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Abstract

We study the strong vertices N* N7, N*N*7m and N N7 in QCD, where N* denotes
the negative parity N(1535) state. We use the most general form of the interpolating
currents to calculate the corresponding strong coupling constants. It is obtained
that the coupling associated to N*Nm vertex is strongly suppressed compared to
those related to two other vertices. The strong coupling corresponding to N*N*r is
obtained to be roughly half of that of N N7 vertex. We compare the obtained results
on N*Nm and N N7 vertices with the existing predictions of other theoretical studies
as well as those extracted from the experimental data.
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1 Introduction

In hadron physics the strong couplings among various particles play essential roles in un-
derstanding of the strong interaction and the nature and structure of the participating
particles. Hence, one needs the precise determination of these strong coupling constants.
Especially, due to the limited experimental information related to the decay properties of
the negative parity baryons, the theoretical studies in this area can provide effective con-
tributions. Beside the properties of negative parity baryons, reinvestigation of the coupling
form factor of the pion-nucleon and comparisons of the results with the known theoretical
and empirical results may supply a better understanding about the nonperturbative nature
of QCD.

The properties of negative parity nucleon, such as mass and the other spectroscopic
properties, were studied extensively (see for instance the Ref. [1-5] and the references
therein). Beside the spectral properties, its magnetic moment was analyzed using QCD
sum rules [6] and effective Hamiltonian [7] approaches. The light cone QCD sum rule
was applied to obtain the electromagnetic transition form factors of v*N — N(1535) and
YN — N*(1520) [8,9]. The radiative transition of negative to positive parity nucleon
was also studied in Ref. [10]. This work is devoted to the study of the strong coupling
constants among the negative parity N*(1535), nucleon and pion in QCD. Such type of
investigations were done extensively using either three point QCD sum rules with Ioffe
current or light cone QCD sum rules and some other methods. One can find some of
them in Refs. [11-28] and the references therein. In the present study, regarding the mass
difference between the initial and final nucleons in the considered transitions, the three point
QCD sum rule method is applied. This method [29] is one of the most powerful method
among nonperturbative approaches and was used extensively and successfully to obtain the
hadronic properties. We consider the three-point correlation function with the most general
form of the interpolating currents for the positive and negative parity nucleons.

The outline of the article is as follows. In section 2 the details of the QCD sum rules cal-
culation for the considered transitions are presented. Section 3 is devoted to the numerical
results and conclusion.

2 The strong coupling form factors between the posi-
tive and negative parity nucleons and pion

This section presents some details of the calculations of the strong coupling form factors be-
tween the positive and negative parity nucleons and pion using the QCD sum rule method.

The starting point is to consider the following correlation function in terms of the interpo-
lating fields of the considered states:

() = & / d'z / dy & SV OT (Jyew (9) Jo(0) Tyen (@) [0), 1)

where 7 is the time ordering operator and ¢ = p — p’ is the transferred momentum. In this
equation J; represent the interpolating fields of nucleon and 7= meson. N and N* denote the
positive parity ground state and the negative parity N(1535), respectively. Here, N’ stands
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for the excited positive parity state N(1440), that also couples to the nucleon currents
and we shall take into account its contribution to the correlation function. We calculate
this correlation function in terms of physical and OPE (operator product expansion) sides.
By matching these two representations, the corresponding strong coupling form factors are
found. To suppress the contributions of the higher states and continuum, a double Borel
transformation with respect to p? and p” together with continuum subtractions are applied
to both sides.

2.1 Physical Side

For the calculation of the physical side complete sets of appropriate N, N*, N and 7
hadronic states carrying the same quantum numbers with the corresponding interpolating
currents are placed into the correlation function. Integrations over x and y gives
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where we included contributions of both positive and negative parity nucleons and the
contributions coming from the higher states and continuum are represented by ---. The
matrix elements emerging in this result are parameterized in terms of the residues Ay, Ay~
and A, the spinors uy, uy- and u,- , the leptonic decay constant of 7 meson as well as

the strong couplings gnnr, NN+ IN'N' 7y NN*7s GN*N7s NN 70 IN' N> IN' N7 and IN*N'7=
as

<O ‘ JN(’) ‘ NU)(]?/; 8,)> = )‘N(')UN(’) (pla 8,>7
O] Iy« | N*(p',8")) = Anysun+(p',8),
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Using these parametrizations and summation over Dirac spinors via
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in Eq.(2), we get
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After application of a double Borel transformation with respect to the initial and final
momenta the final result for the physical side in terms of different Dirac structures becomes
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The M? and M"” arising in these results are the Borel mass parameters in the initial and
final channels, respectively.

2.2 OPE Side

The OPE side of the correlation function is calculated in deep Euclidean region. To this
aim we use the interpolating current

Ty () = 2] (u" W)CP 1) )35 () + B (u" W) (W) )u' ()}, (®)
which couples to the nucleon with both parities as well as
72(0) = = (#(0)insu(0) — d(0)insd(0)). )
V2
for the pion. In Eq.(8), § is a general mixing parameter (with 5 = —1 corresponding to

the Toffe current) that we shall fix it by some physical considerations and C' is the charge
conjugation operator. The substitution of these interpolating currents in Eq. (1) is followed
by possible contractions of all quark pairs via Wick’s theorem, and this leads to
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where S’ = CSTC. In this equation, S;j(x) corresponds to the light quark propagator for
which we use [30]
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where ¢ is either u or d quark. Here we shall remark that we consider the terms up
to dimension five in OPE in the calculations. Note that in the expression of the quark
propagator given in Eq. (11), the vacuum saturation is assumed for the quark fields. In
this assumption, the diagrams with the quark-gluon mixed condensate in which the gluon
comes from a different quark propagator than the quark fields are missing. We separately
calculate and add the contributions of such diagrams to the obtained expressions. Figure
1 shows some typical diagrams that we take into account in the present study.

/7\ /_7\ + all permutations

(d) ()

Figure 1: Typical diagrams taken into account in the calculations.

The OPE side in coordinate space is obtained by inserting the above propagator into
Eq. (10). A Fourier transformation is applied to transform the calculations to the momen-
tum space. To this end, the following expression in D dimension is used:

1 At _ia nt1 op—2n _pj2 L(D/2—n) 1y D/2=n
A7 :/(27r)D6 e ) (~2) -

and the four-integrals over z and y are performed after the replacements z,, — i% and
"

Yy — —1 ag' . After making use of the Feynman parametrization and the equation
"
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where the functions IT;(¢?) include the contributions coming from both the perturbative
and non-perturbative parts. These functions are given as
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where the p;(s, s, ¢?) appearing in this equation are corresponding to spectral densities
associated with different structures. They are attained by taking the imaginary parts of
the II; functions, i.e. pi(s,s’,¢*) = %I m[Il;]. As examples, we present only the spectral
densities corresponding to the Dirac structure 5 here. They are obtained as
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Here O]...] is the unit-step function. For simplicity we ignored to present the terms con-
taining the light quark mass in these formulas.

Now, we match the two sides in Borel scheme, after which we get four equations with
nine couplings as unknowns. Hence, we need five more equations to solve nine equations
with nine unknowns. We construct these extra equations by applying derivatives with
respect to inverse of the Borel mass squares. As a result, we get the following expressions
for the strong couplings that we are interested in their calculations in the present work:
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where ]§Hi show the Borel transformed form of II; functions and @ are their derivatives
m()2

with respect to inverse of the Borel mass squares. We also apply the continuum subtraction
in the initial and final channels in this step and this add two more auxiliary parameters sg
and s;, that they should also be fixed.

3 Numerical results

This section contains the numerical analysis and our discussion on the dependence of the
results on Q> = —¢?. The numerical analysis requires some input parameters given in table
1. From the sum rules for the coupling constants it is also clear that we need to know the
residues of N and N* baryons. We use their S-dependent expressions calculated in Ref.
[10] adding also the contribution of N(1440) to the mass sum rules.

Parameters Values
(2:G7) (0.012 4 0.004) GeV* [31]
mq 4.8705 MeV([32)
My 2.370T MeV [32]
my (938.272046 £ 0.000021) MeV [32]
my~ 1525 T'O 1535 MeV [32]
My (134.9766 + 0.0006) MeV [32]
fr (130.41 + 0.03 £ 0.20) MeV [33]

Table 1: Input parameters used in the calculations.

In addition to the input parameters given in the table 1 there are four parameters, M?,
M", sq and s that should be fixed. By virtue of being auxiliary parameters, the results
should practically be independent of them as much as possible. This necessitates a search
for working regions of these parameters. Considering the relations with the first excited
states in the initial and final channels, that is, the energy that characterizes the beginning
of the continuum; as well as the fact that the sum rules obtained contain all three states in
the physical sides, we determine that the suitable interval for both continuum thresholds is
(2.64—2.74) GeV?. As for the Borel mass parameters, the analysis are done over the criteria
that the contributions of the higher states and continuum are sufficiently suppressed and
the contributions of the operators with higher dimensions are small. Our analysis based
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on these criteria leads to the intervals (1.0 — 3.0) GeV? and (2.0 — 4.0) GeV? for the Borel
parameters in the N and N* channels, respectively.

As already mentioned, in our calculations, we use the most general form of the interpo-
lating field for nucleon which is composed of two independent interpolating fields connected
by a mixing parameter §. In the analysis, we need the values of this auxiliary parameter
for which we have weak dependence of the results on this parameter. Our numerical anal-
ysis shows that in the intervals —1 < cosf < —0.5 and 0.5 < cosf# < 1, common for
all vertices, the results depend weakly on this parameter. Note that we use cosf where
0 = tan=!(8) to explore the whole range (—oo, +o0) for 8 via —1 < cosf < 1. Con-
sidering the maximum contribution of the ground state pole to the sum rules, we found
that cos@ = —0.6, common for all vertices, is roughly the optimum value that leads to the
largest pole/total contribution ratio. We use this value to extract the values of the coupling
constants under consideration. We shall note that by the above working regions for the
continuum thresholds and Borel parameters as well as the value of cos 6, not only the pole
contribution is maximum (~ 70% of the total contribution), but also the series of sum rules
properly converge, i.e., the perturbative part constitutes roughly 78% and the term with
higher dimension constitutes less than 5% of the pole contribution.

In this part we would like to show how the results of strong coupling constants depend
on the Borel parameters. To this end, we plot the dependence of gyn+r, as an example,
on these parameters at the average values of the continuum thresholds, cos = —0.6 and
Q? = 1GeV? in figure 2. From this figure we see that the results weakly depend on the
Borel parameters in their working interval.

20— 20—
15f ] 15f ]
R 1 ox ]
Z 10r ] Z 1.0; /’
05} ] 05} ]
0.07 L L L L L L L L L L L L L L L L L L L 007 L L L L L L L L L L L L L L L L L L L
1.0 15 2.0 25 3.0 2.0 25 3.0 35 40
M2(GeV?) M'2(GeV?)

Figure 2: Left: gyy-r as a function of M? at average values of continuum thresholds,
cosf = —0.6, Q*> = 1GeV? and M'? = 3GeV?. Right: gyn-» as a function of M'? at
average values of continuum thresholds, cos = —0.6, Q? = 1GeV? and M? = 2GeV/?

Now, we proceed to discuss the behavior of the coupling constants with respect to Q2.
Our calculations show that the following fit function describes well the strong couplings
under consideration:

gN(*)N(*)T((Q2> = 2 (20)




Table 2 presents the values of fit parameters, fy, a and b, for each coupling form factor.
Figures (3) and (4) show the dependence of the strong coupling constants under considera-
tion on Q? for both sum rules and fit results. From these figures, we observe that the above
fit function reproduces well the QCD sum rules results up to the truncated points.

13.0 7.0

* _QCD sum rules| * QCD sum rules|
12.5 6.8
«ﬁ
2 120 -\*ﬁ_mﬁ—-._ﬁ £ 6.61
5 &
11.5 6.4
11.0 T T T T T 6.2
-4 2 0 2 4 4 2 0 2 4
2 2
Q%(GeV?) Q2(GeV2)

Figure 3: Left: gynr as a function of Q%. Right: gy«y+, as a function of Q?
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* QCD sum rules| * QCD sum rules
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B 15
£ 080'\% : 0‘90-\
z z
o o
0.75- - 0.85
0.70 T T T T T 0.80 T T T T T
-4 2 0 2 4 4 2 0 2 4
Q2(GeV?) Q2(GeV?)

Figure 4: Left: gy-n. as a function of Q2. Right: gyy+» as a function of Q?

The usage of the fit function at Q? = —m?2 leads us to the value of strong coupling
constant for each considered transition as presented in table 3 with the errors arising from
the uncertainties of the input parameters as well as those coming from the determination of
the working regions of the auxiliary parameters. From this table we see that the couplings
associated to the N*Nm and NN*7 vertices are strongly suppressed compared to those
related to two other vertices. The strong coupling gn+n+- is obtained to be equal to roughly
half of that of gyn.. From our results we also see that the results for gny«y- and gyy+x
are very close to each other, which is an expected situation. The result obtained for gy,
is, within the errors, in good agreement with the results of Refs. [16, 17,22, 24] that obtain
gNNx = 1245 [16,17], gyne = 9.76£2.04 [22] and gy, = 13.3+1.2 [24]. Our prediction on
the gy« is also consistent with the results of [19, 23] that extract the value gyn+r ~ 0.7
from the experimental data, but it differs considerably from the result of [23] which obtains
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gnn+r = (—)(0.08 £ 0.06) from light cone QCD sum rules. Our result on the strong
coupling constant g+« can be checked via different phenomenological approaches as well
as in future experiments.

Jo a b
gnne | 12.00143.480 | —0.005+ 0.001 | (—3.143 £0.943)10~*
gneN+r | 6.557+1.961 | —0.012+0.003 | (—1.821 4 0.546)1073
gnene | 0.777+0.233 | —0.01240.003 | (—1.820 4 0.546)1073
gnner | 0.884+0.256 | —0.004 4+ 0.001 | (—2.070 +0.621)10~*

Table 2: Parameters appearing in the fit function.

gNN= IN*N*7 gN*N= GNN*7

12.012 £ 3.608 | 6.564 = 1.842 | 0.782 £ 0.233 | 0.882 £ 0.264

Table 3: Values of the strong coupling constants.

To sum up, we have calculated the couplings gn Nz, gN*Nry GNN+x and gn= N+, using three
point QCD sum rules. We used the most general form of the interpolating current for the
nucleon. After fixing the auxiliary parameters entering the calculations, we extracted the
values of those couplings. We have found that the couplings gn«n, and gyy«, are strongly
suppressed. The value of the coupling constant gy«n+, is also obtained to be roughly half
of gnyr. Our results on gy, and gyy+, are in agreement with those of [16,17,22-24]
which extract the results from different models as well as from the experimental data on
the decay width of the corresponding transitions. Our result on gy« considerably differs
from the result of light cone QCD sum rules obtained in [23]. This inconsistency can be
attributed to the fact that the masses of the nucleon N and the negative parity N* differ
considerably and usage of the light cone QCD sum rules, as is done in [23], for such vertex
is problematic. Our prediction on the strong coupling constant gy«n+, can be checked via
different phenomenological approaches as well as in future experiments.
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