
Arash Ardehali String Theory — Prof. Sheikh-Jabbari

Exercise 3 — Supersymmetry for Superstrings

1. SUSY generalities
(suggested reading : Vafa et. al., Mirror symmetry, Ch 10)

Supersymmetry often leads to: I) stability of quantum systems, and II) control over

the non-perturbative regime of quantum systems.

As for item I, in string theory supersymmetry allows removing the bosonic string

tachyon in Minkowski background. (Question: do you remember the masses of the

open and closed bosonic string tachyons in Minkowski background?) In other words,

the superstring spectrum, unlike the bosonic spectrum, does not signal a perturbative

instability in the system.

The fact that supersymmetry (SUSY) removes the tachyon (after GSO, of course), is in

accord with the general wisdom that supersymmetry often stabilizes quantum systems.

• Write down the N = (1, 1) SUSY algebra (in terms of Hilbert-space operators)

in 1+0, 1+1, and 1+3 dimensional quantum field theories. [Hint: ask Google.]

Make sure you understand the role of †. Show that in all cases the SUSY algebra

implies a positive semi-definite energy. [Hint: write the expectation value of the

Hamiltonian in terms of the supercharge operators.]

• Write down the SUSY algebra in 1+1 dimensional conformal field theory (CFT).

This CFT could be the one living on the worldsheet of superstrings. Does the

algebra imply a positivity constraint on the spectrum?

Task: read about Witten’s SUSY-inspired proof of the positive energy theorem in clas-

sical GR.

As for item II, in string theory supersymmetry allows understanding various strong-

weak dualities between the five superstring theories and M-theory. In particular, a

strong-weak supersymmetric duality known as the AdS/CFT correspondence has al-

lowed a non-perturbative formulation of superstring theory on asymptotically AdS

spacetimes.
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The power that SUSY provides for control over non-perturbative regimes of quantum

systems is demonstrated by the Witten index in SUSY quantum mechanics.

• In the simplified setting of 1+0 dimensional QFT (viz quantum mechanics), use

the SUSY algebra to argue that states with non-zero energy come in bose-fermi

pairs.

• Use the information from the previous problem to argue that the quantum me-

chanical Witten index Tr(−1)F is invariant under smooth changes of couplings in

SUSY quantum systems under sufficiently nice conditions.

Task: read about Witten’s supersymmetric index in SUSY QFTs in various dimen-

sions, and how it allows extracting non-perturbative information under sufficiently

nice conditions. See Witten’s classic paper Constraints on supersymmetry breaking.

Task: study the super-particle in Homework Problems 4.1–4.3 of Becker-Becker-Schwarz.

Task: make sure you understand the Lagrangian and the Hamiltonian formulations of

supersymmetry, separately.

2. Worldsheet SUSY
(suggested reading: GSW, and section 4 of 0201253)

To approach the worldsheet supersymmetric conformal field theory (SCFT) of the

superstring via a Lagrangian, we need to study 2d fermion fields.

• Task: read about fermions in diverse dimensions. (See section 4.1 of 0201253 for

example.)

• In which dimensions can we have Majorana-Weyl fermions? How many on-shell

degrees of freedom do they have? How many on-shell degrees of freedom do

Majorana fermions have in 2, 4, and 10 dimensions?

• (This is a warmup problem for familiarity with 2d fermions; we won’t use its

result.) Given a pair of 2d Majorana fermions ψ and χ, show that

ψAχ̄B = −1

2
(χ̄ψδAB + χ̄γαψ(γα)AB + χ̄γ3ψ(γ3)AB) , (1)
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where γ3 = γ0γ1. [Hint: one way of doing it is checking the matrix components

of the two sides, using the explicit 2d gamma matrices, and the relation ψ̄ :=

ψ†(iγ0).]

• Derive the equations of motion for the worldsheet action (see subsection 4.6 of

0201253 for a more general action, with NS-NS background fields turned on)∫
d2σ(∂αXµ∂

αXµ + ψ̄µγα∂αψµ), (2)

and recognize the supersymmetric partnerships in them. Make sure you are com-

fortable working with 2d Majorana spinors ψ, as well as 2d Majorana-Weyl spinors

ψ−, ψ+, especially in analyzing the above action and its resulting equations of mo-

tion.

• Show that the above action is supersymmetric on shell. Then use Noether’s

procedure for supersymmetry to derive the conserved supercurrents.

• In order to reduce the computational load of checking supersymmetry in La-

grangians, one often works in the “superspace”, parameterized by (σα, θ). On

superspace live “superfields” Y µ(σα, θ). A superfield can be expanded as

Y µ(σα, θ) = Xµ(σα) + θ̄ψµ(σα) +
1

2
θ̄θF µ(σα), (3)

where F is an auxiliary field which helps realizing the SUSY algebra off-shell.

Question: why there are no linear-in-θ terms in the above expansion? [Hint:

show that for a Majorana fermion ψ we have ψ̄θ = θ̄ψ.] See pages 113–118 of

Becker-Becker-Schwarz for more on superspace.

3. Super-Virasoro, the constraint equations, and GSO
(suggested reading: Becker-Becker-Schwarz, GSW, and Johnson’s D-branes

book)

In the bosonic string theory, the equation of motion for the worldsheet metric implies

conformal invariance, which allows choosing a light-cone gauge yielding a manifestly

positive-norm spectrum. (Question: do you remember what happens with “spurious

states”?) In the superstring theory, a supersymmetric conformal (or superconformal)

invariance arises, which again allows a light-cone gauge analysis.
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• Write down the super-Virasoro algebra arising in the NS sector of the superstring

worldsheet. Check that its global part closes (this is called the SU(1, 1|1) algebra).

Write down the corresponding “physical state conditions”.

• Write down the super-Virasoro algebra arising in the R sector of the superstring

worldsheet. Check that there is no closed global part in there that contains F0

(the zero-mode of the supercurrent). Write down the corresponding “physical

state conditions” (aka “constraint equations”).

• Check that the Ramond ground state is degenerate, and the states in it form a

spacetime fermion with 32 components. Construct the 32-dimensional represen-

tation by acting on a chosen ground state with 5 spinor creation operators formed

from the Ramond fermion zero mode. (Do not use Gamma matrices here; they

are not Hilbert space operators!) [The answer is given in Johnson’s book, pp.

158,159.] Show that the F0 equation (aka the Dirac-Ramond equation) removes

half of the degrees of freedom, leaving 16 components. Another half is of course

thrown away by the GSO projection, leaving 8 components (which are, depending

on the GSO chirality, in 8c or 8s of the spacetime little group SO(8)).

• Find the tachyonic and massless spectrum of the closed superstring before the

GSO projection.

• Show that the product of two vector representations of SO(N) decomposes to

a scalar, an anti-symmetric tensor, and a traceless symmetric tensor. Use the

decomposition of 8v × 8v to deduce that the massless NS-NS sector of the closed

superstring has a dilaton, a Kalb-Ramond field Bµν , and a metric Gµν .

• Argue that the decomposition of 8s × 8s and 8c × 8c are the same as that of

8v × 8v. Show that the decomposition for the product of 8c × 8s reads 8 + 56.

[The required machinery is described in section 4.5 of 0506011.]

• Use the GSO projection along with the decompositions discussed above, to find

the type IIA and IIB closed superstring massless spectra. These have a low-energy

description as IIA and IIB supergravity theories.

• Show that the spectra of IIA and IIB supergravity theories become the same upon

dimensional reduction on a spatial circle. [Hint: use Hodge duality for the bosonic

parts; for the spinorial parts, argue that the differing chiralities in ten dimensions

are not important after reduction to 9d where there is no chirality (see section 1.7
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of Pope’s Kaluza-Klein lecture http://people.physics.tamu.edu/ pope/ihplec.pdf

for more on the reduction of fermions).]

4. Supergravity, p-branes, and D-branes
(suggested reading: Freedman-van Proeyen and Maldacena’s thesis)

Let us focus on IIB supergravity. One of its equations of motion (omitting the derivative

terms in the dilaton for simplicity)

Rµν =
1

4
HµρσHν

ρσ + e2φ
(
F1µF1ν +

1

4
F̃3µρσF̃3µ

ρσ +
1

24
F̃+
5µρστκF̃

+
5ν
ρστκ

)
. (4)

• Show that the 3-brane solution with B = A2 = C = φ = 0, and

ds2 = H−1/2(y)dx2 +H1/2(y)dy2,

F5 = ∗6dH,

H = 1 +
L4

y4
,

(5)

solves the IIB equation of motion; the coordinates xi (i = 0, 1, 2, 3) are along the

brane, and the yj are perpendicular to it; the Hodge operator ∗6 dualizes forms

on the space of yjs. This is an extremal black brane solution with “Schwarzschild

radius” L.

• Use the D3-brane tension equation to argue that if the above p-brane solution is

sourced by N D3-branes, it would have L4 ∝ Ngsα
′2. So the horizon radius is

too small for the solution to represent a useful blackhole. (Note that increasing

N doesn’t help, because then the effective coupling near the horizon will be Ngs,

so the theory will be strongly coupled and hence not very useful still.)

• Use the gravitino supersymmetry variation in IIB supergravity to show that the

SUSY generators εkR (k = 1, 2) of the IIB theory should satisfy

Γ0 · · ·Γ3ε1R = ε2R, (6)

for the 3-brane solution to be supersymmetric; so one spinor is determined in terms

of the other. The 3-brane background thus breaks half of the supersymmetries of

the theory (or is “half BPS”). [The result can also be found in Eq. (25.128) of the

2nd edition of Ortin’s Gravity and Strings; note the typo in Eq. (25.127) there,

in which “odd” and “even” should be swapped.]
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The equations that are derived from the vanishing constraint on the SUSY variations

of the supergravity (SUGRA) fermionic fields are often called Killing spinor equations.

For the brane backgrounds of interest to us, no Killing spinor equation arises from the

dilatino field; only the gravitino field yields non-trivial Killing spinor constraints. The

equation for the p-brane background with general p (odd, for IIB, and between 1 and

9 of course) reads [again you can find it in Ortin’s book; note that Γ0···p used there is

the same as Γ0 · · ·Γp (why?); also the hats in there only mean that the objects are ten

dimensional]

Γ0 · · ·Γpε1R = ε2R. (7)

• Show that a Dp-D(p + 4) system (such as a D1-D5 system) preserves 1/4 of the

IIB supersymmetries (or is “quarter BPS”), but a Dp-D(p + 2) system (such

as D1-D3) breaks all the supersymmetries. [Hint: write (7) for p and p +

2; derive Γ0 · · ·Γpε2R = Γ0 · · ·Γp+2ε2R; multiply both sides by Γ0 · · ·Γp and use

the fact that (Γ0 · · ·Γp)2 = (−1)(p−1)/2 (can you see why?) to arrive at ε2R =

(−1)(p−1)/2Γp+1Γp+2ε2R. Finally use (Γp+1Γp+2)2 = −1 to show that the Killing

spinor equation can only be true if ε2R = 0, meaning that SUSY is completely

broken. Similarly, use (Γp+1Γp+4)2 = +1 (why?) to show that the Killing spinor

equation for the Dp-D(p+ 4) system has non-trivial solutions, and more precisely

that the D(p+ 4) Killing spinor equation breaks the SUSY preserved by Dp down

to one-quarter.]

• The p-brane solution corresponding to the D1-D5 system, placed on the back-

ground R2 × R4 × T 4, has the explicit metric, dilaton, and 3-form flux of IIB

supergravity (we follow the notation in arXiv:hep-th/9702050)

e−2φ = f5/f1,

ds2 = f
−1/2
1 f

−1/2
5 dx2|| + f

1/2
1 f

1/2
5 (dr2 + r2dΩ2

3) + f
1/2
1 f

−1/2
5 dx2M4

,

H3 = 2r25ε3 + 2r21e
−2φ ∗10 ε7,

fi := 1 + r2i /r
2 i = 1, 5,

(8)

where dx2|| = −dt2 + dx2 is the metric on the R2, with x the coordinate along the

D1-brane, and r parameterizing the radial coordinate on the R4. The forms ε3

and ε7 are the volume forms of the three-cycle and the seven-cycle at r = 1 inside

the R4 × T 4; the cycles can be alternatively described as the unique three-cycle
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C3 and seven-cycle C7 inside S3 × T 4. Show that the IIB supergravity equation

(4) is satisfied by this solution. D-brane tension analysis shows that r25 = gα′Q5

and r21 = gα′Q1/v, where v = vol(T 4)/(2π)4α′2, and Q1, Q5 are respectively the

number of D1 and D5 branes. Again, the black p-brane Schwarzschild radius is

small unless Q1 and Q5 are very large. But this time, unlike the 3-brane case,

we get large blackholes with nice semi-classical description (see Maldacena’s phd

thesis for instance.)

• Show that the near horizon geometry of the 3-brane solution in (5) contains an

AdS5 factor. Show that the near horizon geometry of the p-brane solution of the

D1-D5 system contains an AdS3 factor. These are two of the most important tips

of the AdS/CFT iceberg.
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