
Hamid Afshar String Theory — Prof. Sheikh-Jabbari

Exercise 1 — Classical Bosonic String

1. The Relativistic Particle

The action describing a free relativistic point particle of mass m moving in a D-

dimensional Minkowski spacetime is described by

S = −m
∫
ds = −m

∫
dτ
(
−ηµνẊµẊν

) 1
2
, (1)

where
∫
ds is the length or proper time duration of the worldline traced out by the par-

ticle and Xµ(τ) refer to the spacetime coordinates of the particle with τ any parameter

that varies monotonically along the worldline. Obtain the equation of motion.

• Reparametrization invariance. The action (1) is manifestly invariant under

the reparametrization τ → τ̃(τ). Show the invariance of the action under in-

finitesimal reparametrization, τ → τ + ξ(τ). The reparameterization invariance

gives a redundancy in our description. In other words it is a gauge symmetry of

the system.

• Canonical analysis. Introduce canonical conjugates and show that not all the

canonical momenta are independent. Find the primary constraint among them.

Primary constraints follow from the definition of the conjugate momenta without

using any equations of motion. Show that this constraint is first class. A first

class constraint has a weakly vanishing Poisson bracket with all constraints and

is associated with a gauge symmetry in the system. Find the canonical Hamil-

tonian for the system. Count the number of physical degrees of freedom for the

constrained system (1).

• Global symmetries. Poincaré symmetry appears as global symmetry on the

worldline of the point particle (1),

Xµ → Λµ
νX

ν + cµ (2)

with Λµ
ν and cµ being the Lorenz transformation and constant translation pa-

rameters. Derive the corresponding Noether currents.

• Massless particles. The action (1) can be generalized to include the massless

case by introducing an auxiliary field e(τ);

S =
1

2

∫
dτ e

(
e−2ηµνẊ

µẊν −m2
)
. (3)
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Show that e does not introduce new degrees of freedom. Show that the constraint

hold with use of equations of motion (Secondary constraints). Show that the

action (3) is invariant under finite and infinitesimal τ -reparameterization. In the

massless case derive the equations of motion and the constraint. What is the role

of e in the massless case?

• Gauge fixing. One can think of the action (3) as if we have coupled the worldline

theory to 1d gravity with e being the einbein of the metric on the worldline

e =
√
−γττ . Try to use the gauge freedom in τ -reparametrization to gauge fix the

e field to 1/m and show that this gauge identifies the τ -parameter as proper time.

Use the gauge fixed action to obtain the equations of motion in this gauge. Find

the geodesics describing the motion of the point particle in Minkowski spacetime.

What is the answer if we have an arbitrary target space background, ηµν → gµν?

• Quantization. Study the light-cone quantization of the relativistic point particle

in section 11 of Zwiebach book. Try the BRST quantization of this system as well.

2. The Relativistic String

The generalization of (1) to a one dimensional strings is to take the area of the world-

sheet Σ. This is the Nambu-Goto action,

SNG = − 1

2πα′

∫
Σ

dA = − 1

2πα′

∫
Σ

(− det γ)
1
2 (4)

where γαβ = ∂αX
µ∂βX

νηµν is the induced metric on the world-sheet with Xµ being D

scalars on the world-sheet. Work out the e.o.m and derive the primary constraint.

• Reparametrization invariance. Show the invariance of the action (4) under

finite and infinitesimal world-sheet reparametrization.

• Polyakov action. Introduce the auxiliary world-sheet metric hαβ(σ, τ) with

signature (+,−) to remove the square root in the Nambu-Goto action. The

resulting action is called Polyakov action,

SP = − 1

4πα′

∫
Σ

d2σ
√
−hhαβγαβ . (5)

Derive the equations of motion of the Polyakov action (5) with appropriate bound-

ary conditions.
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• What are the other terms one could add to (5) (for closed sting) compatible with

D-dimensional Poincaré invarinace and power counting renormalizability.

• Energy-momentum tensor. Define the energy-momentum tensor of the Polyakov

action as the response of the system to changes in the world-sheet metric,

δSP =
1

4π

∫
d2σ
√
−hTαβδhαβ (6)

Find the expression for Tαβ. Using the field equations show that,

Tαβ = 0 . (7)

• Local Symmetries. Show that the Polyakov action (5) is invariant under local

symmetries; reparametrization and Weyl rescaling,

δXµ = −ξα∂αXµ and δhαβ = −∇(αξβ) + 2Λhαβ . (8)

Show that the energy-momentum tensor is conserved, ∇αTαβ = 0 (on-shell) as a

consequence of diffeomorphism invariance of the action. Show that the energy-

momentum tensor is traceless, hαβTαβ = 0 as a consequence of Weyl invariance

of the action.

• Conformal gauge. The two dimensional diffeomorphism can be used to choose

coordinates such that the 2d metric is locally conformal to flat (conformal gauge).

Show that this gauge is unique to two dimensions and as its consequence, 2d

gravity is trivial (residual gauge freedom). Derive the conformal gauge preserv-

ing deffiomorphisms. When is this gauge accessible globally? (see section 5 in

Polchinski I)

• Poisson brackets. Show that in the conformal gauge the Polyakov action sim-

plifies to

Sp =
1

4πα′

∫
d2σ (Ẋ2 −X ′2) =

1

πα′

∫
d2σ ∂+X∂−X . (9)

where ηαβdx
αdxβ = −dτ 2+dσ2 and σ± = τ±σ. In this gauge, derive the equations

of motion by imposing the open/closed boundary conditions and further write the

energy-momentum constraint (7). Derive the canonical momentum Πµ = ∂L/∂Ẋµ

and the Hamiltonian in this gauge and further by using the basic equal τ Poisson

brackets,

{Xµ(σ),Πν(σ′)} = ηµνδ(σ − σ′) , (10)
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obtain the generators of σ- and τ -translations.

• Light-cone gauge. The Light-cone gauge is a conformal gauge where the residual

gauge freedom is fixed by choosing the light-cone coordinate X+ ∝ τ . Show that

in this gauge the energy-momentum constraints are solved explicitly and we are

left only with physical degrees of freedom. Space-time light-cone coordinates are

defined as (X±, X i) with i = 2, · · · , D − 1 and X± = 1√
2
(X0 ±X1).

• Global symmetries. The invariance of the action under spacetime global Poincaré

transformations gives the Noether currents associated to translation and Lorentz

symmetry. Derive these currents in conformal gauge and show their conservation

on-shell. The total conserved charges are obtained by integrating the currents

over a space-like section of the world-sheet τ = 0.

• Mode expansions. Try to solve the classical equations of motion of the string

in conformal gauge by showing that,

Xµ(τ, σ) = Xµ
L(σ+) +Xµ

R(σ−) . (11)

For the closed string boundary condition Xµ(τ, σ) = Xµ(τ, σ + 2π) show that,

Xµ
R(σ−) = 1

2
xµ + 1

2
α′pµσ− + i

√
α′

2

∑
n 6=0

1
n
αµn e

−inσ− , (12)

where (αµ)?n = αµ−n. Show that xµ is the center of mass position of the string

at τ = 0, while pµ is the total space-time momentum of the string. What is the

expression for total angular momentum?

• Generators of reparametrization. From the Poisson-brackets (10) derive the

brackets among the αµn, α̃µn, xµ and pµ. Obtain the expression of Fourier modes

of constraints (7) in terms of oscillators at τ = 0,

Ln = − 1

2π

∫ 2π

0

dσ e−inσT−− and L̃n = − 1

2π

∫ 2π

0

dσ e−inσT++ . (13)

Find the Poisson bracket algebra of Ln. Discuss that these modes are generators

of σ− → σ−+e−inσ
−

(conformal transformation on S1). Try to derive the effective

mass of a classical string in terms of oscillator modes. Discuss why N = Ñ with

N = 4
α′

∑
n>0 αn · α−n and Ñ = 4

α′

∑
n>0 α̃n · α̃−n?
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• Winding number. Consider the case that we have a compact dimension, say

X25 of radius R. Show that the spatial momentum in this direction is quantized

as p25 = n
R

and that under σ ∼ σ + 2π X25 can be multi-valued,

X25(σ + 2π) = X25(σ) + 2πwR . (14)

The integer w is called winding number. Write the mode expansion of X25 and

try to compute the L0 and L̃0 constraints to find the effective mass of the string

for an observer living in D = 25 non-compact directions. Show that the formula

of mass is invariant under T-dulaity,

n↔ w and R↔ α′/R . (15)

• Open string. Find the mode expansion for the open string wave solution, when

the two end points satisfy DD, NN , ND and DN boundary conditions. Show

that the space-time momentum in the Dirichlet directions, carried by the open

string, is not conserved. How do you understand this?

• Regge trajectory. Consider an open string in static gauge with X0 = t = κτ

, for some dimensionful constant κ. Using the constraints show that for the

N boundary condiiton, the end point of the string moves at the speed of light.

Consider κ = L/2 for a straight string of length 2L rotating at constant angular

velocity in the X1,2-plane,

X1 = L cos
(σ

2

)
cos
(τ

2

)
, X2 = L cos

(σ
2

)
sin
(τ

2

)
, X i = 0 for i > 2 .

(16)

Derive the total spatial momentum P i, energy M = P 0 and angular momentum

J = J12. Show that,

J = α′M2 (17)

which is a straight line in the (M2, J)-plane with slope α′, called a Regge trajectory.
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