentum imparted to the proton by the
electron, this function also represents the parton distribution observed in a deep
inelastic scattering process with momentum transfer Q% from the electron.

The Altarelli-Parisi equation implies that the parton distributions are not static
with @? as I suggested in last Friday’s lecture. Rather, they evolve with the scale of
the hard scattering momentum. This evolution takes place on a log scale in @), so it
is difficult to see unless an experiment spans a very broad range in @. The physics of
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this evolution is that quarks and gluons resolve their structure at smaller distances or
larger @ by splitting into collinear pairs of quarks and gluons. This has two important
effects. First, the partons found at high z at low Q move to lower values of z at high
@ due to parton radiation. Second, splitting produces new quarks, antiquarks, and
gluons at very small £ whose number increases as @ increases. Figs p. 2 shows a
solution to the Altarelli-Parisi equations for the u quark distribution in the proton at
Q =2, 20, and 200 GeV. You can see both of these effects operating in this plot.

Some experimental data on the evolution of parton distributions are shown in the
next two figures. Figs p. 3 shows most of the world’s data on
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obtained from deep inelastic scattering experiments from SLAC to HERA. The data

is plotted as a function of Q? over many decades, in bins in z. You can see the
decrease of Fy(z, @?) in the high z bins and the increase in F; at low z. The blue
lines are a solution to the Altarelli-Parisi equations. One of the most important
effects of parton evolution is the growth of the gluon distribution at small z, due to
the small-z behavior of the g — gg splitting function
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The gluon distribution grows rapidly, and then becomes visible in F; through gluon
splitting to a quark-antiquark pair. Figs p. 4 shows Fy(z) at very small z and two
values of %, as measured at HERA, compared to a QCD model. The presence of large
numbers of quarks and antiquarks signals the presence of large numbers of gluons,
and so the evolution of these distributions can be used to determine the gluon parton
distribution in the proton.

To determine the separate parton distributions for all parton species, we need to
assemble results from a number of experiments. Electron deep inelastic scattering
measures only the particular combination F; written above. At SLAC, experimenters
also measured deep inelastic scattering on a deuterium target. By isospin symmetry,
the up quark distribution in the neutron is equal to the down quark distribution in the
proton, and the distribution in the deuteron is the sum of these two. So this process
accesses a different linear combination of the u and d quark distributions. Another
method is to do deep inelastic scattering by weak interactions using a neutrino beam.
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Neutrino deep inelastic scattering has many beautiful features that I hope you will
learn through this week’s problem set. As a preview, Figs p. 5 shows the dependence
on y of ncutrino deep inelastic scattering cross sections at various values of z. Figs p.
6 shows the Q-dependence of z(f,(x) + fi(z)) extracted from neutrino experiments.
Neutrinos can access higher values of z, and so you see a steeper falloff with Q% in
the highest a bins. A solution to the Altarelli-Parisi equations is shown as a set of
dotted lines.

As we will see in a moment, hadron-hadron scattering processes can also contribu-
tion to the measurement of parton distribution functions. Figs p. 7 shows data from
the E866 experiment at Fermilab, which studied mu*mu~ production in pp and pd
collisions in a fixed-target setting. High energy u pairs are produced by annihilation
of high-energy quarks in the proton beam with antiquarks in the target. If the 7 and
d antiquark distributions in the proton were equal, the p and d targets would show
such events precisely in the ratio 2:1. Instead, more annihilations are seen from the
d target, demonstrating that there are more d's than T's in the proton.

By fitting all of this data to a common solution to the Altarelli-Parisi equation,
we can arrive at a complete picture of the parton structure of the proton. Figs p. 8
shows the result of such an analysis by the Durham group, with the results evaluated
at @ = 10 GeV. The contribution of the basic v and d quarks dominates at large x.
Below z = 0.1, however, the gluon distribution takes off. When we boost protons
to high energy, these gluons acquire high energy and gives very high rates for hard
parton-parton collisions.

There should be ¢ and b quarks in the proton, at least as the result of gluon
splitting. The gluon can split to these heavy quarks just as easily as it splits to light
quarks in the regime @ > 2m where the mass of the heavy quarks can be ignored. A
reasonable way to estimate the ¢ and & content of the proton is to take the ¢ and b
parton distributions to be zero at low Q and then generate ¢ and b by integrating the
Altarelli-Parisi equation. Figs p. 8 compares ¢ and b parton distributions constructed
in that way with data on ¢ and b production in electron-proton scattering at HERA.

If the parton model gives a good description of electron-proton scattering, it ought
also to be useful in describing hard-scattering reactions in proton-proton scattering.
The proton-proton cross section measured at high energy is very large, about 70 mb at
2 TeV in the center of mass. However, most of that cross section consists of processes
with low momentum transfer that softly break up the bags of quarks and gluons. We
are more interested in the hard-scattering processes that throw quarks, gluons, and
leptons out to large momenta. In QCD, these reactions are mediated by the weak
coupling part of the theory and can be estimated using QCD perturbation theory.

To compute cross sections, we use the parton model to describe both of the col-
liding hadrons. That is,
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‘The simplest application of this formula is to the Drell-Yan process, pp — ptu~. At
the parton level, the basic process is ¢ annihilation to a lepton pair, the reverse of
the process ete™ — gg. The cross section for this process is
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where § is the squared center of mass energy of the parton-parton collision. Instead

of the factor 3 in the earlier case, a factor % appears here. This is because the initial
state quarks have random colors, but the quark and antiquark that annihilate must
have the same color. A more formal way to see this is that the cross section for
annihilation of a quark of oolor ¢ with an antiquark of color j must have a é;;. Then
the average of this cross section over initial colors gives
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One proton gives the quark, the other the antiquark, and we must sum over both
possibilities.



Since we observe the final muon pair, we can learn something about the momentum
fractions of the quark and antiquark that annihilated. The value of §, from the initial
state, is
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This is also the value of the observed mass of the dimuon system
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so this is one constraint on the values z, 5. An orthogonal constraint comes from

the boost of the dimuon system. In the parton model, the muon pair has a total
momentum that is approximately collinear with the beam direction. The value of the
momentum is
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A convenient way to parametrize this is as
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The parameter y called the rapidity. Lorentz boosts are simple translations of rapid-
ity. Comparing these expressions,
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From the observed momenta of the muon pair, we can determine Q2 and y and, from
these, solve for z; and z,

It is useful to change variables from (21, z2) to (y, @?). The Jacobian is
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Then we can write the Drell-Yan cross section as
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This formula can be used to determine parton distributions for quarks and especially,
as we have seen above, for antiquarks. Figs p. 10 shows a comparison of the parton
model prediction for the Drell-Yan cross section (including order «, higher-order QCD
corrections) with the data on dimuon pair production from trhe CDF experiment at
the Fermilab Tevatron, a 2 TeV pp collider.

We can also apply the parton model to quark-quark, quark-gluon, and gluon-gluon
hard scattering processes. These processes kick two partons out at large transverse
momentum with respect to the beam direction and so lead to 2-jet final states. Figs
p. 11 shows a 2-jet event recorded by CDF. Only the highest-momentum tracks are
shown in blue; there are many more low-momentum tracks indicated by the black hits
in the tracking chamber. The energy deposition in the electromagnetic and hadron
calorimeters is also shown.

Figs p. 12 shows another view of this event. Here the event is shown on the plane
of azimuthal versus polar angle. The polar angle is described by the variable 5, called
pseudorapidity. For a massless particle, we can parametrize the momentum vector as
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where here 7 is the rapidity. Generally, we do not know the mass for each final

particle in a hadron collider event. But most of these particles are pions or photons
from 7n° decay, so it is customary to ignore their masses and use 1 as a measure of
the rapidity. From the formula above, # is simply a function of cos 6.
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But, approximately, a longitudinal boost of the event corresponds simply to a shift
in 7. In the figure, the energy deposited in each cell of the calorimeter is shown as
a tower at its (8, ¢) or (1, ¢) position. The event display is called the ‘lego plot’. It
is very useful for recognizing the high transverse momentum components of a hadron
collider event.

The parton model cross section for 2 jet production is

i (e, > L8084~ 25 500208
5’131@3@» &

where the last factor is the spin-averaged, color-averaged parton-parton differential
cross section in the parton-parton center of mass frame. The lowest order formulae
for these differential cross sections can be readily computed in QCD:
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with the other cases following using particle-antiparticle symmetry. Cross sections
with identical particles in the final state should be integrated over cos¢ > 0 only.

A comparison of the formula above to CDF data using the leading order formulae
is shown in Figs p. 13. Figs p. 14 and 15 shows a careful modern version of this
comparison by the CDF experiment, using QCD formulae that include the first higher-
order corrections. The agreement between theory and experiment in quite remarkable.
In particular, QCD theory tracks the experimental data as it falls by 8 orders of
magnitude from a jet pr of 50 to a jet pr of 600 GeV.
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