Midterm Exam of QFT-II course

Prepared by: M.M. Sheikh-Jabbari

This exam is take-home and is to be returned by 9am Monday May 23rd. Total mark: 100.

1) Formalities with path integral formulation.

1-1) Show that for any theory with fields $\phi_{\alpha}(x)$ and action $S[\phi_{\alpha}]$

$$\langle \frac{\delta S}{\delta \phi_{\alpha}(x)} \frac{\delta S}{\delta \phi_{\beta}(y)} \rangle = i \langle \frac{\delta^2 S}{\delta \phi_{\alpha}(x) \delta \phi_{\beta}(y)} \rangle$$

1-2) Use the above for a $\lambda \phi^4$ theory to compute the two-point function $\langle \phi^3(x)\phi^3(y) \rangle$.

1-3) Use the above in QED to compute $\langle J_{\mu}(x)J_{\nu}(y)\rangle$ where $J^{\mu}(x) = \bar{\psi}\gamma^{\mu}\psi(x)$ is the current.

2) $\lambda \phi^4$ at two loops. Consider the massless 4d $\lambda \phi^4$ theory:

$$L = \frac{1}{2} (\partial \phi)^2 - \frac{1}{4!} \lambda \phi^4.$$

2-1) Compute the counter-term for two and four point functions in leading and subleading divergence levels.

- 2-2) Compute two-loop γ and β -functions.
- 2-3) Compute the anomalous scaling dimension for the scalar field ϕ .
- 2-4) Compute the energy (scale) dependence of renormalized coupling λ at two loops.
- 2-5) Does this theory have a non-trivial stable IR/UV fixed points?
- 2-6) Compute the two-loop γ -function for the mass operator $\phi^2(x)$.

3) Marginal deformations of QED. Consider QED deformed by marginal operators δL :

$$L = -\frac{1}{4}F_{\mu\nu}^2 - i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi - m\bar{\psi}\psi - e\bar{\psi}\gamma^{\mu}\psi A_{\mu} + \delta L$$

$$\delta L = \frac{1}{\xi} (\partial^{\mu} A_{\mu})^2,$$

3-1-1) compute the one-loop γ -function of the above operator.

3-1-2) Find running of the ξ parameter with energy. Discuss the physical meaning of this γ -function.

3-2) For

$$\delta L = \lambda (A^{\mu} A_{\mu})^2,$$

3-2-1) compute the one-loop γ -function of the above operator.

3-2-2) Find running of the λ parameter with energy.

Note: Neither of these two operators are gauge invariant. How does this affect the results or computations?

4) $\lambda \phi^6$ theory in 3d. Consider the Lagrangian

$$L = \frac{1}{2} (\partial \phi)^2 - \frac{1}{4!} \lambda \phi^4 - \frac{1}{6!} g \phi^6.$$

4-1) Show that this theory is power-counting renormalizable.

4-2) Write down the Callan-Symanzik equation for 2, 4, 6 and 8 point functions.

4-3) Compute the one-loop γ and β -functions for λ and g couplings.

4-4) Does the theory have non-trivial stable fixed points?

4-5) Let us suppose that we perturb the theory by irrelevant coupling $\kappa \phi^8$ at energy scale Λ . Compute the one-loop β function for coupling κ and find its running with energy scale μ .

5) Coleman-Weinberg potential in Yukawa- $\lambda \phi^4$ theory. Consider the Lagrangian

$$L = \frac{1}{2} (\partial \phi)^2 - \frac{1}{4!} \lambda (\phi^2 - \phi_0^2)^2 + \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi - m \bar{\psi} \psi + g \bar{\psi} \psi \phi.$$

5-1) Compute one-loop effective potential for the scalar field (obtained through integrating out ϕ and ψ field fluctuations). Use the $\overline{\text{MS}}$ regularization scheme.

5-2) Compute the one loop β -functions for the couplings g and λ and write the scale-dependent coupling.

5-3) Rewrite the effective potential in terms of renormalized couplings.

5-4) Compute the one loop γ -function for ϕ and ψ fields.

5-5) Compute one-loop γ -function for bosonic and fermionic mass operators $\phi^2(x)$ and $\bar{\psi}\psi(x)$.