
A Course on AdS/CFT

M.M. Sheikh-Jabbari

November 24, 2013

This is a PhD level course, designed for second year PhD students in Theoretical High
Energy Physics (HEP-TH) area and assumes a background knowledge of Quantum Field
Theory at the level of Peskin-Schroder book and General Relativity. It would be great if the
audience are already familiar with basics of CFT’s and black hole physics. In a sense this
course is a natural continuation of the black hole and CFT courses I gave at IPM since last
year. I will assume no knowledge of string theory.

AdS/CFT or in more practical sense gauge/gravity duality has dominated HEP-TH area
for the last 15 years. Although it appeared through developments in string theory and it
is still believed that the complete formulation of it needs string theory, for most practical
purposes it does not involve formulation of string theory and supersymmetry in an essential
way.

AdS/CFT states that quantum gravity (string theory) on AdSd+1 background is described
by a non-gravitational d dimensional QFT. Depending on d and the details of the matter
content or low energy degrees of freedom of the QGr theory the corresponding dual QFT
would be different. This QFT is expected to flow to a conformal fixed point in the UV and
hence the QFT in general may be viewed as a deformation of a CFT, hence justifying the
name AdS/CFT.

Being a duality one may try to use it as a handle on tackling questions about the “other
side” starting from one. So far, however, it has mainly be used studying strongly coupled
QFTs than the learning about QGr (from CFT knowledge). Nonetheless, in my opinion, in
the coming years the QGr aspects will receive an increased attention.

Historically there were some developments prior to the stated landmark of AdS/CFT,
the celebrated Maldacena’s paper of 1997, which were crucial in uncovering the duality. The
most notable ones are perhaps, ’t Hooft’s 1/N expansion, the seminal work of Polchinski
in introducing D-branes into string theory and the Strominger-Vafa black hole microstate
counting and the Matrix theory. The latter two introduced the notion of open/closed string
duality which eventually led to AdS/CFT. However, as mentioned to state AdS/CFT one
need not follow the historical path, having some knowledge of these is essential in under-
standing AdS/CFT and that is what we will partly do in this course.

Topics which will be covered here will somehow be complementary to the ones I gave in
my lectures a year ago. In those lectures I mainly focused on the AdS/CFT as a natural
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continuation of developments started by Wilson in QFT, namely, that one can use perturb
any QFT away from its RG fixed point by any local operator associated with physical
observables of the theory. This gives infinitely many options to deform/perturb a QFT and
the coupling of these operators are basically governed by the dual (quantum) gravity theory.

In the current course I will spend some time in reviewing the historical developments led
to AdS/CFT, and focus on ’t Hooft’s 1/N expansion and the string theory picture based
on string theory D-branes. And of course then present statement of the duality and discuss
AdS/CFT as a tool to study strongly coupled QFT’s and also discuss very briefly AdS/CFT
as a tool to address issues about quantum gravity. These issues are still very much at research
level and my discussions will mainly be introductory.

Topics to be discussed in the course

1. AdS/CFT, a historical view on its stringy perspective. This part will be about 7
sessions and will cover:

• t’ Hooft’s 1/N expansion.

• Some facts about the known CFT’s in diverse dimensions.

• A quick look into string and brane theory.

• D-branes, the near horizon and decoupling limits, open/closed duality.

• AdS space as solutions to (gauged) supergravities in diverse dimensions.

2. AdS/CFT, formal statement, establishing the duality. This part will be about 4 ses-
sions and will cover:

• Causal and geodesic structure of AdS space and some asymptotically AdS spaces.

• Field theory on AdS space various boundary conditions.

• Statement of the AdS/CFT duality.

• AdS/CFT and holography.

3. AdS/CFT, a tool for strongly coupled QFTs. This part will be about 6 sessions and
will cover:

• AdS/CFT and confinement-deconfinement phase transition.

• AdS/CFT and Wilson/Ployakov loops.

• AdS/CFT and RG flow, holographic renormalization.

• Holographic hydrodynamics.

4. AdS/CFT as a tool for studying quantum gravity. This part will be very brief, one
session, and we will discuss general picture AdS/CFT has to offer for quantum gravity,
quantum space-time and quantum aspects of black hole.
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• Texts and reading:

– O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, “Large
N field theories, string theory and gravity,” Phys. Rept. 323 (2000) 183,

[hep-th/9905111]..

– E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2
(1998) 253 [hep-th/9802150].

– E. Witten, “Anti-de Sitter space, thermal phase transition, and confinement in
gauge theories,” Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131].

– J. Polchinski, “Introduction to Gauge/Gravity Duality,” arXiv:1010.6134 [hep-th].

– K. Skenderis, “Lecture notes on holographic renormalization,” Class. Quant.

Grav. 19 (2002) 5849 [hep-th/0209067].’’

– J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U. A. Wiedemann,
“Gauge/String Duality, Hot QCD and Heavy Ion Collisions,” arXiv:1101.0618

[hep-th].

– M. Rangamani, “Gravity and Hydrodynamics: Lectures on the fluid-gravity corre-
spondence,” Class. Quant. Grav. 26 (2009) 224003 [arXiv:0905.4352 [hep-th]].

– A. V. Ramallo, “Introduction to the AdS/CFT correspondence,”arXiv:1310.4319.

• The above references contain many further references and reading material.

• This course is equivalent to two units and there is the possibility of formally registering
for the course as a “guest student” for non-IPM students. For the latter please arrange
the formal details with department office, Ms Pileroudi, niloufar@theory.ipm.ac.ir.

• The lectures will be 10-12, Sunday-Tuesday, in Farmanieh Bldg and they will start
on 7th of Mehr (29 Sept. 2013).
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1 Invitation to AdS/CFT

The AdS/CFT has dominated the last 15 years of developments in HEP-TH area. It states
that quantum gravity on an AdSp+2 background is dual or equivalent to a p+1 dimensional
CFT, which is a non-gravitating theory. Of course this duality is between two quantum
theories, which in the CFT side is a standard quantum field theory and may be formulated
through path integral. The AdS-side, the quantum gravity side, however, is not of the form
of a usual quantum field theory and needs an independent definition. As we will argue below,
a theory dual to a QFT in the sense of AdS/CFT cannot be a (quantum) field theory. In
a different viewpoint, one may view AdS/CFT as a definition of quantum gravity (on AdS
spaces).

Historically, AdS/CFT arose from string/M theory; these theories provide the frame-
work to study quantum gravity. String/M theory was crucial in establishing and exploring
AdS/CFT. In this framework, (super)gravity appears as a low energy effective theory of the
quantum gravity theory. Perturbative string or M-theory is then consistently formulated
on the backgrounds which are solutions to the (super)gravity theory. To have quantum
fluctuations of the fields under control these backgrounds are usually required to preserve
some supersymmetries. The 10d or 11d supergravities do admit (supersymmetric) solutions
with AdSp+1 (p ≤ 6) factors. Interestingly, the maximal supersymmetric solutions to 11d
SUGRA are limited to 11d flat space, AdS4×S7 and AdS7×S4 (and also the 11d plane-wave
obtained as Penrose limits over the 11d AdS-spacetimes); maximal SUSY solution to 10d
IIA is only 10 flat space, while those of 10d IIB SUGRA is flat space and AdS5×S5 (and
also the 10d plane-wave obtained as Penrose limits over the 10d AdS-spacetime). There are
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other AdS solutions with lower number of supersymmetries and there is a very elaborate
research program to classify all possible supersymmetric SUGRA solutions involving AdS
factors. These solutions may be used as a starting background for AdS/CFT.

As we see generically embedding the AdS/CFT into a critical 10d superstring theory or
11d M-theory involves another “internal” space, besides the AdS factor. The exact geometry
of this internal space of course depends on the details of the field content and Lagrangian
(potential or superpotential) of the dual CFT. In other words, for a given CFT and its
possible deformations away from the conformal fixed point, there is precisely one background
geometry in the string theory or AdS side.

According to AdS/CFT, a field theory at the conformal fixed point is dual to a space
with an AdS factor; the isometry of the AdS space is indeed the conformal symmetry of the
dual field theory. Then, one may deform the CFT away from the fixed point by addition
of the local operator with a coefficient/coupling to the action. There is hence a one-to-one
correspondence between all (gauge invariant) local operators of a CFT and all of its possible
deformations and also Hilbert space of the theory (recalling the operator-state correspon-
dence).

◮◮ Exercise 1.1: Is a photon state associated with a gauge invariant operator?

In the AdS side, any deformation of the CFT corresponds to either deforming the AdS
background (usually to an asymptotic AdS geometry) or probing the AdS space with an
appropriate object, a point particle, a field or an extended object like a brane. The goal of
this course is to present AdS/CFT in both kinematical and dynamical levels and how the
correspondences mentioned above work.

AdS/CFT duality, as evolved historically, is different than the other dualities found
and studied before that; these other dualities, such as S-duality (or Seiberg duality) of
(suersymmetric) gauge theories or S, T or U duality of string or M-theory were typically
(not always) relating similar theories, i.e. corresponding a gauge or string theory to another
gauge or string theory. AdS/CFT, however, relates a gauge field theory to a string theory.
The nontrivial passage from a gauge theory to a string theory was paved by the seminal
works of ’t Hooft in mid 1970’s and then from string theory side by the developments in
string dualities in mid 1990’s which led Polchinski to the discovery of D-branes and Witten’s
description of multiple, coincident D-branes. This is what we will review and study first in
these lectures.

We will then review Maldacena’s remarkable observation which followed soon afterward,
that how an AdS space appears through a limit of multiple coincident D-brane geometry,
and hence the birth of AdS/CFT. The key observation and idea here was actually noted and
used during 1995-97 period in M(atrix)-theory: existence of decoupling limits, stating that

There could be corners/sectors of parameter and Hilbert spaces of a unitary theory where
the dynamics is unitarily governed by only a subset of degrees of freedom; the physics in
that corner “decouples” from the rest of the theory and is governed by a new unitary
theory. If we have two different descriptions of this corner then we have a “duality”

between these two descriptions.
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AdS/CFT was then given a new and very fruitful description by the seminal work of Witten
in early 1998, where its formulation was presented as a precise equivalence between partition
functions of two quantum theories, a gauge field theory and a quantum gravity (string
theory). Several pieces of evidence and further extensions and studies then followed. The
AdS/CFT became the name of a new volume of “Britanica in HEP-TH” to which literally
one page was added everyday. This trend still continues to date, with a lower pace though.

Witten’s formulation of AdS/CFT, which will be reviewed in part two of these lectures,
made it clear that classical gravity can be used to study strongly coupled quantum field
theories. This led to a variant of AdS/CFT, the “gauge/gravity” correspondence where the
focus on the gravity side was put on classical or semi-classical gravity processes, while still
capturing inherently quantum effects in the QFT side.

One of the features of the AdSd+1/CFTd or gauge/gravity correspondence is providing
a very “natural” and geometric picture of the Wilsonian RG flow: the extra dimension of
the gravity side, “the holographic direction”, is associated with the RG scale. This, together
with a direct translation of concepts and quantities of QFT into the “gravity” language,
made the gauge/gravity correspondence the right framework for addressing several issues in
strongly coupled field theories. More specifically,

Gauge/Gravity correspondence is a particular limit of the AdS/CFT duality where the
stringy degrees of freedom in the AdS side (that is, the “genuine” quantum gravity effects)

are heavy and not relevant and hence, the AdS-side can reliably be replaced with
semi-classical gravity with a Lagrangian description (e.g. Einstein gravity plus possibly
higher derivative corrections). The gauge theory side, however, is a full quantum, usually
strongly coupled, field theory. Note that gauge/gravity correspondence is not obtained
from AdS/CFT as a “decoupling limit”. It is rather a low energy effective description of

the AdS/CFT duality.

This line of research is still followed in several different aspects. These issues will be discussed
in part three of these lectures.

One may recall that, after all, the precise statement of the AdS/CFT duality involves
quantum gravity and hence this duality may be used as a framework to tackle various different
issues and questions about quantum gravity. We will have a very brief discussion on this
line of research, which is again pretty much an open area, in the last part of lectures.

1.1 Gauge/gravity correspondence, QFT viewpoint

As pointed out AdS/CFT duality which is an equivalence between two quantum theories,
quantum gravity and a non-gravitating quantum field theory, when used as a tool for study-
ing (strongly coupled) quantum field theories is oftentimes “reduced” to gauge/gravity cor-
respondence in which the “gauge” side is a quantum field theory while the “gravity” side is
a classical gravity theory (with possibly a low-lying higher derivative corrections). In this
sense the gauge/gravity correspondence is reduction of AdS/CFT duality, however, from a
different viewpoint it is indeed an extension of it: although the name “gauge” is there, the
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QFT side need not be a gauge theory, or even to have a non-trivial conformal fixed point.
The fact that any QFT has a “gravity dual” is a non-trivial statement, and if true needs
discussion and establishment. This is what we would like to do in this subsection.

To this end, let us start from mid-1970’s and when Wilson formulated his very remarkable
Renormalization Group (RG) theory. In my opinion, that is one of the deepest developments
in physics in the last 60 years which constitutes the basis for “modern field theory”. In the
modern QFT any physical local operator Oi may be used to deform or perturb the theory
(around a given fixed point):

L = L0 +

∫

λiOi(x) , (1.1)

where L0 is the QFT Lagrangian at the fixed point. In general the “couplings” λi need not
be constants over the spacetime, they may be λi = λi(x). λi(x) are different than Oi in the
fact that in the path integral quantization of the field theory we integrate over the operators
while λi appear a functions/numbers. The above once supplemented with unitarity of the
QFT and the cluster decomposition (a manifestation of the locality of the QFT), leads to a
well-defined OPE expansion and hence the deformations in (1.1) capture the most general
deformation possibility.

The above makes it clear that there is a one-to-one correspondence between all the
couplings and the operators. This is the basis for gauge/gravity correspondence:

λi(x) are related to fields of a gravity theory and are in one-to-one correspondence with the
local physical observables of the QFT.

In this viewpoint, gauge/gravity is the most natural extension of the Wilsonian RG picture
and modern field theory.

But, the main question is now:

what is the theory governing the dynamics of λi(x)?

We will argue below that this theory, whatever it is, and regardless of the details of the
quantum field theory it is “dual” to, should be

I. a gravity theory, it has a massless spin two among its d.o.f;

II. for normal QFTs with logarithmic running this is a theory in one higher dimension
than the original QFT;

III. for normal QFTs with logarithmic running this is a theory on asymptotically AdS
space;

IV. it has infinitely many fields, as number of λi (i.e. number of states in the QFT) is
infinite and in principle there is no reason why λi should not be independent.
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V. Is the gauge/gravity correspondence a full-fledged “duality”, or is perhaps an approx-
imation to a complete “duality”? If yes, can we learn from the QFT side which
approximation this is; and what more can we say about the “UV completed” gravity
side?

Let us go through the above five questions and points one by one.

I. We note that one of the physical observables of any QFT in any dimension, even if
it does not have an explicit Lagrangian description, is its energy momentum tensor, Tµν .
Energy momentum tensor, by definition, is a marginal operator, i.e. its engineering scaling
dimension is dimension of the spacetime. Being a symmetric rank-two tensor, the corre-
sponding deformation coupling should also be a similar tensor with mass dimension zero, let
us call it hµν .

On the other hand, we know that a metric in a generic d+1 dimensional diffeomorphism
invariant theory has (d + 1)(d + 2)/2 − (d + 1) = d(d + 1)/2 degrees of freedom.1 These
constitute the d.o.f. of a symmetric d-dimensional rank-two tensor, the same as coupling
hµν . In a more precise wording, starting from a d + 1 dimensional metric one can always
perform an ADM d plus one decomposition as

ds2 = g(y)dy2 + gµν(y; x)dx
µdxν . (1.2)

In principle g(y) can be positive or negative. Moreover, by a choice of “lapse” function (or
y → ỹ = f(y) diffeomorphism) one can eliminate g but it sign remains. So, from now on we
choose, g(y) to be just σ = ±1.

This is very suggestive that in the “gravity side” is a d + 1 dimensional diff. invariant
theory with metric among its d.o.f. Such a theory, is what is meant by a gravity theory.
The fact that Tµν is marginal means that its coupling is dimensionless, this, too, matches
with specifying hµν with a part of the metric. In a more technical language, which will be
discussed further in next lectures, the fact that Tµν is a marginal operator corresponds to
the fact that the corresponding “dual” field hµν is a massless field in the “gravity” side.

Some comments are in order:

• The most natural and convenient choice to realize our gauge/gravity proposal is that
we identify the coordinates xµ, i.e. the constant y surface in the metric (1.2), with the
d space-time where the QFT lives.

• This argument does not fix the sign of g. That is, the holographic direction y can be
spacelike or timelike.

• Appearance of gravity is quite general and corresponds to existence of energy momen-
tum tensor in the QFT side.

• Diff. invariance was added by hand, it is not a direct outcome of anything in the QFT
side.

1Of course depending on the theory usually only a part of these number of d.o.f are propagating.
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II & III. As a direct outcome of the above statement of the gauge/gravity correspondence,
the e.o.m for the couplings λi should correspond to the RG flow equation for these couplings.
Explicitly, the β-function for the couplings λi is the e.o.m in the gravity side.

Given the above, one may now try to gain information about the metric coefficients σ
and gµν(y; x) from the β-function equations. Let us suppose that the theory has a scalar

marginal deformation, e.g. consider the λφ
2d
d−2 coupling in scalar field theory in d dimensions

with L0 = −1
2
(∂φ)2. In this case we have not turned on hµν deformation and the coupling λ

is spacetime xµ independent and is a Lorentz scalar. Therefore, one would expect that the
corresponding metric should exhibit the d dimensional Poincaré symmetry. That is, for this
case the d+ 1 dimensional metric is expected to be of the form

ds2 = σdy2 + F (y)2ηµνdx
µdxν , (1.3)

where ηµν is d-dimensional Minkowski metric. Let us now focus on constant y surfaces.
Moving in the y direction then corresponds to a scaling in xµ:

y1 → y2 =⇒ xµ → F (y2)

F (y1)
xµ . (1.4)

What we want to do is to reinterpret the β-function (and the sliding scales viewpoint of
Wilson) as the e.o.m of a field associated with the coupling λ. To this end, we recall that
the standard QFT (one-loop) computation readily leads:

dλ

d lnµ
= Cλα , (1.5)

where µ is the Wilson’s sliding scale and C is a c-number and λ is a power which depends
on the dimension d.

Warning: Some of the discussions above is not precise and is meant to be inspir-
ing/illuminating. These points will hopefully become clear in the end of these lectures.

We would like to view the above as the e.o.m of a d+ 1 dimensional field theory on the
space defined by metric (1.3). This equation of motion for the field configuration of our
interest (λ which has no xµ dependence) will only involve derivatives of y, and in general
is expected to be a second order differential equation in y (see below for more comments).
One is hence led to relate “sliding scale” µ to a function of y. We do this noting (1.4), and
require motion in y to be associated with sliding in µ, explicitly,

y = lnµ , F (y) = exp (y/L) , (1.6)

where L is an arbitrary length unit.

We still need to argue how the second order differential equation in y is reduced to first
order β-function equation.

NOTE: In the above argument we focused on the marginal deformations and couplings.
For relevant (or irrelevant) deformations, one would expect to see a different behavior. Con-
sidering relevant operators may take us away from the fixed point around which we have
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defined our deformed/perturbed QFT. If we the fixed point is not perturbatively close, we
need to revise the above picture. The irrelevant deformations will generically deform the
theory in the UV and may then change the “background” space which is defined by F (y). In
such cases we are not necessarily dealing with a function F (y) as simple as an exponential.

To this end, let consider a simple wave equation:

(∂2t − ∂2x)Φ = 0 ⇒ (∂t + ∂x)(∂t − ∂x)Φ = 0 .

As we see the second order differential equation is decomposed into two first order equations,
one for right-moving propagation and one for left moving. Similarly, for any second order
differential equation

(∂2y + f(y)∂y + g(y))Φ(y) = 0 ⇒ (∂y + A(y))(∂y +B(y))Φ(y) = 0 , (1.7)

for some A(y), B(y).
◮◮ Exercise 1.2: Find A(y), B(y) in terms of f(y) and g(y).
The second order equation in (1.7) has “right” and “left” propagating modes (solutions to
(∂y + A(y))Φ = 0 and (∂y +B(y))Φ = 0).

With the above, we can simply connect first order β-function equation to the second
order e.o.m (1.7): The RG flow (β-function) equation is indeed the left moving part of the
e.o.m. There are two comments in order:

• We can always choose the “left moving” solution by the choice of initial/boundary
conditions.

• The RG (and the sliding scale procedure of Wilson is not a full group in the mathemat-
ical sense. If we slide from scale µ1 to µ2 there is a sliding scale µ1µ2; this procedure
is transitive. However, this action does not have an inverse element: we can only scale
down (or move away) from the (UV) fixed point. Wilsonian RG corresponds to mov-
ing only in direction from the fixed point. In this sense it is quite natural that we are
dealing with a first order diff. equation as RG flows and not a second order one. If the
second order diff. equation (1.7) is viewed as e.o.m for a field the QFT only captures
half of it (the “left moving part”). This choice is made by boundary conditions.

• One may wonder what the other half of solutions correspond to in the “gravity side”.
As we will see in these lectures they correspond to VEV of the operators Oi.

◮◮ Exercise 1.3: If the RG (1.5) is viewed as the left moving sector of e.o.m a field λ(y)
on the d+ 1 spacetime, what should the “self interactions” of the λ field be? (Note the RHS
of (1.5).)

Let us now examine the “background” metric we obtained through the above discussions:

ds2 = σdy2 + e2y/Ldxµdxν . (1.8)

If σ = +1, the above metric is nothing but AdSd+1 spacetime in Poincaré coordinates. In
this coordinate system the space has a causal boundary at y =∞. We will study this space
and its properties in more detail in the coming sections.
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◮◮ Exercise 1.4: What is this space if σ = −1?
NOTE: Eq.(1.6) implies that “large scales” or UV in the QFT side corresponds to large

y region, close to the AdS boundary in the “gravity side” and conversely, IR region in the
QFT corresponds to small y region which is “center of AdS” region.

NOTE: As is implicit in the above discussion, the CFTd described by Lagrangian L0,
is expected to correspond to the background AdSd+1. Turning on deformations in the CFT
would correspond to turning on associated perturbations on the AdS background.

NOTE: Hereafter, we will choose σ = +1, simply because we want to be dealing with a
“gravity theory” with only one time-like direction.

NOTE: Although the AdS space has a special appearance associated with logarithmic
RG flows (as discussed earlier), it is not unique and gauge/gravity correspondence may very
well be formulated for other “gravity backgrounds”. Of course, one should always remember
that gauge/gravity correspondence (on generic backgrounds) is not necessarily the “classical
gravity” limit of a full-fledge AdS/CFT type “duality”.

NOTE: There is still an interesting case with σ = −1: one can take all xµ coordinates
to be spacelike, or equivalently take the QFT (or CFT) to be Euclidean. This case, often
called dSd+1/CFTd, is still not fully understood as a “duality”, and perhaps will not be con-
sistent duality, relating two unitary theories. It may happen that dS/CFT “correspondence”
makes some sense and could be used for performing some computations on dSd+1 space using
Euclidean d dimensional QFT’s.

IV. It is clear from the above discussion that the gauge/gravity correspondence is a
wired object. It relates a QFT to a classical field theory which involves gravity in one higher
dimension. Moreover, this classical field theory is expected to have infinitely many fields.
This is a property not shared by any “standard” field theory. However, there is a theory
which is believed to be unitary and well defined with this property: String (Field) Theory.

That is, a natural and direct extension of Wilsonian QFT already points to “string
theory”. Note that this is not the usual approach to string theory, as a theory of quantum
gravity.

V. One may wonder if the above general “inspiring and intuitive” discussions and ideas
already show a way to “complete” the gauge/gravity correspondence to a duality? A key
related question is that if we stick to Wilsonian picture one may wonder whether we will
ever need to “quantize” the gravity side?

In order to answer this, let us review again the basic input went into our gauge/gravity
correspondence: 1) Unitarity of the QFT, 2) Wilsonian sliding scale, 3) Locality of the QFT,
4) Cluster decomposition. These assumption, and in particular the last two, can break when
we deal with “heavy” (large scaling dimension) operators. Being heavy, these operators
generically negligibly contribute to the dynamics, but their presence is needed for unitarity.

When do we expect to have a possible breakdown of locality and cluster decomposition
in a given QFT? This latter of course depends on the details of the QFT in question and the
spectrum and relative degeneracy (number) of its heavy operators. This point will hopefully

12



become clearer in coming lectures.

Next, we note that the best studied consistent theory we know today with infinitely
many fields is string/M theory.2 String Field theory is a theory which should be quantized,
i.e. λi should be treated as “quantum fields” of this theory. However, one should note that
the expression “quantum” in the two sides of the AdS/CFT duality corresponds to totally
different notions: in the QFT sides we are supposed to path-integrate over operators Oi,
while in the other on λi.

One may ask the question conversely: What are consequences of the realization that λi
should “eventually” be treated as quantum fields in a “dual” (gravity) theory sense, for the
Wilsonian RG picture? Does it mean that we should be able to “integrate in” (of course,
as well as the integrating out procedure we have in the Wilsonian picture)?! If yes, which
is suggested by the naive/intuitive picture of gauge/gravity correspondence discussed above
(recall first order vs. second order equations argument), this means that the “decoupling
of scales principle” which is the underlying basis for Wilsonian RG should break down at
some point. This opens a very interesting and challenging question: How should we go about
modifying/imporving Wilsonian RG to allow for integrating in? This is of course, a question
posed to any QFT and may be approached from QFT viewpoint or from gravity/string
theory side. This is the area the next QFT or gravity theory breakthrough may arise and in
my understanding locality and cluster decomposition will have crucial roles.

2 1/N expansion

• Given a generic field theory all observables, n-p’t func’ns, are functions of parameters
of the theory, like couplings and spacetime dimension or rank of the gauge or global
symmetry groups. In some particular limits of the parameters, however, it may happen
that these observables are only functions of certain combinations of these parameters.

• As the first example, consider the vector O(N) model. Let Φ be real scalars as N -
vectors of the global O(N) symmetry,

L =
1

2
(∂µΦ)

T∂µΦ− 1

2
m2ΦTΦ− λ

4!
(ΦTΦ)2 . (2.1)

• Let us e.g. consider the one loop β-function for N ≫ 1 (see Peskin-Schroder section
11):

βλ ∝ λ2N ⇒ dgeff
d lnµ

∝ g2eff , geff ≡ λN. (2.2)

That is, there is a combination of λ and N , the effective coupling, which captures the
highest power of N .

2We note that there is another recently emerging theory with infinitely many field: Higher Spin Theories.
It is not yet clear if the HST in general can be embedded in string/M-theory or not, but there are pieces of
evidence indicating they might be. This is nowadays an active field of research. The 3d HST is conjectured
to be dual to a particular large N limit of a minimal model 2d CFT where the number of primaries is finite
(but large).
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• One may show that similar structure, i.e. the effective coupling of the theory in the
leading order in the large N limit is geff and not λ, appears

– in higher loops, e.g. two loop β-function,

– all the other amplitudes and correlation functions.

◮◮ Exercise 2.1: Show that the above two statements are correct. To this end it is
enough to only focus on λ and N dependence of the N point functions.

◮◮ Exercise 2.2: For the m2 < 0 case where we have a symmetry breaking, show
that the one-loop correction to the VEV of Φ is also a function of geff . Show that the
loop corrections to the one-loop effective action is also a function of geff .

• The above, among other things, also implies that to have a well defined perturbative
expansion in the large N limit it is not enough to have a small λ, geff should be small.

• One may then use the above observation to arrange a new expansion for the above
theory, for a generic n-point function G(x1, x2, · · · , xn)

G(x1, x2, · · · , xn) =
∞
∑

k=0

∑

g≥0

Gk,g(x1, x2, · · · , xn)gkeffN−g (2.3)

such that in the large N limit only the g = 0 contribution remains. In other words,
any correlator has a double expansion in powers of the effective coupling and 1/N .

◮◮ Exercise 2.3: Compute the first 1/N correction to the one-loop β-function.

• The above 1/N expansion can also be worked out for SU(N) gauge theories. Let us
start with pure YM theory

L = − 1

4g2YM

Tr FµνF
µν , Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ] , (2.4)

where the gauge field Aµ is in adjoint representation of the SU(N) gauge groups; they
are N ×N hermitian, traceless matrices.

• Recalling the O(N) vector model analysis, one would expect that here some combina-
tion of gYM and N should play the role of the effective coupling. To this end, let us
e.g. recall the β-function of the theory:

dgYM

d lnµ
= − 11

3(4π)2
g3YMN ⇒ dλ

d lnµ
= − 22

3(4π)2
λ2 , λ ≡ g2YMN . (2.5)

• λ is called the ’t Hooft coupling.

• One may then show that any n point function of gauge invariant operators admits an
expansion of the form

G(x1, x2, · · · , xn) =
∞
∑

l=0

∑

g≥0

Gl,g(x1, x2, · · · , xn)λl(1/N)g . (2.6)
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• ’t Hooft’s genius appeared in a very interesting interpretation of the above expression
(see Nucl.Phys. B72 (1974) 461):

For a given Feynman diagram one can readily read the power of gYM from the number
of gauge interaction vertices. To read the power of N , one may focus on the gauge
indices and recall that any N × N matrix can be view as M i

j object, where i and j
run form 1 to N (they respectively indicate anti-fund. and fund. SU(N) indices); this
object may be represented in a “double line” notation: Each field in the adjoint may
be viewed as a narrow strip. A generic gauge invariant operator may be constructed by
taking trace over a product of gauge fields (or more precisely the covariant derivatives
Dµ), like

O =: Tr (Dµ1Dµ2 · · ·Dµn) : . (2.7)

In general, however, gauge invariant operators can be of the form of “multi-trace
operators”:

O =: Tr (Dµ1Dµ2 · · ·Dµn)Tr (Dν1Dν2 · · ·Dµm) · · ·Tr (Dα1Dα2 · · ·Dαk
) : (2.8)

• In this double line notation the single trace operator is an annulus with n points on it
and the multi-trace operator consists of multi-annuli.

• When we perform matrix products we are always “contracting” a fundamental index
with an anti-fund. index and the propagator (two point function of gauge fields) is of
the form

〈Aµ
i
j(x)Aν

k
l(y)〉 =

Mµν

|x− y|2δ
i
lδ

j
k . (2.9)

• Let us first consider the two point function of two single trace operators of the form
(2.7). Using (2.9) one can readily see that in the free theory the leading power of N is
n and this two point function involves powers of N , from n all the way to 0.

• Using the double line notation, the above can be view as follows: In computing the
〈Tr (Dn)(x)Tr (Dn)(y)〉 the first two contractions just “opens up” the two annuli and
we remain with n−1 points on two parallel strings which should be connection to each
other. This may be done “keeping the order” or the contraction can happen with a
“crossing”.

• It is easily seen that with each crossing we lose one power of N . This is the diagramatic
origin of the 1/N expansion.

• If we connect the points on the string keeping the order one can draw the lines on a 2d
plane (topologically an S2), the “planar diagrams”. If we have g number of crossings
the lines can be drawn on a surface of genus g without crossing each other, the “non-
planar diagrams”. Therefore, one can view each term of fixed power of λ in (2.6) as a
“genus” expansion.

• The double line notation also opens up the possibility of interpreting the lines and
vertices of the gauge theory as “stringy” lines, stringy Feynman diagrams. In this
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viewpoint, it is then “natural” to interpret the 1/N expansion as expansion in power
of string coupling with

string coupling = 1/N (2.10)

• String theory amplitudes, besides an expansion in powers of string coupling also admit
an expansion in powers of the string scale α′, such that in the α′ → 0 limit the “stringy”
effects tend to zero and string theory reduces to a (super)gravity theory. In the gauge
theory n-p’t func’n we have an expansion in powers of λ. Whether the α′ expansion of
string theory and λ expansion in gauge theory are related to each other is not clear at
this stage. We will return to it later.

• As we will see this is type IIB fundamental strings on AdS5× S5 which are “dual” to
single trace operators in the N = 4 4d SYM. The fact that string theory in 10d on a
AdS5× S5 and not e.g. flat space is dual to d gauge theory was not at all visible from
’t Hooft’s 1/N expansion. This needed new information from string theory, and in
particular D-branes. We will discuss how D-branes “bridged” between string theories
and gauge theories in the next sections.

◮◮ Exercise 2.4: String bit model. In quest for finding which string theory is the
one described by ’t Hooft’s 1/N expansion, and in particular, what is the meaning of
the ’t Hooft coupling, one may try to model a string as a system of balls and springs,
or “string bit model”. Each of the string bits may be viewed as a gauge field of the YM
theory and a single string state is a single trace operator consisting of some number
of “bits”. The bits interact via gauge field coupling and hence string tension is related
to g2YMN = λ. Think more about this model and explore what else one can learn from
this picture.

• Note that 1/N expansion, as the above discussions indicate, works for gauge theory in
any dimension.

◮◮ Exercise 2.5: Show that 1/N expansion also works for the SO(N) or Sp(N) gauge
theories.
Show that 1/N expansion also works beyond pure YM, e.g. for QCD-like theories with Nf

quarks in the fundamental rep. of SU(Nc), consider the Nf ≪ Nc case. How should we
modify the 1/N expansion if Nf , Nc ≫ 1 while Nf/Nc =finite.

◮◮ Exercise 2.6: Show that for correlator of multitrace operators the leading g = 0
term in 1/N expansion is absent. Explicitly, consider two operators of the same scaling
dimension:

O1(x) = Tr (Dµ1Dµ2 · · ·Dµn) , O2(x) =: Tr (Dµ1Dµ2 · · ·Dµk
)Tr (Dµk+1

Dµk+2
· · ·Dµn),

(2.11)

Then 〈O1O2〉
〈O1O1〉 ∼ 1/N in the leading 1/N contribution. In general the more number of traces,

the more powers of 1/N suppression.

Summary:
1) In the large N limit, the effective coupling of gauge theory is λ = g2YMN .
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2) Gauge theory amplitudes admit a 1/N expansion. The leading large contribution is given
by the planar diagrams which is parametrically proportional to only a power of λ.
3) For correlator of multitrace operators the leading large N contribution may start with
non-zero (positive) powers of 1/N .
4) In view of the similarity of 1/N expansion and the genus expansion of string theory, one
is led to think that gauge and string theory should be somehow related; exactly how?, is not
seen from the discussions above.

NOTE: The above 1/N expansion and 1/N suppression of correlators of non-planar di-
agrams may be “overshadowed” by other dressing factors which may arise e.g. when we
consider correlator of operators with large scaling dimensions; the correlators may be en-
hanced by powers of scaling dimension ∆, because increasing the number of fields in the
operator will increase number of ways one can make (Wick) contractions. Explicitly calcu-
lations shows this “dressed expansion parameter” is ∆2/N . In a similar way, the ’t Hooft
coupling may also be dressed, to a combination like g2YMN/∆

2.
See Rev.Mod.Phys. 76 (2004) 853, hep-th/0310119.

NOTE: The above 1/N expansion is indeed a property of “Trace” operators. If one builds
gauge invariant operators in a different way, e.g. by taking determinant or subdeterminants,
or considering the Wilson loops and so on, then double line notation in which an operator
looks like an “annulus” is no longer true and hence there is no “genus expansion parameter”
like 1/N . It happens that for these other cases one can arrange a different 1/N-like expansion.

3 Some basic facts about CFT’s in diverse dimensions

Here we will be very brief and a detailed discussion may be found in lecture notes of my CFT
course http://physics.ipm.ac.ir/phd-courses/semester7/CFT-course-2013.pdf.

3.1 Conformal and superconformal algebras

• The conformal symmetry is a special class of diffeomorphisms which transforms com-
ponents of metric tensor up to a scale factor, i.e. gµν → f(x)gµν .

• In other words, the conformal group is the overlap of diffeomorphisms and the Weyl
scaling.

• The conformal algebra is then the algebra generated from the Lie brackets of the
conformal transformations mentioned above.

• In general Minkowski spacetime d > 2 dimensions, the conformal group is hence
so(d, 2). This is a Lie algebra associated with the conformal group SO(d, 2). The
conformal group is the isometry group of a flat Rd,2 dimensional space. More impor-
tantly, SO(d, 2) is the isometry group of AdSd+1.
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• For Euclidean d > 2 dimensional space, the conformal algebra is so(d + 1, 1) and
the associated group is SO(d + 1, 1), which is the isometry group of Rd+1,1 space.
Interestingly, SO(d+ 1, 1) is the isometry group of dSd+1 space.

• In d = 2 case, the story is more interesting, the conformal algebra is infinite dimen-
sional; In the Euclidean case and in terms of complex coordinates z, z̄ one can show
that any holomorphic diffeomorphism z → f(z) is a conformal transformation. This
infinite dimensional algebra allows for a central extension c (unlike the d > 2 cases).
This algebra is called “Virasoro algebra”:

[Lm, Ln] = (n−m)Lm+n +
c

12
n(n2 − 1)δm+n , m, n ∈ Z. (3.1)

To be more precise, the 2d conformal algebra in general contains two copies of the above
Virasoro algebra, one for holomorphic sector (left-movers) and one for anti-holomorphic
sector (right-movers). The left and right sectors in principle may have two different
central charges.

• One can show that not all the conformal transformations associated with the Virasoro
generators lead to global invertible maps on C-plane. The global part of the Virasoro
algebra is generated by L0, L±1, which form sl(2,R) algebra. This part does not involve
the central charge c and is associated with the SL(2,R) group. Two copies of SL(2,R)
then form SO(2, 2).

• One should note that the central charge c do not have geometric meaning.

• Unitary IReducible Representations (UIRREP’s) of conformal algebras in d = 2 and
d > 2 (conformal multiplets) has been studied in some detail. The conformal mul-
tiplets, in general are infinite dimensional; they involve infinitely many fields. They
start from a “primary state” which has the lowest scaling dimension in the multiplet
∆0 and all the other states, the “descendents”, are constructed upon the primary and
have scaling dimensions ∆0 + n, n = 1, 2, · · · .

• Unitarity of the representation imposes bounds on ∆0 and relates is to the spin of the
conformal primary and the spacetime dimension d > 2:

Scalar : ∆0 ≥
d− 2

2
, (3.2)

Spin 1/2 : ∆0 ≥
d− 1

2
, (3.3)

Vector : ∆0 ≥ d− 1 , (3.4)

Antisymmetric Fµν : ∆0 ≥ d/2 . (3.5)

The last item in the above corresponds to the field strength of a vector gauge field.

• In d = 2 unitarity implies positivity of central charge c and conformal weights, h, h̄ ≥ 0,
where ∆0 = h+ h̄ and Spin S = h− h̄.
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• As we will see later the above unitarity bounds (3.2) reduces to the BF bound for mass
of states on an AdSd+1 background. This is necessitated by the AdS/CFT.

• In dimensions higher than two, we usually need supersymmetry to guarantee existence
of a conformal (attractor) RG fixed point, where we expect to find a CFT. So, one
should also study UIRREP’s of superconformal algebras, which are constructed from
admixture of conformal rep’s and the SUSY multiplets.

• Scaling dimension of the states in a superconformal multiplet is ∆0+n/2, n = 1, 2, · · · .

• The lowest lying state for a BPS (supersymmetric) multiplet is a conformal primary,
as well as a SUSY chiral multiplet, and is hence called a “chiral-primary state” and
the multiplet based on it is also called chiral-primary multiplet.

• The anomalous dimension of the chiral-primary states is expected to be zero, due to
SUSY protection.

3.2 Conformal and superconformal Field Theories in various di-
mensions

• Conformal field theories are relativistic theories which enjoy conformal invariance, i.e.
they have conformal algebra as their global symmetry.

◮◮ Exercise 3.1: What should we get if we gauge the conformal symmetry? Do we
get a meaningful theory?

• QFTs at their RG fixed point exhibit scaling symmetry (by definition).

• It has been shown/proven in 2d and recently in 4d (http://arxiv.org/abs/arXiv:1309.4095)
that scale invariance implies conformal invariance and hence the theory found at the
fixed point is a conformal field theory.

• The above statement is believed to be true in generic dimension. In any case, scale
invariance is a necessary (if not sufficient) condition for conformal invariance.

• Fixed points are zeros of β-functions which are usually computed perturbatively and
in loop orders and hence finding the exact value of parameters (couplings) at the fixed
point is usually a non-trivial task. Nonetheless, one can make sure of existence of a
fixed point having first two loops results, if the theory has a weakly coupled attractor
fixed point (see Banks-Zaks’1982, see also section 5 of my CFT lecture notes.)

• We are usually interested in having a non-trivial, interacting, but also weakly coupled
CFT. That puts strong restrictions on theories in d > 2. Although we also know
examples of strongly coupled fixed points (like TN theories in 4d).

• Absence of (higher order) loop corrections is usually a result of SUSY. Therefore,
almost all of the known CFTs in d > 2 are SCFTs.
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• So far, besides d = 2 cases, we have Lagrangian description of SCFTs in 3d and 4d.
About 6d CFTs we know that they exist, as they appear in the UV fixed point of 5d
Yang-Mills gauge theories, but have no explicit formulation of them.

• Known 3d and 4d SCFTs are gauge field theories with various amounts of SUSY; the
3d CFTs are Chern-Simons gauge theories while 4d ones are generically of Yang-Mills
type. We also have freedom in choice of matter multiplets. Below we give a very brief
overview of such CFTs. For a list see sections 5 and 6 of my CFT lecture notes.

• Both in 3d and 4d cases we can have conformal fixed lines rather than fixed points.
These fixed lines may interpolate between strongly and weakly coupled theories.

3.2.1 A short list of CFTs in various dimensions

CFTs can exist in basically any dimension, however, as mentioned to ensure having a fixed
point where the QFT is expected to flow to a CFT one usually needs supersymmetry. Su-
persymmetry, i.e. the superconformal algebra, then puts restrictions on the number of
dimensions: in higher than 6d the smallest superconformal multiplet will involve states of
massless spin two or higher and therefore we cannot have a SCFT in d > 6. Classification of
CFTs may be based on the dimension of the theory, as well as the amount of supersymmetry
is preserves.

◮ 2d CFTs

2d CFTs are the most extensively studied CFTs. There are three reasons for this:

• As discussed, the 2d conformal algebra, the Virasoro algebra, is infinite dimensional
and 2d CFTs are among integrable models.

• In 2d, unlike any other dimension, scalar and gauge fields have vanishing scaling dimen-
sion. This opens the possibility of constructing infinitely many CFTs in a very simple
way, e.g. any combination like Gij(Φ)∂Φ

i∂̄Φj , for any function Gij and any number
of fields Φi can potentially define a CFT (one should of course still check absence of
Weyl anomaly. Although this restricts form of Gij , we still remain with infinitely many
choices.) In a more technical language, in 2d we have infinitely many marginal (1, 1)
operators, i.e. operators with dimension one, both in left and right moving sectors,
which could be added to the Lagrangian and take a given 2d CFT to another 2d CFT.

• One may also add to the above the fact that string worldsheet theory is/should be a 2d
CFT. As such 2d CFTs were also developed in connection with string theory interests.
This latter included an extensive study and classification of 2d CFTs with various
amounts of SUSY. In 2d, where we have Majorana-Weyl one component fermions, the
SUSY algebra is labeled by (NL,NR). Almost all combinations with NL,NR ≤ 4 has
been analyzed. For a detailed discussion on these theories, see the two volume string
theory books by Joe Polchinski, and the CFT book by di Francesco et al.

◮ 3d CFTs
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• Analysis of 3d CFTs was intensified in the last 8 years, and especially after the work of
ABJM, where as explicit Lagrangian description for such theories was presented. We
now know of many 3d CFTs which all of them are of the form of Chern-Simons gauge
theories coupled to matter.

• To ensure absence of non-zero β-functions we need to add supersymmetry too. The
generic structure of these theories are of the form of G1 × G2 Chern-Simons gauge
theory (with G1 or G2 can be SU(n), Sp(n) with possibly additional U(1) for the
case with N = 6 SUSY, see e.g. arXiv:0807.1102). The matter fields are in the
bi-fundamental rep’s of G1 and G2.

• 3d Chern-Simon-matter CFTs can have N = 3, 4, 6, 8. (Note the N = 8 is the maximum
supersymmetry allowed in 3d.) The corresponding supersymmetry algebra is Osp(N|4).
The bosonic part of the algebra consists of sp(4) ≃ so(3, 2), the 3d conformal algebra,
as well as the so(N) R-symmetry group. (See my CFT lecture notes, section 6 for more
discussion.)

• 3d SCFTs may also be obtained from 3d super-Yang-Mills (SYM) theory at their IR
fixed point. The theory is strongly coupled at IR fixed point.
◮◮ Exercise 3.2: Argue why this is the case.
Nonetheless, there are string/M theoretic arguments that such a fixed point exists, and
we now know that it is described by a Chern-Simons-matter gauge theory.

◮ 4d CFTs

All the known examples of 4d CFTs, to my knowledge, are of the form of (or related to)
Yang-Mills (YM) gauge theories, and most of them are in fact supersymmetric, SYM the-
ories.3 This is related to the simple fact that in 4d the gauge coupling is dimensionless.
To have a vanishing β-function (and desirably) weakly coupled fixed point, we need to add
“appropriate” amount of matter fields. Generically, the matter fields should be such that the
one-loop β-function is negative while the two-loop β-function is positive and slightly bigger
than the one-loop result, so that β-function can vanish (see Banks-Zak 1982, and section 5
of my CFT lecture notes). This is indeed possible for appropriate Nf/Nc ratios.

Since 4d CFTs are mainly of the form of SYM theories, one may classify them by the
amount of SUYS:

• N = 4 SYM: This theory has the largest amount of supercharges with gauge multiplet
as the smallest representation of the SUSY algebra. This theory cannot be deformed
by any “matter fields” without reducing the amount of SUSY. The N = 4 SYM is
hence specified by only two parameters: the gauge coupling gYM and the gauge group
G. G can be SU(N) or

∏

i SU(Ni).

The N = 4 gauge multiplet contains a vector gauge field Aµ, four Weyl fermions ψa

and six real scalars φI . These fields, being in the same SUSY multiplet, should all be
in the same representation of the gauge group G, as the gauge field Aµ. That is, they

3From the known examples those which are perturbatively accessible SCFT are all of the form of SYM.
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are all in the adjoint rep; for the SU(N) gauge group, these are all N × N unitary
traceless matrices. When G =

∏

i SU(Ni) the fields can be in the bifundamental of
the gauge groups. The N = 4 SU(N) SYM has a vanishing β-function for any value
of gYM and is hence a SCFT (for any value of gYM).4

◮◮ Exercise 3.3: Can we have an N = 4 SO(N) or Sp(N) SYM? Hint: Recall
possible representations of these groups.

• N = 2 SYM: In this case the gauge theory may be constructed from a gauge multiplet
and a hypermultiplet. The hypermultiplet can be in the fundamental, adjoint or other
representations of the gauge group. The β-function of the theory is one-loop exact
and hence existence of conformal fixed point means vanishing one-loop β-function. For
the simple gauge groups, like e.g. SU(Nc), β-function vanishes if Nh = 2Nc for Nh

number of hypermultiplets in the fundamental rep. of SU(Nc), and Nh = 1 if the
hypermultiplet is in the adjoint. (The latter has the same matter content of an N = 4
SYM.)

◮◮ Exercise 3.4: Analyze and discuss the N = 2 theory with a product of SU(N)’s
gauge group.
What about SO(N) or Sp(N) gauge theories?

◮◮ Exercise 3.5:

• N = 1 SYM: In this case, the theory is constructed from gauge and chiral multiplets
and the β-function is two-loop exact. Chiral multiplets may be in fundamental or
adjoint rep’s of the gauge group, which in principle can be any compact (with positive-
definite metric) Lie algebra. For the case of N = 1, QCD-like theory, i.e. SU(Nc) gauge
group with Nf chiral multiplets in fundamental rep of SU(Nc), when 3/2 ≤ Nf/Nc ≤ 3
falls in the “conformal window” the theory flows to a CFT in the IR.

• For the generic N CFT, the superconformal algebra is SU(2, 2|N). The bosonic part
of the algebra contains su(2, 2) ≃ so(4, 2) as well as the R-symmetry group, which is
su(4) for N = 4;5 su(2)× u(1) for N = 2; and u(1) for N = 1.

• One may in general start with an N = 4 or N = 2 SCFT and deform it by appropriate
marginal (or even relevant) operators and obtain or flow to another N = 2 or N = 1
SCFT.

◮ 6d CFTs

Here our knowledge is very limited and we do not have a Lagrangian description of these
theories. We know of their existence because of String/M theory considerations related to
NS5 or M5 branes.

4If we require the theory to be a CFT, then the
∏

i
SU(Ni) gauge group option is ruled out, because

in principle the theory admits mass deformation (for fields in the bifundamental rep. of the gauge group).
In other words, one may start with a U(

∑

i
Ni) N = 4 SYM and give VEVs to scalars such that the

N × N, N =
∑

i
Ni matrices become block diagonal with blocks of size Ni. In this way we obtain an

∏

i
U(Ni) N = 4 SYM theory, which is not a SCFT.
5To be more precise, for the N = 4 case the superconformal algebra is PSU(2, 2|4).
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• The 6d CFTs cannot be Yang-Mills gauge theories because the YM coupling is dimen-
sionful (with mass dimension −1). However, they are related to 5d SYM in its strongly
coupled UV fixed point, 6d CFT is the UV completion of 5d SYM.

• 6d CFTs can appear with N = (0, 1) or N = (0, 2) supersymmetries.6

• The conformal supersymmetric-primary multiplets are tensor multiplets, which for the
N = (0, 1) case, it is a anti-symmetric self-dual two-form field and one real scalar plus
corresponding spinors. The field content of the N = (0, 2) SCFT consists of a self-dual
two-form, five real scalars and two 6d Weyl fermions.

• The superconformal group of the 6d SCFTs are Osp(6, 2|2N). The bosonic part of
which contains SO(6, 2) (the 6d conformal group) and sp(2N) the corresponding R-
symmetry group.

• Finding a Lagrangian description for 6d CFTs and in particular N = (0, 2) theory is
an interesting and important theoretical question and challenge.

3.2.2 Dynamical implications of conformal invariance:

• The spacetime dependence of two point function of conformal primaries or their de-
scendents is fixed by the scaling and Poincaré invariance. The rest of the two point
function (other than the spacetime dependence) also fixes the metric on the Hilbert
space of the theory.

• In general conformal invariance fixes the spacetime dependence of three point functions
of primary operators.

• Three p’t func’n of descendents may also be read from those of primaries.

◮◮ Exercise 3.6: Show explicitly how the above happens.

• Four point function of primaries can be reduced to three point functions using confor-
mal blocks. See section 4.9.2 of my CFT lecture notes.

• Spacetime dependence of higher n point functions are only restricted to be functions
of n(n− 3)/2 conformal-ratios.

4 A quick look through string and brane theory

String theory, in itself, is a one year independent course and what we intend to do here in this
section is to give the minimum needed from string theory to make connection to decoupling
limit and the AdS/CFT.

6The N = (1, 1) case corresponds to the 6d SYM with 16 supercharges. This is the theory which resides
on D5/NS5 branes of type IIB and is S-duality invariant.

23



4.1 Fundamental strings, their spectrum and critical string theo-
ries

• String theory starts with formulation of dynamics of one dimensional objects (funda-
mental strings) moving in a D dimensional target space.

• As strings move in spacetime they sweep a two dimensional surface, their worldsheet.
The worldsheet theory for strings is hence a 2d QFT. In fact, we strings we should
necessarily require that this theory is a 2d CFT.

◮◮ Exercise 4.1: Why do we need to require the worldsheet theory to be a CFT?

• The properties of target space, like its metric, appear as “couplings” in the worldsheet
theory, (µ, ν = 0, · · · , D − 1) :

S =
1

4πα′

∫

Σ

d2z Gµν(X)∂Xµ∂̄Xν +Bµν(X)∂Xµ∂̄Xν + Φ(X)R

+
1

2πα′

∫

∂Σ

dx Aµ(X)n · ∂Xµ .

(4.1)

where Σ is the worldsheet which is taken to be a 2d Euclidean surface parameterized
by complex coordinates z, z̄ and R is its curvature.

The term in the second line is the worldsheet boundary term, which is a one dim. line
parameterized by x and n is the 2d vector normal to the boundary. Aµ shows the
boundary interaction term for open strings.

• Equations of motion for Xµ for generic couplings Gµν(X), Bµν(X) and Φ(X) are non-
linear and not solvable. What is usually done is to fix the target space “background”
to be flat space, Gµν = ηµν , Bµν = 0,Φ = Φ0 = constant. Then, deviations from flat
target space may be viewed as interactions of strings with the background.

• String theory on flat space is hence described by two parameters, α′ which determines
the energy units of the theory, and the string coupling gs given by the value of dilaton
field, gs = eΦ0 .

• E.o.M for perturbative strings on the flat background is

∂∂̄X = 0 .

◮◮ Exercise 4.2: Show that the ΦR does not contribute to e.o.m.

• To this e.o.m. one should add boundary conditions to find the solution. Generically
we have two such choices: closed strings and open strings. If z = eτ+iσ, then we have
the “standard” possibilities:

Closed strings : Xµ(σ, τ) = Xµ(σ + 2π, τ) ,

Open strings, Neumann : ∂σX
µ(σ = 0, τ) = ∂σX

µ(σ = π, τ) ,

Dirichlet : Xµ(σ = 0, τ) = Xµ(σ = π, τ) .

(4.2)
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• Closed string mode expansion:

Xµ = xµ + pµτ +
∑

n 6=0

1

n

[

αµ
ne

n(τ+iσ) + α̃µ
ne

n(τ−iσ)
]

, (4.3)

where αµ
n and α̃µ

n are respectively left and right movers creation-annihilation operators:

[αµ
n, α

ν
m] = nηµνδm+n , [α̃µ

n, α̃
ν
m] = nηµνδm+n , [αµ

n, α̃
ν
m] = 0 . (4.4)

• Open string mode expansion

Neumann : Xµ = xµ + pµτ +
∑

n 6=0

1

n
αµ
ne

nτ cosσ ,

Dirichlet : Xµ = xµ +
∑

n 6=0

1

n
α̃µ
ne

nτ sin σ .
(4.5)

As we see open strings have only one mode, the left and right movers are related to
each other by the boundary conditions. Note also that the Dirichlet modes do not have
the “center of mass” momentum.

• The condition of absence of (worldsheet) Weyl anomaly for flat target space fixes the
number of spacetime dimensions to be 26 for bosonic (closed) string theory. As such
bosonic string theory in 26 dimension is called “critical string theory”. One may also
study non-critical strings (in dimensions other than 26), but they should be formulated
on nontrivial backgrounds.

• Spectrum of strings. From the above mode expansions and the conformal invariance
condition of the worldsheet one may read the “spectrum” of strings, i.e. finding a
relation between pµp

µ and the oscillator modes. One will get a different spectrum for
closed and open strings:

Closed : pµpµ = α′M2 = 2
24
∑

i,j=1

∑

n>0

δijα
i
−nα

j
n − 2 , ηµνα

µ
−nα

ν
n = ηµν α̃

µ
−nα̃

ν
n ,

Open : pµpµ = α′M2 =

24
∑

i,j=1

∑

n>0

δijα
i
−nα

j
n − 1 ,

(4.6)

The condition ηµνα
µ
−nα

ν
n = ηµν α̃

µ
−nα̃

ν
n which tells us that left and right movers should

contributed equally to the mass of the state, is called level matching condition.

• The constants −2 and −1 are in fact coming from the zero point energies of oscillators
(after quantization, which has been implicitly carried out). These are the values for
D = 26 critical strings. Therefore, the lowest mode of strings, when the oscillators are
turned off, both open and closed strings have tachyon in their spectrum.

25



• Presence of tachyons in the bosonic string modes needs a remedy, which is usually
considering the superstring theory. This latter, may be done in two different ways:
1) addition of worldsheet fermions and carrying out GSO projection (the Ramond-
Nuevu-Schwarz, or RNS formulation), 2) by a direct addition of spacetime fermions,
the Green-Schwarz formulation.

In either case the string theory will be consistent7 on a flat space background with
constant dilaton Φ, only in ten dimensional target space. Such string theories are
called critical superstrings.

• One may go through the details of the superstrings mass spectrum but we will cut the
long (and interesting) story short and just present the results:

– Open strings with Neumann boundary conditions have a massless state which is a
spacetime vector, while those with Dirichlet boundary conditions have a massless
scalar. There are also corresponding massless fermions (forming SUSY gauge
multiplets in theories with 16 supercharges).

All the other modes are massive. Their masses are of the order 1/ℓs, where ℓ
2
s = α′.

– Closed strings in type II theories have the massless spectrum with N = (1, 1)
SUGRA multiplet (for type IIA) and with N = (0, 2) SUGRA multiplet (for type
IIB). For the type I theory we have the option of having massless spectrum of
N = (0, 1) for massless states. We also have the infinite tower of massive states
which are the same for type IIA and IIB theories. Massive states of type II and
type I theories are all a multiple of 1/ℓs.

• Spectrum of IIA massless states:

– NSNS sector: Gµν , Bµν , Φ;

– RR sector: Cµ, Cµνα;

– Fermionic sector: two dilantinos λa and two gravitinos ψµ
a (of opposite chi-

rality).

• Spectrum of IIB massless states:

– NSNS sector: Gµν , Bµν , Φ;

– RR sector: C0 ≡ χ,Cµν , Cµναβ (with self-dual field strength);

– Fermionic sector: two dilantinos λa and two gravitinos ψµ
a (of the same chi-

rality).

• Spectrum of type-I massless states:

– Bosonic sector: Gµν , B̃µν , Φ;

– Fermionic sector: one dilantino λa and one gravitino ψµ
a

7Consistency means cancelation of Weyl anomaly of the worldsheet.
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◮◮ Exercise 4.3: Count the number of propagating modes in the NSNS, RR and
fermionic sectors of each of the above three 10d supergravity multiplets.

• Corresponding to each of the above three we have a 10d SUGRA, i.e. type IIa, IIb and
type I SUGRAs.

• In 10d there are two other N = 1 SUGRAs which are free of chiral anomaly, these are
HetSO(32) and HetE8 × E8. The latter two are associated with the corresponding
heterotic string theories. There is also a “massive 10d SUGRA”. (For more details see
Vol.2 of Polchinski’s string theory book.)

• The action for the bosonic part of the type IIa SUGRA is

S = SNS + SR + SCS ,

SNS =
1

(2π)7ℓ8s

∫

d10x
√−ge−2Φ

(

R + 4∂µΦ∂
µΦ− 1

2
|H3|2

)

,

SR = − 1

2(2π)7ℓ8s

∫

d10x
√
−g
(

|F2|2 + |F̃4|2
)

,

SCS = − 1

2(2π)7ℓ8s

∫

B2 ∧ F4 ∧ F4 ,

(4.7)

where H3 = dB2, F2 = dC1, F4 = dC3, F̃4 = dC3 − C1 ∧H3.

◮◮ Exercise 4.4: The above action is written in the string frame. One may bring
it to a Einstein frame form by a rescaling of metric by an appropriate power of eΦ.
Find this scaling.
How does the NS and R and CS sectors transform under this frame change.

• The action for the bosonic part of the type IIb SUGRA is

S = SNS + SR + SCS ,

SNS =
1

(2π)7ℓ8s

∫

d10x
√−ge−2Φ

(

R + 4∂µΦ∂
µΦ− 1

2
|H3|2

)

,

SR = − 1

2(2π)7ℓ8s

∫

d10x
√−g

(

|F1|2 + |F̃3|2 +
1

2
|F̃5|2

)

,

SCS = − 1

2(2π)7ℓ8s

∫

C4 ∧H3 ∧ F3 ,

(4.8)

where H3 = dB2, F1 = dχ, F3 = dC2, F̃3 = dC2−χH3, F̃5 = dC4− 1
2
(C2∧H3−B2∧F3.

NOTE: The C4 in type IIb is self-dual, meaning that

∗F̃5 = F̃5 , dF̃5 = H3 ∧ F3 . (4.9)

◮◮ Exercise 4.5: The above action is written in the string frame. One may bring
it to a Einstein frame form by a rescaling of metric by an appropriate power of eΦ.
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Find this scaling. How does the NS and R and CS sectors transform under this frame
change.

◮◮ Exercise 4.6: Compute the 10d Newton constant or the 10d Planck length ℓP in
terms of the ℓs and gs.

• The above SUGRAs appear as the low energy effective theory of corresponding string
theories; i.e. they lead to the same amplitudes (S-matrix elements) for the massless
string scattering. Moreover, their e.o.m appear as the condition for the cancelation of
the Weyl anomaly on the worldsheet.

String scattering amplitudes have contributions from massive string states as well as
string loop effects. These will respectively add α′-corrections and gs-corrections to the
above actions. These corrections involve higher powers of Reimann curvature and their
supersymmetric completions.

◮◮ Exercise 4.7: Show that contribution of massive string modes to LEET are
generically appearing as higher derivative terms in the action.

4.2 D-branes, in SUGRA and in string theory

String theory besides fundamental strings also has “extended objects”, D-branes. Branes,
depending on the approximation we use have three kind of descriptions, D-branes as objects in
SUGRAs, D-branes in string theory and. D-branes as dynamical objects in target spacetime.

Below we will briefly review each of these descriptions.

4.2.1 D-branes in SUGRA

• (Super)gravity theories usually come with various form fields.

• In general a p-dimensional object (electrically) couples to a p+ 1-form:

L ⊃ Jµ1···µp+1Cµ1···µp+1 (4.10)

◮◮ Exercise 4.8: What is the dimension of the object which magnetically couples to
a p+ 1-form (in a D dimensional spacetime).

• Fundamental strings as one-dimensional objects couple to NSNS Bµν field.

• Dp-branes are solutions to type IIa or IIb (or type I) SUGRAs which carry one unit
charge of RR p+ 1-forms. Their solution for p ≤ 6, in string frame is

ds2 = F (r)−
1
2ηµνdx

µdxν + F (r)
1
2dxmdxm ,

Cp+1 = (1− F (r)−1) dxµ1 ∧ dxµ2 ∧ · · · ∧ dxµp+1

e2Φ = F (r)
3−p
2 ,

(4.11)
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where µ, ν = 0, 1, · · · , p, m,n = p+ 1, · · · , 9 and

F (r) = 1 +
r7−p
0

r7−p
, r2 = xmxm , r7−p

0 = gsℓ
7−p
s (4π)5−pΓ(

7− p
2

) . (4.12)

For a reference e.g. see http://arxiv.org/pdf/hep-th/9306052.pdf.

◮◮ Exercise 4.9: Show that the above object has a UNIT charge of the p+ 1 form.

◮◮ Exercise 4.10: Show that the mass density/tension of the above object is propor-
tional to 1/(lp+1

s gs).

◮◮ Exercise 4.11: What is the solution in Einstein frame?

◮◮ Exercise 4.12: Discuss the large r behavior of string coupling eΦ for p < 3, p =
3, p > 3 cases.

◮◮ Exercise 4.13: Do Dp-brane solutions have curvature singularity?

• The above Dp-brane solution is 1/2 BPS (it preserves 16 out of 32 supercharges of the
flat space background).

• Given that the IIA theory has only even p and IIB only odd p, IIA theory has BPS
D0, D2, D4 and D6 branes, while type IIB theory has 1/2 PBS, D(-1)-branes (D-
instantons), D1-branes (D-strings), D3-brane D5 and D7-branes.

◮◮ Exercise 4.14: Show that if Dp-braneelectrically couples to RR (p + 1)-form,
D6−p-brane magnetically couples to the same form.

• The above solutions are asymptotically flat and they break the ISO(9, 1) isometry of
the flat background to ISO(p, 1)× SO(7− p).
◮◮ Exercise 4.15: The above shows a “static” brane solution. How can we construct
the solution corresponding to a “moving brane” with velocity um in the directions trans-
verse to it.

• One may easily construct multi-D-brane solution, each located at xmi , i = 1, 2, · · · , N
by “superposing” Dp-brane solutions. That is, just taking F (r) to be

F = 1 +
N
∑

i=1

r7−p
0

|x− xi|7−p
. (4.13)

• Since the configuration is BPS the D-branes do not exert force on each other and hence
xi’s are arbitrary.

• One may consider N coincident brane case which as far as gravity description is con-
cerned a brane with mass density proportional to N/(ℓp+1

s gs).

• Black p-branes are another class of extended objects in SUGRAs, given by the same
RR-field as Dp-branes but with the following metric and dilaton:

ds2 = F−(r)
7−p
8

[

−F+(r)

F−(r)
dt2 + dx2i

]

+ F−(r)
(3−p)2

8(7−p)

[

dr2

F+(r)F−(r)
+ r2dΩ2

8−p

]

e2Φ = F−(r)
3−p
2 ,

(4.14)
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where i = 1, 2, · · · , p and

F±(r) = 1−
(r±
r

)7−p

. (4.15)

NOTE: The above metric is given in the Einstein frame.

NOTE: These are solutions describing excitations of BPS branes, by addition of
“mass” but with the same RR-charge.

NOTE: These black brane solutions cannot be “superposed”.

◮◮ Exercise 4.16: Compute the mass density of above black p-brane using ADM
formalism.

◮◮ Exercise 4.17: Show that for the “extremal” black p-brane solution with r+ = r−
one would recover the Dp-brane solution.

◮◮ Exercise 4.18: One may associate a temperature to the black brane solution, like
we do to black holes. Compute the temperature for the above p-brane geometry.

4.2.2 D-branes in string theory

• We presented the description of D-branes in SUGRA. Since type II theories are closed
string theories, the above gives a description of D-branes as a “condensate” of massless
closed string states.

• Polchinski in his 1995 paper gave a description of Dp-branes within string theory :

Dp-brane is an object where end points of an open strings attach, with p+ 1 Neuman
boundary conditions along the brane and 10− p Dirichlet boundary conditions

transverse to it.

• One can consider a system consisting of N non-coincident parallel Dp-branes. Let
us label the branes by i, j, ... = 1, 2, · · · , N . Then, we have in general open strings
ending on ith and jth branes. Since open strings are orientiable one can in principle
distinguish ij string from ji string; therefore, there are N2 number of such open strings.
The relative position of branes is given by the zero mode of ij strings.

• Therefore, to completely specify the system we should specify excitation level of each
of the N2 open strings mode.

• In particular, for the massless open string states we have p+1-dimensional gauge fields
as well as 9−p number of scalars and the corresponding spinorial superpartners. Each
of these are N ×N matrices, i.e. they are in adjoint representation of U(N).

• In general, when the Dp-branes are not on top of each other this U(N) is “broken” or
“Higgsed down” to U(1)N , as the lowest mass of open strings stretched between branes
is proportional to their relative distance.
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• In theories where we have unorientable open strings, like type I theory, and/or cases
involving orientifold planes, Op-planes, we can also produce SO(N) or Sp(N) gauge
theories on Dp-branes.

• If we have a multi-brane system consisting of branes with various relative worldvolumes
with different dimensionalities, one may repeat similar steps as above and provide an
“open string description” for the system. In general, we will then have various open
strings with different boundary conditions on each end.

◮◮ Exercise 4.19: Consider a two brane system consisting of Dp-brane along 012 · · ·p
and a Dq-brane along 012 · · · q with p > q. How many DD, DN or NN open strings do
we need to describe this system?

• It is possible for Dp-branes to form “marginal” or non-marginal “true” bound states.
For example a Dp-brane and Dp−2-brane can form a bound state which has a mass
density lower than the sum of the masses of ingredients. This happens due to an open
string tachyon condensation.

• One should note that the above description for Dp-branes is an effective description
in the “probe” approximation: Open strings are living in flat space and do not see
the curvature caused by the brane, they only feel the brane through their boundary
conditions.

4.2.3 Low energy effective field theory of Dp-branes

• As mentioned Dp-branes have a description in terms of open strings attached to them
and hence their excitations may be viewed as various open string modes.

• One may compute scattering amplitudes (S-matrix elements) of open strings off each
other, or off closed strings of the bulk (i.e. scattering of closed strings off branes).

• As in the SUGRA case, one may find a low energy effective field theory which repro-
duces these S-matrix elements for massless open string modes at lowest order (where
the string interaction corresponds an exchange of open or closed string massless states.
This low energy effective action is the Dirac-Born-Infeld (DBI) theory.

• The DBI action for a Dp-brane is a p+1-dimensional supersymmetric gauge field theory
with 16 supercharges. Its dynamical fields are massless states of open strings which are
consists of a gauge field, 9 − p real scalars and corresponding fermions. The bosonic
part of DBI action is:

SDBI =
1

(2π)pℓp+1
s

∫

dp+1x e−Φ
√

− det (Gab + Fab) +

∫ p+1
∑

k=0

(Ck ∧ eF) . (4.16)

In the above

– a, b = 0, · · · , p and xa parameterize the Dp-brane worldvolume.
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– Gab is the induced metric on the Dp-brane worldvolume, and Fab involves two
parts, a the gauge field strength Fab and pullback of the NSNS B-field on the
brane, explicitly:

Gab = Gµν∂aX
µ∂bX

ν , Fab = 2πℓ2sFab +Bµν∂aX
µ∂bX

ν , (4.17)

where Fab = ∂aAb − ∂bAa and Xµ in a specific choice for embedding coordinates
is xa for µ = 0, 1, · · · , p and for µ = p + 1, · · · , 9, ℓ−2

s X i = φi denote 9 − p scalar
fields. Note that Gµν is the string frame metric.

◮◮ Exercise 4.20: How does the DBI action look like when the background
metric is in the Einstein frame?

– The last term in the DBI action is called the Chern-Simons term and involves
RR k-form fields. In particular, it involves the RR p + 1-form which shows that
Dp-brane carries one unit of the corresponding RR-charge density.

• Similarly to the SUGRA, the DBI action also arises directly from the string world-
sheet action (4.1), as the worldsheet Weyl anomaly cancelation condition Dai, Leigh,

Polchinski, Mod.Phys.Lett. A4 (1989) 2073.

• DBI action for any p may be supersymmetrized. It leads to a p+1 dimensional SUSY
gauge theory with 16 supercharges.

• The DBI action enjoys the following (gauge) symmetries:

– p + 1 dimensional diffeomorphism invariance on the worldvolume.

– λ-gauge symmetry: Aa → Aa + ∂aλ, with all the other fields unchanged.

– Λ-gauge symmetry: Bµν → Bµν − 2πℓ2s∂[µΛν] , Aa → Aa + Λa. This is manifest
because the action is only a function of F.

• When we have N coincident Dp-branes the λ symmetry is enhanced to U(N). Since
the DBI action involves arbitrary power of F or derivatives of scalar fields, for this
case we need to provide “certain ordering” of U(N) matrices. Direct string theory
computations indicate that the correct ordering is symmetrized trace, meaning that we
symmetrize all U(N) matrices before taking the trace.

• One may study the “low energy” limit of the DBI action by sending ℓs → 0.

◮◮ Exercise 4.21: Show that in the ℓs → 0 limit the DBI action reduces to a SYM
theory with the Yang-Mills coupling gYM :

g2YM = (2πℓs)
p−3gs . (4.18)

Hint: To show the above, assume the background 10d metric is flat Minkowski and set
the B-field to zero and the dilaton to a constant Φ0, gs = eΦ0.
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• DBI in itself is a low energy effective theory which shows interactions of massless open
string fields with each other and with closed strings of the bulk. Therefore, the low
energy effective theory of the Brane+Bulk system is

S = SSUGRA + SDBI . (4.19)

The above is the action describing a bulk geometry with brane probes.

• Similarly to the SUGRA action, DBI action also receives α′ and gs corrections. Note
that DBI action already contains α′ suppressed terms which all come as higher powers
of F.

◮◮ Exercise 4.22: Argue that the contribution of massive string modes generically
involve higher derivative terms like (DnF)m or (Dn+1φ)m, where n ≥ 1 and m ≥ 2.

4.2.4 11d SUGRA and M-branes

• SUSY algebra considerations indicate that 11d, that is 10+1 dimensions, is the largest
spacetime dimensions where the smallest SUSY multiplet involves maximum spin two
states; the smallest N = 1 SUSY reps in 11d. Therefore, one may construct a SUGRA
in 11d.

• Again SUSY algebra considerations tell us that this SUGRA is unique, with a fairly
simple matter content:

11d metric, a three four Cµνα and one 11d Majorana fermion.

◮◮ Exercise 4.23: Count the number of propagating d.o.f, both in bosnic and fermionc
sectors.

• Note that there is no scalar in the spectrum, unlike 10d cases. Therefore, there are no
parameters, no moduli, in the theory.

• The action for this theory involves only a length unit, 11d Planck length ℓP . Its bosonic
part is

S11d =
1

2ℓ9P

∫

d10x
√
−g
(

R− 1

2
|F4|2

)

− 1

6

∫

C3 ∧ F4 ∧ F4 , (4.20)

where F4 = dC3.

• A Kaluza-Klein reduction of above 11d action on a circle of radius R, produces 10d IIa
action (4.7).

◮◮ Exercise 4.24: Work out the above reduction and establish the above statement.
In particular show that

ℓ2s ∼ ℓ3P/R , gs ∼
(

R

ℓP

)3/2

. (4.21)
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• The above connection between 11d and 10d SUGRAs, may also be extended to full
IIA string theory:

– Fundamental strings of IIA become membranes or M2-branes in 11d (which are
wrapping the KK circle);

– D2-branes are directly lifted to M2-branes;

– D0-branes become KK-gravitons;

– D4-branes uplift to M5-branes.

• Mass density or tension of M2/M5-branes are respectively ℓ−3
P and ℓ−6

P .

• The theory which is obtained as uplift of IIA to 11d is called M-theory.

• The LEET of M-theory is 11d SUGRA and IIA at strong coupling becomes M-theory
(gs →∞⇒ R/ℓP →∞).

◮◮ Exercise 4.25: Show the latter noting (4.21).

• The M2-brane and M5-branes may be viewed as solutions to 11d SUGRA: M2-brane is
electrically charged under the 3-form Cµνα, while the M5-brane is magnetically charged.
Explicitly:

ds2 = F (r)−
8−p
9

(

p
∑

µ,ν=0

ηµνdx
µdxν

)

+ F (r)
p+1
9

(

dr2 + r2dΩ2
9−p

)

C012 = 1− F−1 for M2-brane, C012345 = 1− F−1 for M5-brane,

(4.22)

where p = 2 for M2-branes and p = 5 for M5 and,

F (r) = 1 + cp

(

ℓP
r

)8−p

, c2 = 32π2 , c5 = π . (4.23)

• The above M-brane solutions are 1/2 BPS and hence one can superpose them (as in
the D-brane case).

• We do not yet know the multiple M5-brane action; this is essentially related to the 6d
N = (0, 2) CFT.

5 The decoupling limit

As discussed in the opening lectures it may happen that a unitary quantum theory has a
decoupling limit. If it exists, it means that there is a limit which takes us to a specific corner
of both the Hilbert space and parameter space of the theory where we find another unitary
theory. We should point out that by unitarity in this context we mean perturbative unitarity
or unitarity of the S-matrix.
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5.1 General remarks on decoupling limit

• Let us start exploring whether it is “natural” to have decoupling limits within QFTs.
We first note that moving on the RG flow paths does not generically correspond to a
decoupling limit. However, in particular cases it may happen that when we move from
a given RG fixed point to another, the perturbative degrees of freedom of the theory
may change, as do the values of parameters/couplings. Nonetheless, the original d.o.f
are still providing a complete basis (even though non-perturbatively). As another
possibility, in a d dimensional QFT one may restrict oneself to a d − n dimensional
sector of it by allowing the states in the Hilbert space which have vanishing momenta
in the n dimensional part. As we know, e.g. from electromagnetism, this does not
restrict/confine lines of force to the d− n dimensions and the theory is still inherently
d dimensional (due to off-shell virtual particles).

• Kaluza-Klein (KK) reductions do not lead to interesting decoupled theories either,
even if we take a strict vanishing radius limit. To be more specific let us consider
KK reduction of a d+ 1 dimensional YM theory of coupling g2YM on a circle of radius
R. In d dimensions we find a YM theory of coupling g2YM(2πR), a scalar field in the
adjoint representation and a tower of massive modes with masses of order 1/R, all in
the adjoint rep of the gauge group. In the R→ 0 limit these modes become infinitely
heavy and decouple from the dynamics. Although the d dimensional scalar+YM theory
in itself is a unitary theory, to keep the coupling finite we need to take gYM → 0 and
hence the d+ 1 dimensional theory becomes trivial and noninteracting.

◮◮ Exercise 5.1: One may consider a more “interesting” case: Take a U(N) d +
1 dimensional gauge theory and perform the above reduction while also taking N ∼
1/R → ∞. Explore this case more closely and argue whether the d theory exhibits
interesting dynamics. Does this case constitute a decoupled theory?

• One may next consider KK reduction of Einstein gravity theory, e.g. on a circle of
radius R. Although the Einstein theory in itself is not a unitary field theory (due to
issues with renormalizability), again we face a similar situation as above: in the R→ 0
limit, the d dimensional Newton constant Gd remains finite only when the d+1 Newton
constant Gd+1 goes to zero (recall that Gd ∼ Gd+1/R.)

• From the above it is clear that Low Energy Effective Theories (LEETs) e.g. IIa or
IIb SUGRAs, or DBI action, do not provide a decoupled sector in string theory. Let
us first consider the SUGRA cases. In this case in the ℓs → 0 limit all massive string
modes decouple. Nonetheless the gravity theory also become trivial (vanishing Newton
constant), unless we also send string coupling gs to infinity.

◮◮ Exercise 5.2: How should we scale gs to obtain a finite 10d Planck length?

In this limit, nonetheless, string coupling becomes large and string theory is non-
perturbative.

• Next, let us consider the DBI action. Despite being supersymmetrizable (with maxi-
mum 16 supercharges), DBI action involves higher powers of F and is not renormaliz-
able and hence non-unitary. At any given order in ℓ2s one may add higher derivative
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counter-terms and regularize the theory, but the series of such higher derivative terms
do not terminate and we need infinitely many of them. This will essentially takes us
to a full string theory which is unitary.

Now let us study DBI in the ℓs → 0 limit. In this limit the string theory dynamics is
only described by the massless states. Moreover, as we note (4.16), there are powers of
ℓs in the action. Let us consider the brane in the flat background case. In the leading
order in ℓs, we should hence only keep F2 terms of the determinant and drop higher
powers of Fab. Similarly, from the first (induced metric) term one should only keep “the
trace part” which is ηab∂aΦ

i∂bΦ
i, i = 1, · · · , 9 − p. Once fermions are also included

and for N coincident Dp-branes, the action hence reduces to a p+1 dimensional U(N)
SYM with 16 supercharges, with coupling (4.18).

• To have a decoupled theory on Dp-branes one should hence require: 1) 10d gravity to
be non-interacting and trivial; 2) SYM has a finite coupling. Recalling that

ℓ4P ∼ ℓ4sgs , g2YM ∼ ℓp−3
s gs , (5.1)

where ℓP in the above is the 10 Planck length. The decoupling conditions then read as

ℓP → 0 , ℓs → 0 , gYM = finite and small .

– For p = 3 the above can be easily met.

– For p < 3, to satisfy them gs → 0, which means a free string theory limit.

– For p > 3, we are forced to take gs → ∞ and the string theory becomes un-
trustable. For p = 4 one would need to uplift to M-theory where we find M5-
branes; for p = 5 we will need to go to a weakly coupled S-dual frame; and for
p = 6 there is no decoupling at all.

– For more detailed discussion on this see: arXiv: hep-th/9802042.

The most interesting case seems to be the p = 3 one.

NOTE: The above decoupling limit argument was made for branes on flat background.
Presence of non-trivial backgrounds can change the outcome.

◮◮ Exercise 5.3: Repeat the same “decoupling” argument for the M-brane case.

5.2 Near Horizon limit as decoupling limit

• As mentioned, α′ → 0 limit on the DBI action for p ≤ 5 Dp-branes leads to a decoupled
theory which is a p+ 1 dimensional SYM theory with 16 supercharges. This theory is
a CFT for p = 3 while for p = 0, 1, 2 it flows to CFT in the IR and for p = 4 flows to
a CFT in the UV (the (0, 2) theory).
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• On the other hand, we mentioned that the same Dp-brane system has a description
as solutions in the gravity. One may wonder what happens if the same α′ → 0 is also
applied to this solution.

• In this limit the closed strings of the asymptotic flat geometry of the bulk become in-
finitely heavy and decouple; we remain only with SUGRAmodes. Moreover, generically
10d Newton constant also goes to zero (cf. discussions above) and hence generically
SUGRA also has a vanishing coupling. Nonetheless, the theory is not trivial because
the background is curved and closed strings which are located at different distances
from D-branes see different geometries and have different effective couplings.

• The Dp-brane solution (4.11) is the extremal limit of a more general black brane
solution and is written in the coordinate system where the horizon is at r = 0 and
U ≡ r/ℓ2s measures the energy stored in the scalars of the field theory as we move
away from the brane, it is a measure of the energy available to open string probing the
brane.

• The ℓs → 0 limit, while keeping U fixed is hence a low energy limit probing the locus
very close to Dp-branes horizon; it is a Near Horizon (NH) limit.

• In the NH limit one may drop 1 in the harmonic function F (r) (4.12).

• From hereon we focus on the p = 3 case, where the gravity solution is nonsingular. In
this case, the NH metric of N D3-branes is:

ds2 = R2

[

U2dx2µ +
dU2

U2

]

+R2dΩ2
5 ,

e2Φ = g2s , R4 = (4π)2ℓ4sNgs

F5 = R3vol(s5) ,

(5.2)

where vol(s5) is the volume form of a unit radius five-sphere.

• The above is AdS5× S5 which is a maximally SUSY solution to 10d type IIb SUGRA.

• To ensure that IIb SUGRA is a valid description and the α′ and gs corrections are
small, one should make sure that the AdS radius R in string unit is finite (and large)

Validity of SUGRA description ⇒ R/ℓs ≫ 1 or gsN ∼ λ≫ 1 , (5.3)

where λ is the ’t Hooft coupling of the SYM on the branes.

◮◮ Exercise 5.4: Carry out the NH limit procedure on the N M2, M5-brane solutions
of 11d SUGRA and show that we respectively find AdS4× S7 and AdS7× S4. How does
the AdS radius scale with the number of branes?

• The above NH limit, among other things shows that the closed strings which are very
close to the brane also survive, not only the massless sector of them, but also all the
massive tower. But, these closed strings find themselves in an AdS5× S5 space, rather
than an asymptotic flat one.

◮◮ Exercise 5.5: Convince yourself that the above statement is true.
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• Note that in taking the NH limit the stack of D3-branes which were a localized source
for the self-dual five-form has disappeared, instead we have remained with a dilocalized
flux.

• In the NH limit the asymptotic flat region of the D3-brane geometry has been cut out.

• The branes were located at r = 0 but now this place is replaced by the Poincaré horizon
of the AdS5.

• The U →∞ region is the causal or conformal boundary of the AdS space. More
discussions on this will follow.

• One may perform a KK reduction of IIb on the S5. This leads to N = 4 SU(4) gauged
SUGRA in five dimensions. This is the maximally SUSY gauged SUGRA in 5d.

◮◮ Exercise 5.6: Show that the 5d Newton constant is

G
(5)
N ∼

R3

N2
. (5.4)

Note the 1/N2 suppression. Note also that G
(10)
N ∼ R8/N2.

• As a 5d geometry, the AdS5 is the vacuum solution to N = 4 SU(4) gauged SUGRA.
In the gauged SUGRA there are many scalar fields in various representations of SU(4)
and they have a non-trivial potential. This potential has an absolute minimum and the
value of the potential at the minimum is negative. This minimum value is a parameter
of the gauged SUGRA, and specifies the radius of the vacuum AdS5 solution R. So,
this solution is described by two parameters, G

(5)
N and R, or equivalently N and R.

• The above clearly exhibits that the effective AdS5× S5 gravity coupling (both in 10d
and 5d) are compatible with the expectations from ’t Hooft’s 1/N expansion.

• One may also study string worldsheet theory on the above AdS5× S5 background.

◮◮ Exercise 5.7: Show that the coefficient in front of the worldsheet action is√
gsN ∼

√
λ. In other words, α′

AdS ∼ λ−1/2, where α′
AdS is the effective string scale on

AdS.

• This confirms the expectation discussed in Exercise 2.4, that the ’t Hooft coupling
in the SYM is essentially related to a string scale. This makes connection with the
above mentioned point that to suppress stringy corrections to SUGRA on AdS5× S5

one should take λ & 1.

• All the above arguments and existence of the decoupling limit suggests the following
AdS5/CFT4 duality:

Taking the NH limit over N D3-brane system leaves a 4d N = 4 U(N) SYM, which is
expected to be dual to IIB string theory on the AdS5× S5 background. The two

parameters of the theory are related as:

λ−1 ←→ α′2
AdS , 1/N2 ←→ closed string coupling . (5.5)

38



• Similar type of duality may be argued for, for the case M2 and M5-branes. But the
correspondence is more subtle due to the fact that M-theory is less understood than
string theory, and also that we know less about 3d and 6d CFTs than the N = 4 SYM.

The rest of these lectures is about stating, establishing and employing the AdS/CFT. To
this end we will discuss more some properties of AdS space and study field theory on AdS
space. This is to familiarize with the background in the gravity side. In the meantime we
will try to gradually add pages to the AdS/CFT disctionary.

6 More on AdS spaces

In this section we discuss geometry, isometry and causal structure of AdS or locally AdS
spaces.

6.1 Metric on AdS space

AdSd+1 space

• is a maximally symmetric space of Minkowski signature with negative curvature:

Rijkl = −
1

R2
(gijgkl − gikgjl) . (6.1)

where gij is its metric;

• is a solution to d+ 1 dimensional Einstein equations with cosmological constant Λ:

Rij −
1

2
gijR = −Λgij ; (6.2)

◮◮ Exercise 6.1: Show that Λ = −d(d−1)
2R2 .

• has SO(d, 2) isometry;

• and may be embedded into Rd,2 space

−X2
−1 −X2

0 +
d
∑

a=1

X2
a = −R2 ,

ds2 = −dX2
−1 − dX2

0 +

d
∑

a=1

dX2
a .

(6.3)

Depending on the solutions we choose for (6.3) one may adopt various coordinate systems
which cover the whole or a part of the AdS space and may be given different names. Each
coordinate system makes a part of the isometries manifest depending on the slicings used.
Some famous AdS coordinate systems are
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• Global coordinates:

ds2 = R2
[

− cosh2 ρdτ 2 + dρ2 + sinh2 ρdΩ2
d−1

]

= R2

[

−(1 + r2)dτ 2 +
dr2

1 + r2
+ r2dΩ2

d−1

]

=
R2

cos2 θ

[

−dτ 2 + dθ2 + sin2 θdΩ2
d−1

]

,

(6.4)

In the above τ ∈ (−∞,+∞), and when d > 1 then r, ρ ∈ [0,∞) and θ ∈ [0, π/2]. For
d = 1, the AdS2 case, r, ρ ∈ (−∞,+∞) and θ ∈ [−π/2, π/2].
◮◮ Exercise 6.2: Work out the coordinate transformation θ = θ(r) which relates
second and third lines in (6.4).

In global coordinates the U(1)τ × SO(d) part of the isometry is manifest. As we see
from the last metric, AdS space, up to the conformal 1/ cos2 θ factor, is of the form of
Einstein static Universe, it is conformal to R× Sd.

◮◮ Exercise 6.3: Find the embedding in d + 2 space (6.3) which leads to the above
global coordinates and work out the corresponding metric.

◮◮ Exercise 6.4: How long does it take (in global time τ) for radial light-like geodesics
to travel from the center of AdS r = 0 to r =∞?

◮◮ Exercise 6.5: How long does it take for a radial time-like geodesics to travel from
the center of AdS at θ = 0 to θ = π/2?

◮◮ Exercise 6.6: Study more general class of null geodesics in global AdS, those
which involve angular momentum on the Sd−1 too.

• Poincaré patch:

ds2 = R2

[

U2dx2µ +
dU2

U2

]

, µ = 0, 1, · · · , d− 1 ,

=
R2

z2
[dx2µ + dz2] ,

= dy2 + e2|y|/Rdx2µ .

(6.5)

◮◮ Exercise 6.7: Find the embedding leading to the Poincaré patch.

Poincaré coordinates cover only a part of the global AdS spacetime, i.e. Poincaré patch
is not geodesically complete and makes manifest the ISO(d−1, 1) part of the isometry
group.

As it is seen the small z region corresponds to large r region (or θ ∼ π/2 region) in the
global coordinates. Similarly, z → 0 region corresponds to U →∞ and/or y → +∞.

◮◮ Exercise 6.8: Study time-like and light-like radial geodesics.

◮◮ Exercise 6.9: Study more general class of null geodesics in Poincaré patch, those
which involve linear momentum on the Rd−1 too.
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The large z region, corresponding to y → −∞ or small U region, is a horizon, the
Poincaré horizon. The Poincaré coordinates do not cover behind this horizon; Poincaré
patch is not geodesically complete.

◮◮ Exercise 6.10: Show that ∂z is a Killing horizon at z =∞.

NOTE: Despite of having a Killing horizon, AdS in Poincaré is not a black hole,
because the space do not have an event horizon; this is just a coordinate artefact.

◮◮ Exercise 6.11: The global and Poincaré coordinates are associated with slicing
of AdSd+1 with Sd−1 and Rd−1. Study slicing of AdSd+1 by Hd−1, where Hd−1 is the
d− 1-dimensional hyperboloid.

◮◮ Exercise 6.12: In a similar manner Poincaré coordinates is slicing of AdSd+1 by
Rd−1,1. Analyze slicing of AdSd+1 by AdSd and by dSd.

◮◮ Exercise 6.13: Study AdSq+1×Sp−q as well as AdSq+1 × R
p−q slicing of AdSd+1

(q < p− 1).

◮◮ Exercise 6.14: AdS sapce, like sphere and dS, can be viewed as a “quotient
space”. Argue that AdSd+1 space is the quotient SO(d, 2)/SO(d, 1). Answer the same
question about dSd+1.

6.2 Causal structure of AdS space

• As discussed null radial geodesics on AdS can reach the large r (small z) region in a
finite time.

• On the other hand, the AdS space cannot be extended beyond r =∞ region.

• Although r = ∞ is not a part of AdS spacetime it is in causal contact with the rest
of spacetime: one can send and receive light signals to r = ∞ region. This region is
hence causal boundary of spacetime.

• One may formally extend the AdS spacetime by the addition of its causal boundary to
it (this is like a “one-point compactification, see below). But, then to define physics
on it one needs to define behavior of particles and fields at the boundary.

• We usually demand that nothing should pass through the boundary. That is, we should
require the energy flow through boundary to be zero.

• This may be equivalent to imposing Neumann or Dirichlet boundary conditions on the
fields living in AdS.

• In global (or Poincaré) coordinates the AdS space is conformal to a cylinder (or to a
flat space). The conformal boundary of spacetime is where this conformal factor
vanishes. One may add this point to the spacetime, and “compactify” it.

• For AdS sapcetime conformal and causal boundaries coincide, but for a general space-
time these two need not be the same.
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◮◮ Exercise 6.15: Discuss what is the conformal and causal boundaries of de Sitter
space? For which spacetimes the causal and conformal boundaries are different and for
which they are the same?

• The boundary of AdSd+1 space in global coordinates is R×Sd−1.

• Poincaré patch covers an Rd−1,1 part of the global boundary.

◮◮ Exercise 6.16: What is the boundary of AdS space in dS-slicing?

◮◮ Exercise 6.17: The case of AdS2 is different than the higher dimensional AdS
spaces. Draw its Penrose diagram and discuss the structure of null, time-like and
space-like geodesics on it.

◮◮ Exercise 6.18: Projective boundary. Given the definition of AdS through the
embedding equation (6.3) one may define the projective boundary as what remains of
the space under XI → λXI , λ→ 0 projection. This is a space given by

−X2
−1 −X2

0 +

d
∑

a=1

X2
a = 0 , (6.6)

like an AdS space of vanishing radius. Solve the above equation with various slicings
and discuss how the projective boundary and the conformal and causal boundaries are
related to each other.

◮◮ Exercise 6.19: A spacetime which is a relative of AdS space is the Lifshitz
spacetime with metric

ds2 = −r2zdt2 + r2
p
∑

i=1

dx2i +
dr2

r2
, (6.7)

where z is the Lifshitz scaling parameter and can be larger or smaller than one. The
z = 1 case recovers the AdS in Poincaré patch. Discuss its null geodesics and work out
its causal structure and Penrose diagram.

6.3 Asypmtotically AdS spaces

As we discussed and will be made more precise as we move along in these lectures, AdS/CFT
prescribes that any deformation or physical process in the CFT has a correspondent/dual
in the AdS side. A special class of such deformations in the AdS side which is of particular
interest are stationary spacetimes which are asymptotically AdS. In this part we briefly
discuss such backgrounds.

As mentioned AdSd+1 space is a solution to some (super)gravity theory and satisfies

Rµν − gµνR =
d(d− 1)

2R2
gµν . (6.8)

One may then ask if the above equation (for a given d) has other solutions. The answer is
Yes. Here we mention two asymptotic AdS static solutions to the above equation.
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• AdS-Schwarzchild. This is a deformation of AdSd+1 space in global coordinates and
keeps U(1)τ × SO(d− 1) part of the AdS isometry intact. For d ≥ 3 its metric is:

ds2 = −f(r)dτ 2 + dr2

f(r)
+ r2dΩ2

d−1 , f(r) = 1 +
r2

R2
− 2GNM

rd−2
. (6.9)

◮◮ Exercise 6.20: Analyze the light-like and time-like radial geodesics of the above
metric.

◮◮ Exercise 6.21: Draw the Penrose diagram and causal structure of the above
metric.

◮◮ Exercise 6.22: Compute the Hawking temperature of the above black hole. Com-
pute its ADM mass and Bekenstein-Hawking entropy. What is the relation between
these. Is the free energy a monotonic function of horizon radius?

◮◮ Exercise 6.23: One can in principle write down “Kerr-AdS” type solutions which
are stationary. Explore this possibility.

◮◮ Exercise 6.24: How about the d = 2, AdS3 case? Explore the possibility of having
“asymptotic AdS3 black holes”. Hint: These are the famous BTZ black holes.

• AdS-black brane solution. This is a deformation of AdS in Poincaré patch and
keeps ISO(d− 1)× U(1)t part of the AdSd+1 isometry intact. Its metric for d ≥ 3 is

ds2 =
R2

z2
[−f(z)dt2 +

p
∑

i=1

dx2i +
dz2

f(z)
] , f(z) = 1−

(

z

zH

)p+1

, (6.10)

where f(z) is called the “emblackening factor” and zH is the horizon radius.

◮◮ Exercise 6.25: Analyze the causal structure of the above solution.

• One may give a more general form for the above two solutions which also covers a third
case of hyperboloid slicing:

ds2 = −fk(r)dτ 2 +
dr2

fk(r)
+ r2dΣ2

k , fk(r) = k +
r2

R2
− 2GNM

rp−1
, (6.11)

and Σk is a p dimensional Einstein manifold of unit radius with curvature k = 0,±1
(i.e. RΣ

ij = k(p− 1)gΣij, where g
Σ, RΣ are respectively its metric and Ricci curvature).

The k = +1 includes a sphere (recovering the AdS-Sch’ld case of (6.9)), (6.10) is
recovered in k = 0 cases, and k = −1 is a new case not discussed before.

◮◮ Exercise 6.26: Show that the k = 0 indeed recovers (6.10).

7 Formal statement of AdS/CFT duality

As mentioned AdS/CFT duality, which is obtained through a decoupling limit of string/brane
theory, is an equivalence between Quantum Gravity on the one hand and a CFT on the other
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hand. Moreover, as discussed, any local QFT may be viewed as a deformation of a theory
around its RG fixed point, where we usually find a CFT. That is, any local QFT can be a
deformation of a CFT by its local operators (cf. (1.1)). All physical information of such a
QFT theory is encoded in its partition function:

ZCFT [λi(x, µ0)] =

∫

DΦ ei
∫
ddx (LCFT+

∑
i λi(x)Oi) . (7.1)

where λi(x, µ0) in (7.1) are defined at a given RG fixed point, occurring at a specific scale
µ0. It would be desirable to represent the AdS/CFT duality as an equivalence between two
partition functions. Nonetheless, the quantum gravity/string theory side does not have a
simple/precise partition function description, but one can still formally use or introduce it.

We need to first make sense what λi are in the AdSd+1 side. As discussed, λi(x;µ) are
in fact fields on the AdS side (in some particular gauge, see below for more comments).
Moreover, we also discussed that the scale µ in the QFT side corresponds to a direction
(holographic dimension) in the AdS-side. Let us e.g. consider the AdS in Poincaré patch
(6.5) with y as its holographic dimension and let the scale µ0 correspond to y = y0. If the
QFT is defined at a UV fixed point (µ0 → ∞) this corresponds to y0 ∼ lnµ0 → ∞; i.e.
boundary of the AdS space. One may then formally define the quantum gravity partition
function with field values at the AdS boundary (or any other y = y0) through the path
integral

ZAdS−QGr[λi(x, y0)] =

∫

Dλi

∣

∣

∣

∣

λi(x,y0)

eSQGr , (7.2)

where the path integral is only on the field configurations taking values λi(x, y0) at y = y0. We
stress again that the above is a formal description and quantum gravity may not necessarily
have a path integral formulation as in (7.2).

The formal but precise expression of AdS/CFT duality is then

ZAdS−QGr[λi(x, y0)] = ZCFT [λi(x, µ0)] . (7.3)

NOTE: Statement of duality or the correspondence as expressed above is still missing
some important point:

Oi are in general rank q tensors in d dimensional Lorentz group, the corresponding cou-
plings λi(x;µ) are also necessarily a rank q tensor of the same group. The AdS (gravity)
side, however, is defined on a one higher dimension and hence its fields are d+1 dimensional
tensors. As discussed, these two can only be equivalent once a particular gauge (and/or
diffeomorphism basis) in the gravity side is used.

For example, if O is a Lorentz vector Jµ the corresponding coupling Aµ will also be a
vector. In the gravity side, this coupling Aµ should appear as a d+1 dimensional vector, let
us denote it by AI , I = 0, 1, · · · , d−1; y. Nonetheless, if this vector is a gauge field, one may
use d + 1 dimensional gauge symmetry, fix the Ay = 0 gauge. This will remove the extra
component and retains matching.

◮◮ Exercise 7.1: Repeat the above argument when O is a symmetric two tensor. What
is the symmetry in the bulk needed to retain the matching? How about higher rank tensors?

44



◮◮ Exercise 7.2: What “gauge symmetry” should the gravity side have if we are inter-
ested in deformations of the QFT by q-form operators?

◮◮ Exercise 7.3: What “gauge symmetry” should the gravity side have if we are inter-
ested in deformations of the QFT by a generic spin s operator with s > 2?

7.1 Statement of gauge/gravity correspondence

As discussed the above statement of AdS/CFT duality is very precise, but perhaps not so
useful, because (7.2) is a very formal expression not defined in detail. One may wonder if
there are “useful” limits of it which makes the quantum-gravity side more tractable. Here we
discuss the gauge/gravity correspondence, which not only leads to a “computable framework”
but also opens up the possibility for extension and generalization of the duality, of course
not necessarily as a full-fledged duality but a ‘correspondence” (cf. discussion of section 1).

Any theory of quantum gravity, by definition, must contain a limit where the theory
becomes classical and is described by a classical (Einstein) gravity theory, possibly coupled
to many other fields. If the quantum gravity theory is a string theory of M-theory, one can
define this “classical gravity” limit more precisely. As discussed in previous sections, this
limit involves
1) making sure that all “stringy” modes are heavy (on AdS), namely E2α′

AdS ≪ 1 where E is
the energy/mass of the states involved in the physical process, i.e. these states are typically
very massive and hence do not contribute to the dynamics;
2) making sure that quantum effect on the gravity (massless) modes is small, i.e. fields are
slowly varying and string coupling geffs ∼ 1/N is small.

In the above limit, when both α′ and gs corrections are small one may safely replace SQGr

in (7.2) by SSUGRA (on AdS). Moreover, since quantum effects are also small the RHS of
(7.2) may be well approximated, in the WKB/saddle point approximation, by the value of
the exponential of classical gravity action with field values satisfying classical gravity field
equations with boundary conditions λi = λi(x, y0). Explicitly,

ZCFT [λi(x, µ0)] ≃ eiS
gravity
on−shell

∣

∣

∣

∣

λi(x,y0)

. (7.4)

The above is statement of gauge/gravity correspondence.

NOTE: As we will see in the next section the QFT couplings λi(x, µ0) and the gravity
field values at y0, λi(x, y0) are not exactly equal, they differ by a constant factor. This will
be made more precise and explicit in (8.35).

With the above discussions there are some comments in order:

• If the CFT side is an N = 4 4d U(N) SYM, the quantum gravity side is precisely
specified through the decoupling limit arguments of previous sections to be type IIB
superstring theory on the AdS5× S5 background. Similarly, other 4d CFTs (cf. discus-
sions in section 3), would correspond to type IIB string theory on AdS5×M5, where
M5 is a compact Euclidean manifold and is specified by the CFT.
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• In an N = 4 gauge theory, or a generic N 4d CFT (cf. discussions of section 3), we have
gauge fields, scalar and the corresponding fermionic superpartners. As discussed in the
AdS-side, considering operators which involve of powers of these scalars geometrically
correspond to deformations/physical processes on the S5 or M5 part of the geometry.
So, if we are interested only in correlations of operators only involving gauge fields in
the AdS side, we may safely restrict ourselves only to the AdS piece.

• One may also think of an “opposite situation”: It may happen that for particular set of
operators we can essentially only focus on the operators involving scalars corresponding
to dynamics on the S5 piece. Such an interesting case has been discussed and shown
that for single trace operators involving only scalars of N = 4 theory the effective
dynamics of the system is described by an SO(6) spin-chain.

• For maximally supersymmetric 3d (or 6d) CFTs the quantum gravity side is M-theory
on AdS4×S7 (or AdS7×S4). For less SUSY CFTs one may deform the S7 or S4 parts.

• In the low energy case these theories respectively reduce to type IIb supergravity on
AdS5×M5 or 11d SUGRA on AdSp+1×M10−p (with p = 3, 6).

• As one may see from (6.5), in the Poincaré patch one can use various coordinate systems
which differ in the choice of the holographic direction. In the QFT side, the freedom
in choosing the holographic coordinate corresponds to using different regularization
methods.

◮◮ Exercise 7.4: Argue that using z coordinate is more closely related to dimensional
regularization, while U coordinate is more closely related to cutoff regularization. Which
regularization does y coordinate correspond to?

◮◮ Exercise 7.5: What is the coordinate system more appropriate for the Pauli-
Villars regularization?

• Different choice of coordinates on the AdS covers a part of the AdS boundary (where
the UV CFT resides). Therefore, depending AdS coordinate slicing the dual QFT lives
on different manifolds; for AdS in global coordinates the CFT lives on R×Sp and in
Poincaré patch the dual CFT lives on Rp,1 and so on.

• The Wick rotation on the CFT and the gravity sides act in the same way: QFT on
Euclidean space is dual to gravity on Euclidean AdS, EAdS.

◮◮ Exercise 7.6: Other useful limits?! Is there a “useful” (computable) limit where
the gravity side is quantum while the CFT side is classical. Which limit is this? How would
one approximate (7.3) in this limit?

7.2 Counting of degrees of freedom and holography

As an interesting check for the AdS/CFT duality (and/or gauge/gravity correspondence) let
us try to count degrees of freedom on both sides. The goal here is not showing an exact
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matching, but is to illustrate what described in section 1 in a more quantitative way through
a back of envelope computation.

d.o.f in gauge theory side. Let us suppose that we have a QFT on R × Rd−1. The
number of degrees of freedom, number of states in the Hilbert space is basically infinite, but
one may “regulate” it by putting the theory in a box of volume V and assuming the highest
energy of states be Λ. Number of degrees of freedom is hence

#d.o.f in QFT = (VΛd−1) ·Nspecies , (7.5)

where Nspecies is number of species of fields we have, e.g. in a pure U(N) YM theory that is
(d− 2)N2 (factor of d − 2 is for the gluon polarizations) and for N = 4 4d U(N) SYM it is
2 · 8 ·N2.

d.o.f in gravity side. Let us suppose that we have a gravity theory on AdSd+1of radius R
and Newton constant GN . If we accept the holographic result that in a gravitational setting
maximum number of d.o.f is obtained on a d− 1 dimensional surface, and if we choose this
codimension two surface to be a constant time and z surface, and let it be close to the
boundary at z = 1/Λ (recall that radial direction z corresponds to the scale in the QFT
side, and cutting z close to the boundary is like imposing a UV cutoff.) The volume of this
surface is

AΛ =

∫

dd−1x

(

R

z

)d−1 ∣
∣

∣

∣

z= 1
Λ

= Rd−1(VΛd−1) . (7.6)

If according to the holographic expectation we assume that

#d.o.f in gravity =
AΛ

4GN
=
Rd−1

4GN
· (VΛd−1) ,

equating the gravity and QFT degrees of freedom we learn that (dropping numeric factors)

Rd−1

GN
= Nspecies . (7.7)

Let us now apply the above formula to some known cases. When we are dealing with
string or M-theory on AdSd+1×SD−d−1 with AdS and sphere radii equal up to a numeric
factor, RS ∼ RAdS = R, then:

GN ∼ G
(D)
N /RD−d−1, (7.8)

where G
(D)
N is the D dimensional Newton constant and hence

Nspecies ∼
RD−2

G
(D)
N

. (7.9)

• AdS5× S5 and its dual N = 4 U(N) SYM. D = 10 and G
(D)
N ∼ R8/N2 therefore,

(7.9) implies the expected result Nspecies ∼ N2.
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• AdS4×S7 and its dual U(N)×U(N) SUSY Chern-Simons theory. D = 11 and

G
(D)
N ∼ ℓ9P , R

3 ∼ ℓ3PN . We hence obtain Nspecies ∼ N3 which is what checked within
the ABJM theory analysis.

• AdS7×S4 and its dual (0, 2) theory. D = 11 and G
(D)
N ∼ ℓ9P , R

6 ∼ ℓ6PN . Therefore,
Nspecies ∼ N3/2 which is a prediction for the dual theory, yet to be constructed.

8 Field theory on AdS space

As pointed out the AdS/CFT duality is usually useful when the gravity side or the CFT side
are weakly coupled and/or when quantum effects are suppressed. In particular, we discussed
the limit where the gravity part has a classical or semi-classical description, described by
the WKB or saddle point approximation; this is the gauge/gravity correspondence limit.
In this limit the AdS or gravity side of the duality is basically reduced to gravity or a
classical field theory on the AdS space while in the CFT or QFT side, the theory is strongly
couple with strong quantum effects. In this regime one may use AdS/CFT as a tool for
studying strongly coupled (gauge) field theories. In this section, we hence work through the
technicalities needed for employing the gauge/gravity correspondence, i.e. field theory on
AdS space. This field may be a scalar, spinor, gauge theory or gravity on AdS. In principle
one should always consider all these field theories coupled to (Einstein) gravity on AdS. These
field theories will provide prototypes of gravity-side in the gauge/gravity correspondence.

Let us start with a scalar on AdSd+1:

S =

∫

dd+1x
√
−g
[

−1
2
gµν∂µΦ∂νΦ−

1

2
m2φ2 − V (Φ)

]

, (8.1)

where gµν is the background AdS metric. Note that in principle one should have added
the Einstein-Hilbert Lagrangian to the above action and considered scalar field coupled to
gravity. Nonetheless, we will be interested in cases where the back-reaction of the scalar
fields on the background AdS metric is small. For later use, it is instructive to recall the
energy-momentum tensor of Φ field:

Tµν = ∂µΦ∂νΦ− [
1

2
(∂αΦ)

2 +
1

2
m2Φ2 + V (Φ)]gµν + β(gµν�−∇µ∇ν + Rµν)Φ

2 . (8.2)

◮◮ Exercise 8.1: Show that the last term, the β-term is coming from variations of “con-
formal mass term”, βRΦ2 term, which may be added to the action, w.r.t. the metric gµν.
(Such terms are usually present once one considers semi-classical (loop) effects in the gravity
side.)

◮◮ Exercise 8.2: Show that Tµν is conserved, i.e. ∇µTµν = 0.

The e.o.m of the above action is hence

(�−m2)Φ = V ′(Φ) .
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As usual one will treat the potential V (Φ) perturbatively and focus on the free field equation
on AdS:

1√−g∂µ(
√−ggµν∂νΦ)−m2Φ = 0 . (8.3)

The above equation, depending on the slicing used for the AdS-space takes different forms
and has different solutions. Here we discuss global AdS coordinates and Poincaré patch cases
separately.

8.1 Global-AdS case

In global coordinates U(1)τ × SO(d) part of the isometry of AdSd+1 is manifest and hence
the fields may be labeled by the corresponding quantum numbers, explicitly,

Φ = eiωτYlmi
(Ωp) · φl,ω(θ) , (8.4)

where Ylmi
i = 1, · · · , [d−1

2
] are SO(d) harmonic functions, and θ ∈ [0, π/2] is the AdS radial

coordinate. The equation for φ(θ) is then obtained as

[

tan1−d θ∂θ(cos
2 θ tand−1 θ∂θ)− l(l + d− 2) cot2 θ + ω2 cos2 θ − (mR)2

]

φl,ω(θ) = 0 . (8.5)

In the above we have used the fact that eigenvalue of quadratic Casimir of SO(d) is l(l+d−2).
One may then extract out the small θ and θ ≃ π/2 behavior of φ(θ) as

φl,ω = sinl θ(cos θ)∆±ϕ±
l,ω ,

where

∆± =
d

2
± 1

2

√

d2 + 4(mR)2 . (8.6)

We note that ∆± are solutions to

∆(∆− d)− (mR)2 = 0 =⇒ ∆+ +∆− = d .

The equation for ϕ(sin θ) turns out to be a hypergeometric function. In the end, we find

Φ = eiωτYlmi
(Ωp) · sinl θ(cos θ)∆±

2F1(a, b, c; sin θ) , (8.7)

where

a =
1

2
(l +∆± − ω) , b =

1

2
(l +∆± + ω) , c = l +

d

2
. (8.8)

The above solution is hence specified by two quantum numbers ω, l and m as an independent
parameter. ω is not quantized, while l = 0, 1, 2, · · · .

We still need to examine the behavior of our solution close to the boundary. There are
two conditions which should be examined. We need to make sure that

• the energy-momentum is conserved in the AdS. That is, the flux of energy
momentum tensor through the causal boundary is zero. This condition as we will
show below leads to quantization condition for ω.
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• the field is normalizable on the AdS. This tell us which of ∆± modes are normal-
izable.

Energy-momentum conservation:

Energy-momentum flow is Tµνn
µξν where ξµ is the time-like unit vector and nµ is the

space-like unit vector normal to the boundary. Therefore, energy flow through the boundary
vanishes if

∫

Sp

dΩp
√
g niT

i
0

∣

∣

∣

∣

θ=π/2

= 0 . (8.9)

Eq.(8.9), once we recall (8.2) takes the form

tand−1 θ [(1− 4β)∂θ + 4β tan θ] Φ2

∣

∣

∣

∣

θ→π/2

= 0 . (8.10)

◮◮ Exercise 8.3: Using properties of Hypergeometric functions around sin θ ∼ 1 that
the above is satisfied iff a, b arguments in 2F1(a, b, c; sin θ) are both integer-valued.

The above is hence satisfied if

|ω| = ∆± + l + 2n , n = 0, 1, 2, · · · . (8.11)

Note that ω can be positive to negative, while satisfying the above.

◮◮ Exercise 8.4: The “radial AdS waves”: From the above we see that the lowest
possible |ω| is obtained for l, n = 0. To gain a better intuition, write the e.o.m for the scalar
field in global coordinate using r instead of θ ( cf. (6.4)). How does the wave function look
like for this case as a function of r, τ?

NOTE: As pointed out global AdS coordinates corresponds to radial quantization in the
QFT side and hence i∂/∂τ , and hence ω, corresponds to scaling dimensions. Allowed values
of ω (8.11) appear as towers above the values determined by ∆±.

◮◮ Exercise 8.5: In fact one can show that states with given l, n are obtained by the
action of SO(d, 2) generators on l = n = 0 solution.

1. Verify this statement.

2. Which SO(d, 2) generator increases/decreases n by one?

3. This in particular implies that states with non-zero l, n are (conformal) descendents
of the primary operators, and that states with a given ∆± form lowest (highest) weight
states of a conformal multiplet, they are primary states. Argue that this statement is
correct.

From the above we also learn that ∆± should be real valued, recalling (8.6) this means
that

(mR)2 ≥ −d
2

4
. (8.12)
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The above is called the Breitenlohner-Freedman (BF) bound. This means that on the AdS,
to some extent “tachoynic” mass is also allowed.

◮◮ Exercise 8.6: Compare the BF bound with the conformal mass term for scalar on
AdS.

◮◮ Exercise 8.7: What are the values of ∆± for the “massless” scalar field? What are
values of ∆± when the BF bound is saturated?

To summarize above:

• Once the BF bound (8.12) is satisfied we have FOUR solutions for a given l and
n quantum numbers cf. (8.11) and given mass m; they are labeled by ∆± and the
corresponding frequency ω can be positive or negative. This is like saying that for a
given value of momentum and direction we can have four types of linear waves (positive
or negative frequency, and left or right moving). Since the equation of motion we
started with is linear (in Φ) the most general solution is a linear combination of these
four solutions.

• To quantize the theory in the canonical quantization method, as we always do, we
should replace the coefficient expansions with creation/annihilation operators and im-
pose canonical quantization conditions. Alternatively one may perform path integral
quantization. In this case one should make sure that these modes (solutions) are nor-
malizable; only normalizable modes should be included in the path integral. This is
what we will do next.

Normalizability condition:

Given the quadratic part of any field theory, it defines a norm (which is then used to
define the symplectic two from used in quantization). For scalar field with the Klein-Gordon
type action, this is

∫

Σ

ddx
√−g ∇i(Φ∂iΦ) = 0 =⇒

∫

b′dry

√−g nµΦ∂µΦ = finite , (8.13)

where Σ is any constant time surface in AdS and nµ is the unit vector pointing toward
the boundary. The integrand of the integral at the boundary behaves like (cos θ)X where
X = (2∆± + 1) + 1− d ≥ 0, i.e.

∆± ≥
d− 2

2
. (8.14)

NOTE: The above normalizability condition is exactly the unitarity bound for the scaling
dimension of a scalar field in d dimensional CFT. Think and argue how these two are related
to each other.

◮◮ Exercise 8.8: Repeat the energy momentum conservation and the normalizabil-
ity conditions for the d = 1 AdS2 case. Note that in this case we have two disconnected
boundaries and these two conditions should be satisfied at both.
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Recalling (8.6), it is readily seen that
∆+ mode is always normalizable;
∆− mode is normalizable only if (mR)2 ≤ − (d−2)(d+2)

4
.

Next, we recall that modes should also satisfy the BF-bound (mR)2 ≥ −d2

4
. Therefore:

• If −d2

4
≤ (mR)2 ≤ − (d−2)(d+2)

4
there are two normalizable modes and;

• if (mR)2 > − (d−2)(d+2)
4

there is only one normalizable mode ∆+.

NOTE: The above implies that when the BF-bound is saturated both of modes are nor-
malizable.

◮◮ Exercise 8.9: For massless scalar field m = 0, what are ∆±? which modes are
normalizable?

◮◮ Exercise 8.10: As two interesting examples consider d = 2 and d = 4 cases,
corresponding to 2d and 4d CFTs. Work out the BF-bound and normalizability conditions.

◮◮ Exercise 8.11: The above analysis was carried out for scalar fields. For massive
vector fields described by the action

S =

∫

dd+1x
√
−g

[

−1
4
FµνF

µν − 1

2
m2AµA

µ

]

, Fµν = ∂µAν − ∂νAµ , (8.15)

one may repeat the above analysis. Show that

∆± =
d

2
±
√

(d− 2)2

4
+ (mR)2 . (8.16)

What is the BF-bound in this case? What is the normalizability bounds for ∆± modes?

◮◮ Exercise 8.12: Repeat the same analysis for spinors, n-forms and spin two (gravi-
tons). This has been carried out in hep-th/9802203, hep-th/9904017.. The result is:

Spinors (including s = 3/2 gravitinos): ∆ = d
2
+ |mR|.

Spin 2 graviton: ∆− = 0 and ∆+ = d.

n-forms (n 6= d
2
): ∆± = d

2
±
√

(2n−d)2

4
+ (mR)2.

Self-dual n-forms (n = d/2 forms): ∆+ = ∆− = d
2
+ |mR| (like spinors).

◮◮ Exercise 8.13: What are the normalizability conditions on ∆± for the above cases?
Compare this normalizability condition with the unitarity bound on the scaling dimension of
a similar field in d CFT.

NOTE: Scaling dimensions ∆± (of the gauge theory side) are specified by the mass
parameter m in the gravity side. In particular, “massless fields” with m = 0 correspond to
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marginal operators in the gauge theory side with ∆+ = d for scalar and spin two gravitons;
massless gauge field in the bulk corresponds to a current with ∆ = d − 1 and massless
spinor corresponds to a spinor operator in the gauge theory side, whose fermion bi-linear is
marginal, i.e. it has scaling dimension d/2.

8.2 Poincaré patch case

As mentioned on may adopt various coordinate systems on the AdSd+1 which cover (a part
of) global cover of the space, realize a part of the SO(d, 2) isometry of the space and contain
(a part of) the causal or conformal boundary of the space. Therefore, (8.3) will take a
different form once written in different coordinate systems on AdS. Here we consider the
Poincaré patch coordinates (6.5) in z, xµ coordinate system. In this coordinate system (8.3)
takes the form

[

z2∂2µ + zd+1 ∂z

(

z1−d∂z

)

− (mR)2
]

Φ(x; z) = 0 (8.17)

Noting the fact that ISO(d−1, 1) part of the symmetry is manifest, one may use plane-waves
on xµ to solve the above equation. Explicitly, let

Φ(x; z) = z
d
2 eik·xφk(z) , (8.18)

inserting this into (8.17) leads to

[

∂2z +
1

z
∂z − (k2 +

ν2

z2
)

]

φk(z) = 0 , (8.19)

where

ν =

√

(mR)2 +
d2

4
. (8.20)

Solutions to (8.19), which is a Bessel equation, for k2 < 0 are Bessel-K or Bessel-I and
for k2 > 0 are Bessel-J±ν :

Φ±,k(x; z) =







z
d
2 eik·x(c+Kν(kz) + c−Iν(kz)) k2 > 0

z
d
2 eik·xJ±ν(qz) k2 = −q2 < 0

(8.21)

As we see a generic solution is labeled by a continuous index which is a d vector k and ±
signs. The most general solution is then a linear combination of Φ±,k, or for a given k it is
a linear combination of Φ±. For later use and to gain more intuition about these solutions
let us look at the small and large z behavior of them:

• Large z behavior (around center of AdS):

Φ± ∼







z
d
2 e±|k|z k2 > 0

z
d
2 e±i|q|z k2 = −q2 < 0

(8.22)
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Therefore, for the k2 > 0 case the plus sign is not regular while the minus sign is
regular with an exponential decay. For the k2 < 0 both solutions have a power-law
growth with an oscillatory part.

• Small z behavior (close to the boundary of AdS):

Φ± ∼ z
d
2
±ν ∼ z∆± , ∆± ≡

d

2
± ν =

d

2
±
√

(mR)2 +
d2

4
, (8.23)

for both k2 > 0 and k2 < 0 cases. Note, perhaps expected, (re)appearance of ∆±
factors, cf. (8.6).

One should again study zero-energy flow through the boundary and the normalizability
conditions. The analysis is similar to the global-AdS case. The only difference is that the
radial direction θ and normal to the boundary ∂θ, are now replaced by z and ∂z.

• Zero energy flow condition:

z1−d [(1− 4β)∂z − 4β/z] Φ2

∣

∣

∣

∣

z→0

→ 0 . (8.24)

Recalling (8.23) that is

[2∆± − 4β(1 + 2∆±)] z
2∆±−d

∣

∣

∣

∣

z→0

→ 0 . (8.25)

therefore, for generic β, ∆+ mode is acceptable while ∆− modes is not. For 2β = ∆±

2∆±+1

the zero-energy flow condition becomes ∆± > (d−1)/2, and ∆− will also have a chance
of being acceptable if ν < 1.

NOTE: Note the difference between the implications of zero-energy flow condition at
the boundary for the AdS in global and in the Poincaré coordinates: In the global case
this leads to quantization of ω, while in the Poincaré case this leads to exclusion of ∆−
mode, even if it is normalizable (see below).

• Normalizability: (8.13) in this case takes the form
∫

b′dry

z1−d∂zΦ
2

∣

∣

∣

∣

z→0

= finite =⇒ ∆± ≥
d− 2

2
. (8.26)

That is, ∆+ is always normalizable while ∆− is normalizable only if (mR)2 ≤ 1 − d2

4
.

To summarize the above, the leading terms in the near boundary expansion has the
form:

Φz∼0 = c+z
∆+ + c−z

∆− . (8.27)

In writing the above expansion we have been a bit sloppy and it is not an expansion
in power of z. A more precise expansion may be obtained noting that (8.27) is in fact
two terms derived from small z expansion of

Φk(x; z) = [c+(k)z
d/2Iν(kz) + c−(k)z

d/2Kν(kz)] e
ik·x , (8.28)
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that is, the low z expansion contains terms with powers of z∆−+n for n = 0, 1, 2 and if
ν is an integer, we will have two types of z∆+ terms. we will return to this in the next
section.

◮◮ Exercise 8.14: Complete the steps leading to the above results.

For later use we recall that

Kν(z) =
π

2 sin νπ
(I−ν(z)− Iν(z)) , ν /∈ Z ,

Iν(z) =
(z

2

)ν
∞
∑

k=0

1

22k · k!Γ(k + ν + 1)
z2k ,

(8.29)

and for integer ν, ν = n ∈ Z case,

Kn(z) =
1

2

n−1
∑

k=0

(−1)k 1

k!(n− k − 1)!

(z

2

)n−2k

+ (−1)n+1

∞
∑

k=0

1

2n+2kk!(n + k)!
zn+2k

[

ln
z

2
− 1

2
ψ(k + 1)− 1

2
ψ(n+ k + 1)

]

,

(8.30)

where ψ(x) is the special function ψ defined as ψ(x) = dΓ(x)/dx. As we see for the generic
ν the expansion involves z±ν+2k k ∈ Z powers, while in the integer ν case, we have zν−2k

powers for k ≤ n− 1 as well as term of the form zν+2k ln z, k ≥ 0.

◮◮ Exercise 8.15: Saturation of the BF bound. When the BF bound is saturated
and ∆− = ∆+ and the two solutions become identical and hence (8.3) should have another
solution too. Find this extra solution for global coordinates and Poincaré and discuss its
properties and study its normalizability and zero energy flow conditions.

8.3 Gauge/gravity made more explicit and precise

As discussed the small z region in the gravity side corresponds to the UV region in the gauge
theory side and the small z expansion (8.27) of the bulk fields. This information is already
contained in our statement of the gauge/gravity correspondence (7.4). In this section we
will make it more explicit.

Kinematical matching. In a CFTd, which is a d dimensional QFT in its RG fixed point,
primary operators O may be labeled by their spin S (SO(d − 1) quantum numbers) and
scaling dimension ∆, and descendents by two extra “level” quantum numbers like L, n, where
L denotes the orbital SO(d− 1) harmonics. In the gravity side, solutions of field equations
on AdSd+1 (e.g. in global coordinate), are also labeled by their mass mR, SO(d − 1) spin
S, orbital angular momentum L and n. So, as we see there is very good matching between
operators of QFTd and field solutions on AdSd+1. Since the SO(d − 1) quantum numbers
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and descendent level n are mapped exactly to each other in both sides, the matching would
be complete and precise if we relate ∆ and mR. This is done as

∆(∆− d) = (mR)2 . (8.31)

NOTE: The AdSd+1 isometry group (which is the conformal group in d dimensions is
SO(d, 2). Like any other SO-type group its representations are labeled by “generalized”
SO(d + 2) spherical harmonic, call it Υ∆, where the value of its second rank Casimir op-
erator is ∆(∆ − d). In this viewpoint m in fact defines the SO(d, 2) representation. Note,
however, that due to non-compactness of SO(d, 2) ∆ in this case is not an integer. Note also
that if it were SO(d+2) the Casimir would have been ℓ(ℓ+ d), which upon ℓ→ −∆ recovers
that of SO(d, 2).

We discussed the more direct correspondence between QFT operators and gravity solu-
tions. However, for a given set of quantum numbers, there are two solutions for fields on
AdS: those given by ∆− modes or those with ∆+ modes. To make the gauge/gravity corre-
spondence more precise and resolve this twofold ambiguity we first recall that the deformed
QFT by an operator O with scaling dimension ∆+ is described by

Sdef = S0 +

∫

ddx λ · O . (8.32)

Since λ · O is a term in the action, if O has scaling dimension ∆+, λ has scaling dimension
d−∆+ = ∆−.

Relevant, marginal and irrelevant operators

For QFT we use a standard terminology for classifying the operators by their scaling
dimension to relevant, marginal or irrelevant. In the gauge gravity correspondence and for
a scalar field/operator this parallels to

• A scalar field on AdS with m2 > 0, corresponds to an irrelevant spin zero (scalar)
operator in the gauge theory with ∆+ > d.

• A scalar field on AdS with m2 = 0, corresponds to a marginal spin zero (scalar)
operator in the gauge theory with ∆+ = d.

• A scalar field on AdS with −d2/4 ≤ m2 < 0, corresponds to a relevant spin zero (scalar)
operator in the gauge theory with ∆+ < d.

◮◮ Exercise 8.16: Repeat the above for spinor, vector and n-from fields.

To make use of usual QFT notions, it is more convenient to work with QFT on Rd

(rather than R × Sd−1) and hence we focus on field solutions on AdS in Poincaré patch.
These solutions are labeled by d vector k and ∆±. Next we recall that since Φ is a scalar
field and we are working in a coordinate system where all coordinates are dimensionless,
then

Φk(x; z) = Φλk(λ
−1x;λ−1z) ,

56



for an arbitrary constant λ. Therefore, under the above scaling

c± → λ∆±c± . (8.33)

That is, c± have scaling dimension ∆± and hence it is natural to associate c− with the
coupling λ (which has scaling dimension ∆−) and c+ with O which has scaling dimension
∆+. From (8.27) we learn that the leading contribution to Φ around z = 0 is coming from
c− term, i.e.

c− = lim
z→0

(z−∆−Φ) . (8.34)

With the above we can now make (7.4) more precise

ZCFT [λi(x; ǫ)] ≃ eiS
gravity
on−shell

∣

∣

∣

∣

λgravity
i =ǫ∆−λi(x,ǫ)

, (8.35)

where in the last equality, λgravityi is the value of the field in the gravity side in the small
ǫ limit which is equal to the value of the coupling of the field theory operator O, λi(x; ǫ).
Note that ǫ in the gravity side corresponds to the value of the holographic z coordinate close
the the boundary, while in the gauge theory side it corresponds to the cutoff in dimensional
regularization.

NOTE: The above makes it explicit that the two differ by an ǫ∆− power ( cf. the comment
below (7.4)). It is notable that for massless scalar and spin two cases ∆− = 0, where the
dual operator O is marginal, the two become exactly equal.

We are now ready to perform explicit computations from (8.35), e.g.

〈O(x)〉 = 1
√
gbdry

δSren

δφ0(x)

∣

∣

∣

∣

φ0=0

,

〈O1(x1)O2(x2)〉 = −
1

√
gbdry

δ2Sren

δφ1
0(x1)δφ

2
0(x2)

∣

∣

∣

∣

φ0=0

,

〈O1(x1) · · ·On(xn)〉 = (−)n+1 1
√
gbdry

δnSren

δφ1
0(x1) · · · δφn

0(xn)

∣

∣

∣

∣

φ0=0

,

(8.36)

where Sren is on-shell gravity action after divergent terms in ǫ has been extracted out (more
discussions on this will follow), gbdry is the metric at the d dimensional causal boundary of
asymptotic AdSd+1 and φi

0(x) is the source for the operator Oi(x).

According to gauge/gravity dictionary

• c−, the coefficient of the non-normalizable mode (at z = 0), corresponds to the value
of coupling of the operator O in the UV. Absence of non-normalizable mode, c− = 0
choice, would hence correspond to deformation of the theory with vanishing coupling
in the UV, where the fixed point is and one would recover the CFT.

• c+, the coefficient of the normalizable mode in (8.27), corresponds to the VEV of the
operator O in the UV. This latter, as we will see next, may be directly derived from
(7.4).
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NOTE: Generically we choose c− = 0, the standard quantization in AdS/CFT, because we
want the dual gauge theory theory to flow to a fixed point in the UV. For (mR)2 ≤ 1 − d2

4

we have other choices for the gauge/gravity dictionary: we may also choose c+ = 0, c− 6= 0,
the alternate quantization in AdS/CFT. This corresponds to relating c+ to the coupling and
c− to the VEV of the operator.

8.3.1 Boundary to bulk propagator

As discussed the most general solution for free (scalar) fields on the AdS background is
specified by two class of quantum numbers.

• In the global coordinates case, which corresponds to the radial quantization in the QFT
side, these are n, l, mi and there are two modes for a set of (n; l, mi): normalizable and
non-normalizable.

• In the Poincaré patch, these quantum numbers are replaced by d-vector k, and again
there are two modes ∆± for a given k.

In both cases, since the equation is linear the most general solution is a linear combination
of the above. Let us focus on the Poincaré patch case. The most general solution is hence
of the form:

Φgeneric(x; z) =

∫

ddk
[

φ+(k; z)e
ik·xC+(k) + φ−(k; z)e

ik·xC−(k)
]

(8.37)

where φ±(k; z) are related to Φ± (8.21) and C±(k) are arbitrary functions of k.

• If we demand the normalizability and zero-energy-flow conditions, only the ∆+ mode
is allowed. We may then set C−(k) = 0 and Φgeneric is then completely specified by
giving function C+(k).

• Instead of the function C+(k) one may use its Fourier transform ϕ(x). Note that this
function has now z dependence.

• Next, we note that (when C− = 0)

z−∆+Φgeneric(x; z)

∣

∣

∣

∣

z→0

=

∫

ddk (z−∆+φ+(k; z))

∣

∣

∣

∣

z=0

eik·xC+(k) = ϕ(x) .

Therefore, Φgeneric is completely specified by its value at the boundary.

◮◮ Exercise 8.17: Repeat the above argument for the global coordinate case.

◮◮ Exercise 8.18: How does the above change if we have ∆− mode?

We are hence led to

ΦBulk(x; z) =

∫

ddy G(z; x, y) ϕ(y) , (8.38)
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where G(z; x, y) is the boundary-to-bulk propagator:

(�−m2)G(z; x, y) =
( z

R

)d+1

δd(x− y)δ(z) . (8.39)

The above has two solutions, specified by ∆±, one of them is not normalizable and the
normalizable one satisfies:

G(z; x, y)

∣

∣

∣

∣

z→0

∼ z−∆+δd(x− y) .

◮◮ Exercise 8.19: One may consider a more general Bulk-to-Bulk propagator G(z, z′; x, x′):

(�−m2)G(z, z′; x, x′) =
( z

R

)d+1

δd(x− x′)δ(z − z′) . (8.40)

Since the above equation is O(d, 2) invariant one would expect G(z, z′; x, x′) to be only a
function of the O(d, 2) invariant geodesic distance between to arbitrary points (x; z) and
(x′; z′) in the AdSd+1.

1. Show that this geodesic distance ℓ is

cosh ℓ =
z2 + z′2 + (x− x′)2

2zz′
. (8.41)

2. The most general form
G = c+G+(ℓ) + c−G−(ℓ) . (8.42)

Show that

G±(ℓ) =
2−∆±N±

2ν
cosh ℓ−∆±

2F1(
∆±
2
,
∆± + 1

2
;±ν + 1; cosh−2 ℓ) , (8.43)

where ∆± = d/2± ν with ν =
√

d2/4 + (mR)2, 2F1 is the hypergeometric function and
N± is given below (8.45).

3. In the z′ → 0, the above is expected to reduce to boundary-to-bulk propagator discussed
above. Show that this indeed happends and

G∆±
(z; x, y) = N±

(

z

z2 + (x− y)2
)∆±

. (8.44)

4. Show that in (8.44)

N± =
2Γ(∆±)

vol(Sd−1)Γ(∆− d
2
)
. (8.45)
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One may give a more pictorial/Feynman diagram-type description to the above propa-
gators.......

◮◮ Exercise 8.20: Interactions in the Bulk and the n-point functions at the

boundary. Let us suppose that we have a scalar bulk field given in (8.38) and (8.44). Show
that
∫

dd+1XΦ1(X)Φ2(X)Φ3(X) = C123
1

|x1 − x2|∆1+∆2−∆3|x1 − x3|∆1+∆3−∆2|x2 − x3|∆2+∆3−∆1

(8.46)
where Φi(X) are defined by δ(xi) sources at the boundary. What are the coefficients C123?
As a reference see hep-th/9804058. The result of the above exercise is a strong test
for AdS/CFT where the spacetime dependence of three point function of the CFT is fixed
the symmetries. It also makes it clear that three point functions of the “boundary” CFT
and the bulk theory are related to each other in an intricate and intriguing way.

8.3.2 On-shell action and holographic regularization

As mentioned in the formal definition of the AdS/CFT or gauge/gravity correspondence
(7.4), to compute gauge theory correlators one should compute the on-shell gravity action.
Now that we have the explicit form of the AdS solutions we may directly insert it into the
action and compute its value. Upon doing so, we find that the integrand (in the expression
for the action) is generically divergent in z = 0 region and it needs “regularization”. The
simplest way to get rid of the divergent terms, as we will see, is to drop the divergent parts
at z = ǫ and keep the finite ones.

To gain a better intuition, let us perform computation of on-shell action and the holo-
graphic regularization procedure for the scalar field case. We start with the scalar action
(8.1)

S =

∫

dd+1x
√−g

[

−1
2
gµν∂µΦ∂νΦ−

1

2
m2φ2 − V (Φ)

]

.

As mentioned we will be treating V (Φ) which contains higher powers of Φ perturbatively.
Written on the AdS in Poincaré coordinates the above takes the form

S ≃ −1
2

∫

dzddx

(

R

z

)d−1 [

(∂zΦ)
2 + (∂µΦ)

2 +m2R
2

z2
Φ2

]

. (8.47)

As a warmup for playing with the actions, let us consider the “canonically normalized” field
ϕ,

Φ(x; z) =

(

R

z

)d/2

ϕ(x; z)

S takes the form (hereafter for simplicity we will replace z/R by z, or set R = 1)

S ≃ −1
2

∫

dz

z
ddx

[

(z∂zϕ)
2 + z2(∂µϕ)

2 + ν2ϕ2
]

− 1

2

∫

ddxϕ2

∣

∣

∣

∣

Λ

z=ǫ

, (8.48)

where ν2 = m2R2 + d2/4 and we have chosen z to range in (ǫ,Λ).
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NOTE: In y coordinate dy = dz/z, the ϕ field is indeed canonically normalized, i.e. the
coefficient of (∂yϕ)

2 term is one.

To compute the on-shell action we note that

S ≃ 1

2

∫

dzddx

(

R

z

)d+1
[

Φ(� −m2)Φ(∂µΦ)
2 −∇µ(Φ∇µΦ)

]

.

The first term vanishes on-shell and assuming that the value of fields at xµ →∞ are falling
off fast enough the last term only receives contribution from ∂z term and hence

Son−shell = −
1

2

∫

ddx (
√−ggzzΦ∂zΦ)

∣

∣

∣

∣

γ

z=ǫ

. (8.49)

◮◮ Exercise 8.21: Use (8.38) and properties of Boundary-to-bulk propagator G(z; x, y)
to compute the above on-shell action in terms of sources φ(y).

The above on-shell action depends on both on ǫ (UV cutoff) and IR cutoff γ. Since the
behavior of the fields at large z close to the Poincaré horizon is not relevant to their UV
physics, we may safely choose that on-shell action has no γ dependence and only focus on its
ǫ dependence. To this end, recall that any scalar field at small z has the following expansions
for two cases with ν parameter being an integer or not:

• Generic non-integer ν

Φ ≃ z∆−

[

(φ0(x) + z2φ1(x) + · · · ) + (z2ν φ̃0(x) + z2(ν+1)φ̃1(x) + · · · )
]

. (8.50)

• Integer ν = n

Φ ≃ z∆−

[

(φ0(x) + z2φ1(x) + · · ·+ z2(n−1)φn−1(x) + z2n ln zφn(x) + · · · )+

+ (z2nφ̃0(x) + z2(n+1)φ̃1(x) + · · · )
]

.

(8.51)

It is readily seen that φn(x) functions are all coming from the expansion of Kν and the φ̃n

terms from Iν (cf. (8.29) and (8.30)).

The above expansions are quite generic and one should still impose equations of motion
on them. This will relate φn(x) functions to φ0(x) and φ̃n’s to φ̃0.

◮◮ Exercise 8.22: Show that for integer ν case

φk =
1

22k

(

ν
k

)

(�d)
kφ0(x) , (8.52)

where �d is d dimensional Laplacian on flat space.

◮◮ Exercise 8.23: Workout a similar relation recursive relation among φ̃n’s in terms
of φ̃0.
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◮◮ Exercise 8.24: Repeat the above analysis when BF bound is saturated.

Inserting the above into the on-shell action (8.49) we get

Son−shell =
1

2

∫

b′dry

ddx ǫ−2ν(∆−φ
2 + ǫφ∂zφ)

∣

∣

∣

∣

z=ǫ

, (8.53)

where
Φ(x; z) = z∆−φ(x; z) . (8.54)

As we see, due to presence of negative powers of ǫ, starting from maximum ǫ−2ν to ln ǫ
terms, the above on-shell action is generically divergent and it needs “regularization”. We
use minimal subtraction scheme: We drop terms which come with negative powers of ǫ and
keep the first finite terms. Moreover, we may have ln ǫ term which will be kept. All these
divergent terms will be collected in Sc.t. (the counter-terms) and

Sreg. = Son−shell − Sc.t. . (8.55)

NOTE: For the cases saturating the BF bound ν = 0 and hence the regularization procedure
will be a bit different.

◮◮ Exercise 8.25: Compute Sc.t. and show that it does NOT involve φ̃n’s and therefore,

Sreg = Sreg[φ0, φ̃0; ǫ] . (8.56)

◮◮ Exercise 8.26: Show that for integer ν case

Sreg =

∫

ddx d · φ0(x)[(φ̃0 + φν(x)/d) + φν(x) ln ǫ] . (8.57)

◮◮ Exercise 8.27: Workout the regularized on-shell action for generic ν. What is the
Sc.t.?

NOTE: One may directly compare (8.57) with
∫

λO term in the deformed CFT action,
identifying λ with φ0.

Renomalized action

So far we have regularized the on-shell action as a function of the expansion coefficient
of the bulk field Φ. But we need to write the action in terms of Φ and other bulk fields to
obtain renormalized action, explicitly

Sren.[Φ, gµν ] = Sreg.

∣

∣

∣

∣

ǫ→0

. (8.58)

In fact, form of Sren. may directly be read from (8.53), noting that gµν ∼ ǫ−2 and that
generically Φ has two ∆+ and ∆− terms and that ∆+ +∆− = d.
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Having the renormalized action one can now explicitly compute the operator VEV’s,
using (8.36), e.g.

〈O(x)〉µ = −∆−φ̃0(x) + cφν(x) lnµ (8.59)

where the VEV is given at scale µ and c, c′ are two numeric coefficients.

◮◮ Exercise 8.28: Work out the coefficients ∆−, c, c
′ in the above equation. In partic-

ular, note that the coefficient ∆− (not not just d) has appeared because renormalized action
should be written in terms of Φ, this introduces extra numeric factors. For details see [hep-
th/0002230, 0209067].

Holographic renormalization

One may readily find the RG flow equations for the couplings and VEV of operators
using the above picture, nothing that

1. RG sliding scale is nothing but a diffeomorphism on holographic direction z (cf. dis-
cussions in earlier sections): (z, xα)→ (µz, µxα),

2. Φ is scalar in the bulk, Φ′(µx, µz) = Φ(x, z).

Among other things, recalling the low z expansion of Φ implies that

φk(µx) = µ−(∆−+k)φk(x) , φ̃k(µx) = µ−(∆++k)φ̃k(x) , (8.60)

for non-integer ν. When ν = n ∈ Z,

φk(µx) = µ−(∆−+k)φk(x) , k < n ,

φn(µx) = µ−∆+φn(x) ,

φ̃0(µx) = µ−∆+(φ̃0(x)− lnµ2φn(x)) ,

(8.61)

◮◮ Exercise 8.29: Find how φk(µx) k > n and φ̃l(µx) l > 0 should scale.

From the above one can compute RG equations for φk as well as RG flow for 〈O〉:

µ
∂φk(µx)

∂µ
= −(∆− + k)φk(µx) ,

µ
∂〈O(µx)〉

∂µ
= µ−∆+(〈O(x)〉 − 2n lnµ2φn(µx)) .

(8.62)

Note that the above has been given for integer ν = n. The last term in the scaling of 〈O〉
is the conformal anomaly for this VEV. A part of this term which is proportional to O(x)
term itself may be absorbed into the anomalous dimension of operator O. However, φn(x)
is not in general proportional to O(x) and the piece corresponds conformal anomaly.

◮◮ Exercise 8.30: For the φn(x) = AO(x) show that the anomalous dimension of
operator O is 2nA.
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8.3.3 Massless gauge field

As discussed the the details of the solutions of e.o.m on AdSd+1 depends on the mass and
spin of the field. In particular, let us consider massless gauge fields governed by the action
(8.15) when m = 0. As pointed out for the gauge/gravity correspondence we need to fix
Az = 0 gauge. It is convenient to introduce the “effective d dimensional gauge field Aµ as

Aµ(x; z) = zAµ(x; z) , µ = 0, 1, · · · , d− 1 ,

where Aµ is a d vector whose index is lower and raised by the d dimensional metric gd
(which differs by the constant z surface metric with a factor of z2). In terms of A and its
field strength Fµν the action reduces to

S = −1
4

∫

dzddx
√
−gd z1−d

[

F
2
µν + 2(∂zAµ)

2 + 2
1− d
z2

A
2
µ

]

−
∫

ddx
√
−gd(z−d

A
2
µ)

∣

∣

∣

∣

z=ǫ

,

(8.63)
where the last term is a boundary term. The equation of motion takes the form

zd−1∂z(z
1−d∂zAν) +

d− 1

z2
Aν +∇µFµν = 0 (8.64)

where the ∇µ is a d dimensional derivative and its index is raised by gd. The consistency
condition of the above equation implies the d dimensional transversality condition∇µAµ = 0.
Since the above equation is linear in Aµ, and has d dimensional Poincaré symmetry, one can
solve it by

Aµ(x; z) = zd/2Eµ(k; z)e
ik·x , k · E(k; z) = 0 , (8.65)

reducing (8.64) to a Bessel equation for Eµ(k; z):

[

∂2z +
1

z
∂z −

(

k2 +
(d/2− 1)2

z2

)]

Eµ(k; z) = 0 . (8.66)

The most general solution to the above for k2 > 0 is

Eµ(k; z) = f+
µ (k)Id/2−1(kz) + f−

µ (k)Kd/2−1(kz) . (8.67)

The above confirms our earlier results that gauge fields have two modes with ∆± = d/2 ±
(d− 2)/2, i.e. ∆+ = d− 1, ∆− = 1.

◮◮ Exercise 8.31: Work out the normalizability and zero-energy through the boundary,
conditions and show that ∆− mode is non-normalizable while ∆+ is normalizable.

For performing explicit computations we need the near boundary expansion of the gauge
field. The expansion would be different for even d or odd d, due to a difference in behavior
of the Bessel functions:

• Even d

Aµ(x; z) = z
[

(A0
µ(x) + · · ·+ zd−3Ad−3

µ + zd−2 ln zAd−2
µ (x) + · · · ) + zd−2(J0µ(x) + · · · )

]

(8.68)
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• Odd d

Aµ(x; z) = z
[

(A0
µ(x) + · · ·+ zd−2Ad−2

µ (x) + · · · ) + zd−2(J0µ(x) + · · · )
]

(8.69)

For the odd d case one may use the expansions

Kn+1/2(z) =

√

π

2z
e−z

n
∑

k=0

(n+ k)!

2kk!(n− k)! z
−k ,

In+1/2(z) =
1√
2πz

[

ez
n
∑

k=0

(−)k(n + k)!

2kk!(n− k)! z
−k − (−)ne−z

n
∑

k=0

(n+ k)!

2kk!(n− k)! z
−k

]

.

One may insert the above mode expansions into (8.63) and compute the on-shell action,
carry out the holographic regularization procedure and compute the renormalized on-shell
action. Since the analysis is basically the same as those in the scalar case we leave it as an
exercise.

◮◮ Exercise 8.32: In the gauge-side theory the coefficients A0 and J0 correspond to the
deformation of the CFT by the relevant operator Jµ which has scaling dimension d − 1 and
the coupling λµ, through a term like

∫

Jµλµ. The coupling λµ may be viewed as an external
electric field applied to a system of electrons with current J.

1. Compute 〈Jµ〉.

2. In general 〈Jµ〉 is a function of the coupling λµ. Compute the conductance tensor
σµν = δJµ

δλν
.

8.3.4 Metric perturbations

If we are interested in performing computations with energy-momentum tensor Tµν of the
gauge theory side, e.g. 〈Tµν〉 or the trace anomaly 〈T µ

µ 〉 or the central charge 〈TµνTαβ〉, we
need to study metric perturbation on the AdSd+1 side. We start with the Einstein-Hilbert
action plus cosm.const. in d+ 1 dimensions and consider metric perturbations as

ds2 = (ḡIJ + h̃IJ)dx
IdxJ , I, J = 0, 1, · · · , d, (8.70)

where ḡIJ is the AdSd+1 metric in some coordinate system. As discussed in previous sections
and as in the vector case, we fix the gauge (diffeomorphisms) such that hIz = 0 and choose
the convention that I = (µ, z):

ds2 =
1

z2
(dz2 + hµν(x; z)dx

µdxν) , (8.71)

One may work out the equation of motion for metric perturbation hµν . We also fix hµν to
be traceless and divergence-free, hµµ = 0 and ∇µhµν = 0.

◮◮ Exercise 8.33: Show that the above conditions are equivalent to ∇IhIJ = 0, h I
I =

0.
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◮◮ Exercise 8.34: Work out the equations of motion for the perturbations hµν .

One may solve these equations through

hµν(x; z) = zd/2hµν(k; z)e
ik·x , kµhµν(k; z) = 0 , hµµ = 0 , (8.72)

where µν(k; z) satisfies a Bessel equation:

[

∂2z +
1

z
∂z −

(

k2 +
(d/2)2

z2

)]

hµν(k; z) = 0 . (8.73)

The most general solution to the above for k2 > 0 is

hµν(k; z) = f+
µν(k)Id/2(kz) + f−

µν(k)Kd/2(kz) . (8.74)

The above confirms our earlier results that massless spin two (gravitons) have two modes
with ∆± = d/2 ± d/2, i.e. ∆+ = d, ∆− = 0. That is, deformation of the CFT by Tµν is a
marginal deformation with coupling hµν .

◮◮ Exercise 8.35: Which of these modes is noramlizable and which non-normalizable?

As in the gauge field case the near boundary expansion of the metric would be different
for even d or odd d:

• Even d

hµν(x; z) = (h(0)µν (x) + · · ·+ zd−1h(d−1)
µν + zd ln z h(d)µν (x) + · · · ) + zd(T(0)

µν (x) + · · · ) , (8.75)

• Odd d

hµν(x; z) = (h(0)µν (x) + · · ·+ zdh(d)µν (x) + · · · ) + zd(T(0)
µν (x) + · · · ) (8.76)

For the odd d case one may use the expansions given in (8.70).

The above, after insertion into (8.71), constitute the near boundary Fefferman-Graham
expansion for metric.

◮◮ Exercise 8.36:

1. Compute the on-shell Einstein-Hilbert action expanded up to second order in hµν .

2. This action is expected to only involve logarithmic divergences for even d which corre-
spond to trace anomaly, compute this.

3. Compute the two-point function of two energy momentum tensors in the gauge theory
side using this renormalized on-shell second order action.
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8.4 Wilson loops in AdS/CFT

As pointed out local operators of the gauge theory side and their correlators may be computed
using (renormalized) on-shell gravity action with the boundary field values associated with
the couplings of the operators in the gauge theory side. The gauge theory, however, has
other non-local gauge invariant observables, the Wilson or Polyakov loops:

WC = Tr
(

P ei
∮
C
A·dx
)

. (8.77)

For supersymmetric gauge theories one can introduce a “supersymmetrized Wilson loop,”
where in the exponent besides the gauge field we also have superpartners of the gauge field,
including gauginos and possibly scalar fields in the gauge multiplet. The VEV of super-
Wilson loops can preserve some part of the supersymmetry, depending on C; e.g. circular
Wilson loops in N = 4 SYM preserve half of the SUSY, less symmetric C will preserve less
SUSY. There has been an elaborate study of such Wilson loops and their classification by
the amount of SUSY they preserve.

Wilson loop, once the collection of all possible loops/paths is considered provide an
(over)complete basis for the Hilbert space, which is usually spanned by local “gluon-type”
states. Moreover, VEV of Wilson loops in a theory with charges/quarks and for loops
which consist of two long time-like (light-like) legs and two (comparatively) short space-like
legs, may be used to compute quark-antiquark potential, even in non-perturbative regime.
Explicitly, let us consider a loop C of in (t, x) plane consisting of two parallel line along the
time direction separated in the x direction by distance L, then

V (L)T = iq ln(〈WC(L)〉) . (8.78)

This loop is essentially the path of two quarks or anti-quarks separated by distance L, V (L)
is the potential between them and q is their charge and T is the length of their worldline.

One would wonder if gauge/gravity correspondence or AdS/CFT duality provides a way
for computing Wilson loops. To this end, we need to go beyond gravity limit and consider
string theory. As discussed D-branes are a place where open string end points can attach.
Moreover, we argued that in the near horizon limit D-branes are replaced by flux and leave
a space with boundary. It is hence natural to assume that open strings can end on the
boundary in the same way they attached D-branes. One can show that this indeed provides
a consistent setup. One way to see this is to consider a D3-brane system consisting of N +1
branes, a stack of N coincident branes and one separated from them. Taking the near-
horizon limit while also tuning the distance between the two stacks to zero appropriately,
we end up with and AdS5 space (in Poincaré coordinates) and a D3-brane in AdS space.
There were open strings stretched between the two stacks (W-bosons of the Higgsing which
break U(N + 1) to U(N) × U(1).) These open strings are in the fundamental and anti-
fundamental representations of the U(N), and hence behave like quarks and anti-quarks of
the dual gauge theory. Therefore, we have the setup very similar to the one depicted in the
previous paragraph and we may hence use these open strings for computing Wilson loops.

Proposal: ln (〈WC〉) is equal to the extremum of the string worldsheet action for open
string worldsheet Σ such that projection of Σ on the boundary is bounded by the closed
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path C. Explicitly:

ln(〈WC〉) = Sstring[Σ], such that C = ∂(Σ ∩ ∂AdS) , (8.79)

and Σ should minimize Sstring or satisfy worldsheet equations of motion, and

Sstring =
1

4πα′

∫

Σ

dτdσ
√

det (GIJ∂aXI∂bXJ) , I, J = 0, 1, · · · , 9; a, b = (τ, σ) , (8.80)

and GIJ is the (asymptotically) AdS metric.

◮◮ Exercise 8.37: Extract out this proposal directly from the expression for the AdS/CFT
duality (7.3), in appropriate “saddle point approximation.”

Let us now perform the first explicit computation with the above proposal: consider
C which corresponds to static quark and anti-quarks with separation L. We choose the
remaining part of worldsheet diffeomorphism invariance to fix

x0 = τ , x1 =
L

π
σ , z = z(σ) , other X’s = 0 . (8.81)

We choose the boundary condition: z → 0, to correspond to σ = 0, π such that x1 = 0, L
at the boundary. Note also that we have considered a “static” string configuration. For this
configuration,

S =
R2

4πα′ ·
π

L

∫

dτ

∫ π

0

dσ
1

y2

√

1 + y′2

= T

√
λ

4L

∫ π

0

dσ
1

y2

√

1 + y′2
(8.82)

where z = L
π
y, T =

∫

dτ , λ = R4/α′2 is the t’ Hooft coupling and y′ = dy
dσ
.

The second line in (8.82) is an action for y(σ) and the Lagrangian L is independent of σ
variable, therefore,

y′
∂L

∂y′
− L = const. =⇒ y2

√

1 + y′2 = y20. (8.83)

• From the above we can already see that in near boundary region y → 0, y′ ∼ y−2 →∞;
i.e. the open string is attached orthogonally to the boundary. This is consistent with
our open strings attached to D-branes with Dirichlet boundary conditions discussed
above.

• The value of constant is chosen such that y0 is the value of y when y′ = 0; y0 is the
maximum value y reaches to before turning again to y = 0 at σ = π/2.

From (8.83) we learn that
∫ y0

0

y2dy
√

y40 − y4
= y0

∫ 1

0

x2dx√
1− x4

=
π

2
, (8.84a)

S = 2T

√
λ

4L

∫ y0

0

dy

y2
√

y40 − y4
= 2T

√
λ

4L

1

y30

∫ 1

0

dx

x2
√
1− x4

. (8.84b)
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As we see y0 is completely fixed by the (8.84a), it is just a fixed number. The integral in
(8.84a) may be computed in terms of a standard complete elliptic integral.

◮◮ Exercise 8.38: Show that y0 =
Γ( 1

4
)2

2
√
2π
.

From (8.84b), however, we can see two points:

• The action S is infinite, since the integral has a divergent piece around y = 0 region;

• all parametric dependence of action is in the coefficient in front and in particular its
dependence on the t’ Hooft coupling is of the form

√
λ and its dependence on the

separation of quarks L is of the form 1/L.

Since the action is divergent we need to regularize it. As argued, our picture is that as if
the quark anti-quark system is coming from the near-horizon limit over two stacks of branes
where one of the is now sent to the boundary (y = 0) and the other to y =∞. Therefore, we
are dealing with a very massive quark system. If we are interested in the interaction energy
of the quarks, we need to subtract off the quark mass contribution, explicitly:

Sreg. = 2T

√
λ

4L

1

y30

[
∫ 1

0

dx

x2
√
1− x4

−
∫ ∞

0

dx

x2

]

(8.85)

The value of the integral, whatever it is is a positive number let us call it 2c. Therefore,

VQ−Q̄ = −c
√
λ

L
. (8.86)

◮◮ Exercise 8.39: Show that the coefficient c = 4π2

(Γ( 1
4
))4
.

The above result has two features which are notable:

• Its L dependence is 1/L, in accord with conformal invariance of the SYM theory,
recalling the fact that there is not other dimensionful parameter in the game. In
particular, note that this result is independent of the dimension of AdS space (or the
dual CFT).

• Its coupling dependence is only through t’ Hooft coupling, as expected. Nonetheless,
this dependence is not analytic in the coupling and involves

√
λ, which is related to

the point that our gauge theory is strongly coupled.

◮◮ Exercise 8.40: Compare this with result with the usual Coulomb potential between an
electron and a positron.

◮◮ Exercise 8.41: Repeat the above analysis and compute the potential between two
quark and anti-quarks separated in the x-direction while moving relative to each other along
the y-direction with velocity v.
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◮◮ Exercise 8.42: Find the quark anti-quark potential in a non-zero temperature gauge
theory, corresponding to AdS-blackbrane background with metric

ds2 =
R2

z2

[

−f(z)dt2 + d~x2 +
dz2

f(z)

]

, f(z) = 1− z4

z40
. (8.87)

.

◮◮ Exercise 8.43: Find the quark-antiquark potential in the confining background with
metric:

ds2 =
R2

z2

[

−dt2 + dx21 + dx22 + f(z)dy2 +
dz2

f(z)

]

, (8.88)

with f(z) given in (8.87). Suppose that quarks are separated in x1 direction.
Note that the confining background may be obtained from the black brane solution (8.87) upon
Wick rotating along t and Wick rotating back along x3.

9 Black holes in AdS and non-zero temperature QFT

One of the questions which arises in QFT’s is studying physical processes in a non-zero
temperature. Here we study how gauge/gravity correspondence relates the two. We first
introduce the non-zero temperature field theory and then argue that in the gravity side
temperature corresponds to introducing black hole in the bulk of AdS. We are hence led to
statement of gauge/gravity duality at non-vanishing temperature. Finally, we show some
basic checks of this proposal through computing the partition function on both sides.

9.1 Non-zero temperature QFT

As usual all the information may be extracted from the partition function. In any stat.mech.
system at temperature T = 1/β

Z = Tre−βH , (9.1)

where H is the Hamiltonian of the system and trace is over all states/configurations in the
Fock space and may hence also be represented by the path integral. One may define a
normalized thermal density matrix ρ̂ρ

β

ρ̂ρ
β
=

1

Z

∫

[DΦ]t |Φ(t, x)〉〈Φ(t, x)|e−βH . (9.2)

Note that the Hamiltonian H is basically the same Hamiltonian which is generator of time
translations. Therefore,
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〈O1(t, x1)O2(t, x2) · · ·On(t, xn)〉β = Tr
(

ρ̂ρ
β
O1(t, x1)O2(t, x2) · · ·On(t, xn)

)

=

∫

[DΦ]t 〈Φ(t, x)|O1(t, x1)O2(t, x2) · · ·On(t, xn)e
−βH|Φ(t, x)〉

=

∫

[DΦ]t 〈Φ(t, x)|O1(t, x1)O2(t, x2) · · ·On(t, xn)|Φ(t+ iβ, x)〉 ,
(9.3)

The above shows the way to make non-zero temperature calculations:

• Wick rotate and replace t = itE ;

• Make the Euclidean time periodic tE ≡ tE +β; i.e. compactification of Euclidean time
amounts to having a non-zero temperature.

• Impose appropriate periodicity conditions; i.e. periodicity (in Euclidean time) for
bosonic fields/operators and anti-periodicity for fermionic ones.

NOTE: [DΦ]t in (9.3) denote all field configurations at a given time slice t. This path
integral does not compute time evolution. System is supposed to be in thermal equilibrium
and there is no time evolution. Moreover, all operators are multiplied at the same given
time t. Finally, it is supposed that Hamiltonian of the system is conserved and has hence no
“time” dependence.

Thermo-Field Double. Instead of working with a mixed state density matrix (9.2) to
perform QFT analysis one may use Thermo-Field Dynamics (TFD) where the mixed state
is replaced by a pure state through doubling the Hilbert space.

For a review on the TFD e.g. see N. P. Landsman and C. G. van Weert, Real

and Imaginary Time Field Theory at Finite Temperature and Density, Phys. Rept.

145 (1987) 141

Y. Takahashi and H. Umezawa, Thermo field dynamics, Int.J.Mod.Phys. B10 (1996)

1755.

Here we just illustrate the doubling and “purification” trick, which has a quite natural
appearance in the AdS/CFT setups, in eternal AdS black holes. Let us denote by H the set
of all states |Φ(t, x)〉. The Thermo-field doubled Hilbert space is then defined as two copies
of H:

HTFD = HI ⊗HII ,

The thermo-field Hamiltonian is then defined as

HTF = H⊗ 11II − 11I ⊗H , (9.4)

The mixed density matrix (9.2) may now be represented through a pure state |Ω〉:

|Ω〉 = 1√
Z

∫

[DΦ]te
−β

2
H⊗11|Φ(t, x)〉 ⊗ |Φ(t, x)〉 (9.5)
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Note that the thermo-field Hamiltonian HTF has been constructed such that HTF |Ω〉 = 0;
i.e. |Ω〉 is the vacuum state of the thermo-field dynamics theory.

◮◮ Exercise 9.1: Show that HTF defines a unitary dynamics on HTFD.

◮◮ Exercise 9.2: Show that the mixed density matrix ρ̂ρ can be obtained through “purified
density matrix”

ρ̂ρ
β
= TrII ρ̂ρΩ , ρ̂ρΩ = |Ω〉〈Ω|, (9.6)

where trace is over the second copy of the Hilbert space.

In other words, states inHII which appear in |Ω〉 are maximally thermally entangled with
those of HI . However, the doubled Hilbert space in principle has a bigger set of observables;
its observables consists of any observable in I and any observable in II.

One may also compute thermal n-point function in (9.3)

〈O1(t, x1)O2(t, x2) · · ·On(t, xn)〉β = Tr HI

(

ρ̂ρ
β
O1(t, x1)O2(t, x2) · · ·On(t, xn)

)

, (9.7)

where Oi are operators in HI . However, the same correlation function may be computed
with a pure density matrix on the doubled Hilbert space. Explicitly:

Gn(x1, x2, · · · , xn; β) = 〈O1(t, x1)O2(t, x2) · · ·On(t, xn)〉β
= Tr HTFD

(ρ̂ρΩO1(t, x1)O2(t, x2) · · ·On(t, xn))

= 〈Ω|O1(t, x1)O2(t, x2) · · ·On(t, xn)|Ω〉
(9.8)

Gn(x1, x2, · · · , xn; β) =
∫

[DΦ]t [DΨ]t 〈Φ(tE , x)|O1(t, x1) · · ·Ol(t, xl)|Ψ(tE + β, y)〉〈Φ(x)|Ψ(y)〉

=

∫

[DΦ]t 〈Φ(tE , x)|O1(t, x1) · · ·Ol(t, xl)|Φ(tE + β, x)〉
(9.9)

That is, a “vacuum amplitude” in the thermo-field theory (9.8) is equal to a thermal field
theory correlator (9.9). This is why the TFD provides a simple and nice description and tool
for non-zero temperature field theory computations.

◮◮ Exercise 9.3: Show that

〈Ω| · · · [OI(x, t),OII(y, t)] · · · |Ω〉 = 0,

where OI and OII are respectively defined in HI and HII .

9.2 Black holes on AdS

Since AdS has a causal boundary, light-rays can reach the boundary and bounce back in
a finite time. Therefore, unlike the flat space, black holes on AdS can reach to a thermal
equilibrium with their own Hawking radiation, we seem to able to produce eternal AdS black
holes. As a result, the “dual” QFT which resides on the boundary of an eternal AdS black
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hole should be a non-zero temperature QFT at exactly the same temperature as the Hawking
temperature of black hole.

This picture dovetails perfectly with the trick for reading the Hawking temperature of
a generic black hole: expand the metric close to the horizon and require that the Euclidean
near-horizon metric does not have a conical deficit. The periodicity of Euclidean time is
inverse of temperature β. Let us examine this for two cases:

AdS-Schwarzchild.

ds2 = −f(r)dt2 + dr2

f(r)
+ r2dΩ2

d−1 , f = 1 +
r2

R2
− 2GM

rd−3
(9.10)

If f(rh) = 0, then f(r) ≃ f ′(rh)(r − rh) + O((r − rh)2) and hence the near horizon metric is
of the form

ds2 = −
(

f ′(rh)

2

)2

ρ2dt2 + dρ2 + r2hdΩ
2
d−1 , ρ2 =

4

f ′(rh)
(r − rh) . (9.11)

Absence of conical singularity in the Euclidean time sector implies that

tE ≡ tE +
4π

f ′(rh)
=⇒ β =

4π

f ′(rh)
. (9.12)

NOTE: One could have read the temperature directly from (9.11) without Wick rotations
and going to the Euclidean time, noting that the tr part of the above metric is a Rindler space
with a specified acceleration; the Unruh temperature for this space should be the same as the
Hawing temperature for black hole. This latter is necessitated by Equivalence Principle.

◮◮ Exercise 9.4: Compute the Hawking temperature explicitly for the AdS-Sch’ld black
hole.

For d = 4 case AdS-Sch’ld black hole is the background dual to a thermal N = 4 SYM
on R×S3 at temperature 1/β. In Euclidean signature, this is the SYM on S1×S3, where the
temperature is in fact the ratio of S1 to S3 radii.

AdS-black brane. This is the background dual to thermal QFTs on Rd. Let us start with
the black brane on AdSd+1(6.10)

ds2 =
R2

z2

[

f(z)dt2E + d~x2 +
dz2

f(z)

]

, f(z) = 1− zd

zdh
, (9.13)

where the horizon is sitting at z = zh.

◮◮ Exercise 9.5: Compute the temperature using absence of conical singularity in
near-horizon region, and show that

TH =
d

4πzh
. (9.14)
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9.3 Gauge/gravity at non-zero temperature

Given the above introductory reviews, we are now ready to give a more explicit statement
of gauge/gravity correspondence at non-zero temperature:

ZCFT [λi(x, µ0); β] ≃ eiS
Thermal−AdS−backgrounds
on−shell

∣

∣

∣

∣

λi(x,y0)

. (9.15)

This statement is obviously a refinement of the more general statement given is section 7.1,
(7.4) for this case.

We are here prescribed to compute the on-shell gravity action for fields living on an ap-
propriately chosen “Thermal-AdS-background.” This background is generically (not always,
see below) AdS black hole/brane background, at Hawking temperature equal to the desired
CFT temperature.

Using (9.15) one may compute thermal field theory correlators by differentiating the LHS
w.r.t. couplings λi, which corresponds to making similar derivative on the RHS.

◮◮ Exercise 9.6: Gauge theory dual of the Hawking-Page transition. As
discussed having black holes/branes and existence of event horizon leads to a natural temper-
ature: Near horizon metric in the Euclidean sector involves a part which looks like a 2d flat
space written in polar coordinates with Euclidean time being its angular variable, from where
we read the temperature. One could have instead compactified Euclidean time direction of
the Euclidean AdS on a circle to get a thermal AdS.
As discussed in detail in section 7, gauge/gravity correspondence is a saddle point approxi-
mation to the “exact” AdS/CFT duality. One may then wonder for a given temperature T
which of thermal AdS or AdS black hole dominate the saddle point. To this end, one should
compute the Euclidean action on either of these backgrounds and the smaller one for a given
temperature is the one dominating the saddle point.
Perform this computation and find the critical temperature Tc where the value of Euclidean
action for the two becomes equal.
As always in QFTs, change in the saddle point for making perturbations corresponds to a
phase transition. The thermal-AdS to AdS black hole transition in the gravity side is called
Hawking-Page transition. According to gauge/gravity, this should hence correspond to a
phase transition in gauge theory. Argue that this is a confinement-deconfinement phase
transition. [Ref. E. Witten ’1998].

9.3.1 Some basic checks

As a basic check for the proposed correspondence (9.15) we compute partition function on
both sides, i.e. when all λi are turned off. On the gauge theory side this corresponds to
performing the Tr in (9.1) and in the gravity side, that computing on-shell AdS gravity
action for the AdS-black brane solution.
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Gauge theory partition function. As discussed the gauge gravity correspondence re-
lates a strongly coupled gauge theory to a classical AdS gravity. In general we do not know
how to compute the partition function for a strongly coupled gauge theory, with the Hamilto-
nian H in (9.1) being its Euclidean action. However, we can compute this partition function
for a weakly coupled field theory and hope/think that this remains valid at strong coupling
regime. This hope is more reasonable for a CFT like N = 4 SYM which because of the large
amount of supersymmetry many quantities (which unfortunately partition function is not
among them) are protected.

The partition function for a d dimensional relativistic (massless) bosonic or fermionic
mode is given as

lnZ = ±Vd−1

∫

dd−1p

(2π)d−1
ln
(

1± e−βE(p)
)

, E(p) = |p| (9.16)

where plus sign corresponds to fermions and minus to bosons. If we make the change of
variables p = Tx, in terms of dimensionless variable x we have

lnZ = C±Vd−1 · T d−1 , (9.17)

where

C± = ±vol(S
d−2)

(2π)d−1

∫ ∞

0

dx xd−2 · ln
(

1± e−x
)

. (9.18)

The above integrals, upon an integration by-part and for even d, may be written in terms of
Bernouilli numbers Bn , e.g.

∫ ∞

0

dx
x2n−1

ex + 1
=

22n−1 − 1

2n
π2nBn ,

∫ ∞

0

dx
x2n−1

ex − 1
=
π2n

4n
Bn . (9.19)

For a free theory with Nb bosonic and Nf fermionic degrees of freedom, when then have

lnZTotal = (C+Nf + C−Nb)Vd−1 · T d−1 . (9.20)

As we see,
lnZTotal ∝ Vd−1 T

d−1 . (9.21)

From the above one can deduce,

• lnZ is proportional to the volume of space the field theory is defined on, Vd−1;

• using standard thermodynamical relations, one can compute entropy density S, pres-
sure P and the energy density E:

S =
∂

∂T
(T lnZTotal) = (C+Nf + C−Nb) · d · T d−1 ,

S =
∂P

∂T
=⇒ P = (C+Nf + C−Nb) · T d ,

E = −P + TS = (d− 1)P .

(9.22)

These are the behavior expected from any d dimensional conformal field theory.
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◮◮ Exercise 9.7: Show that for free N = 4 4d U(N) SYM,

C− =
π2

90
, C+ =

7π2

720
, (9.23)

and Nb = Nf = 8N2, and hence S = 2π2

3
N2T 3.

On shell gravity action. To compute the partition function of the QFT side, (9.15)
prescribes us to evaluate on-shell gravity action on the AdS-Sch’d (or thermal AdS):

Sgravity = − 1

16πGN

∫

ddxdz
√
−g(R− 2Λ) =

d(d− 1)

ℓd−1
P R2

∫

dz

(

R

z

)d+1 ∫

ddx , (9.24)

where we have used 8πGN = ℓd−1
p . The z integral is divergent in near boundary region

(at z = 0) and should be regularized. This regularization is very similar to the one car-
ried out in section 7.2 and we do not repeat it here. This leads to “standard” black hole
thermodynamical relations:

SBH =
AH

4GN

· 1

Vd−1

, AH =

(

R

zh

)d−1

· Vd−1 ,

= 2π

(

4πR

d · ℓP

)d−1

T d−1 , 8πGN ≡ ℓd−1
P .

(9.25)

◮◮ Exercise 9.8: Complete the steps of regularization.

For a generic thermodynamical system

1

Vd−1

dG = dP − SdT , (9.26)

where G is the Gibbs free energy and P is the pressure. For “free” black brane system,
Gibbs free energy is a constant and hence

SBH =
∂PBH

∂T
=⇒ PBH =

1

2

(

4π

d

)d(
R

ℓP

)d−1

T d . (9.27)

Likewise, one can compute the energy density EBH , recalling that G/V = E − TS + P and
hence

EBH = −PBH + TSBH = (d− 1)PBH , (9.28)

which is the expected result for a d dimensional system with an energy momentum tensor
with vanishing trace; i.e. a conformal invariant system.

The qualitative features of these relations are exactly the same as those in QFT, (9.22).
For the exact matching, however, we need to specify the relation between R/ℓP and number
of degrees of freedom of the dual field theory. Recalling discussions in section 7.2 and keeping
track of all numeric factors, for d = 4 case, we end up with

Sfree−N=4,SYM =
4

3
SBH . (9.29)

The mismatch in the numerical factor may be attributed to the fact that the gravity side is
indeed computing the entropy for a strongly coupled CFT while the RHS is the entropy of
the weakly coupled CFT. The two need not really match up to the numeric details.
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