14 Azar 1396 Take-home exam, Due date 18 Azar, morning

Midterm Exam of String Theory

Bosonic Open String Theory: Consider a *D*-dimensional open string theory on flat space with *n* NN modes, *m* DN modes and *d* DD modes. For the DD modes assume the two ends of strings are separated by Y^i , $i = 1, \dots, d$.

- 1) Write out mode expansion of this open string theory.
- 2) Study the spectrum of this theory using light-cone quantization.
- 3) Fix the worldsheet diffeomorphisms using the appropriate bc-ghost system.
- 4) Using the *bc*-ghost system, show cancellation of the Weyl anomaly leads to D = 26, irrespective of values of n, d.
- 5) Write out the first three low-lying (lightest) states in the spectrum and write the corresponding vertex operators.
- 6) Construct unoriented version of the above mentioned open string theory:
 - 6-1) How does NN, DN and DD modes transform under worldsheet parity Ω ?
 - 6-2) Mod out the Hilbert space by Ω to find the spectrum of unoriented open string theory.
- 7) Compute one-loop partition function of the theory. In particular, discuss the Y^i dependence of the partition function. Note that for open string case the one-loop worldsheet is annulus (or cylinder), in contrast with the torus in the closed string case.
- 8) Compute the one-loop partition function of the unoriented theory (constructed in item 6)). Discuss Y^i dependence of the partition function. For the unoriented case the worldsheet to consider is a Möbius strip.
- 9) Add the most general open string coupling to the worldsheet action. *Hint: this term is a boundary term on the worldsheet.*
- 10) Compute the one-loop β -function for the worldsheet coupling and work out the (target space) action which yields this β -function equation as its equation of motion.

All the best, Sheikh-Jabbari.