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1) On boosted Kerr strings. Consider the boosted Kerr string with the following metric:
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where σ is the boost parameter, M and a are respectively mass and rotation parameters and

ρ2 = r2 + a2 cos2 θ, ∆ = r2 − 2Mr + a2.

1-1) Study the asymptotic large r behavior of the geometry.

1-2) Assume that z parameterizes a circle whose radius in the asymptotic region is R. Study
the horizon topology and compute the horizon area.

1-3) What are Killing vectors of this geometry? Show that the horizon is a Killing horizon.
Find the Killing vector field ξH which generates the horizon.

1-4) Compute the surface gravity associated with the horizon.

1-5) Verify first law of black hole thermodynamics for the family of boosted Kerr strings.

1-6) Work out the Smarr relation. (3+5+5+4+5+3=25).

2) Actual values of Hawking temperature and radiation. In our analysis we usually work
in natural units where ~ = 1, c = 1. We often put GN = 1, too. This may obscure the
physical sense of the quantities like surface gravity, Hawking temperature and Hawking radiation
flux.(3+3+4=10)

2-1) Suppose that we have a supermassive Schwarzchild-type black hole of mass M . What is
the value of M so that its surface gravity is equal to the gravity acceleration constant on the Earth
g = 9.8m/s2?

2-2) Consider a black hole with M = µM⊙. What is the Hawking temperature as seen by
the observer at infinity in Kelvins? Consider two cases, stellar mass black holes with µ ∼ 10 and
supermassive black holes with µ ∼ 106.

2-3) Suppose that we have a black hole which Hawking-evaporates. What is the lower bound
on the mass of black hole such that its life-time is not less than the age of Universe.

3) The generalized Second Law. Let us assume that the process of Hawking radiation is
adiabatic. As the black hole Hawking-radiates it loses it mass and possibly angular momentum
and charge. As a result, the horizon area is decreasing and therefore, the entropy of the black
hole is decreasing. Nonetheless, the entropy carried out by the radiation Srad. may save the second
law of thermodynamics. Using Stefan Boltzmann law and the entropy associated with radiation



compute ∆S ≡ δSBH +Srad., where δSBH is the change in the black hole entropy (i.e. the entropy
of black hole at some time t minus the entropy of original black hole at t = 0). Is ∆S zero or
positive? (10).

4) Hawking radiation and black hole thermodynamics for charged black holes. Consider
a Reissner-Nordstrom black hole of mass M and charge Q, with M > Q. This black hole can
radiate off particles of mass m and charge q and r ≡ m/q. (4+11=15)

4-1) Compute r for electron and proton.

4-2) Using black hole thermodynamic relations discuss whether this black hole can become
extremal through radiating off its mass and charge, or the black hole loses its charge first to
become a neutral black hole?
Note: thermal distribution of charged particles emitted by the RN black hole is given by

P (ω) =
1

eβ(ω−ΦHq) ± 1

where β = 1/TBH , ΦH is the horizon electric potential and ω denotes the energy (frequency) of
the emitted particles as seen by the observer at infinity. The +/− sign, as usual, corresponds to
the fact that the emitted charged particles are fermionic/bosonic.

5) Unruh effect for massive scalar. Consider a massive real scalar field Φ of mass m whose
E.o.M is

(�−m2)Φ = 0 .

Repeat the analysis of Unruh effect for this massive scalar. That is,

5-1) Solve equations of motion and construct the full set of solutions to the E.o.M. and decom-
pose them into positive and negative frequency modes, in both flat Minkowski coordinates and in
Rindler coordinates.

5-2) Construct the Bogoliubov transformations which relates these two basis.

5-3) Construct the Minkowski and Rindler vacuum states, respectively |0⟩Mink, |0⟩Rind..

5-4) Find the Bogoliubov expansion which relates the Rindler annihilation operator bRindler
ω to

the creation and annihilation operators of Minkowski aω, a†ω.

5-5) Compute the density of states Unruh observer associates with the Minkowski vacuum,

Mink⟨0|b†ωbω|0⟩Mink. (7+4+4+5+5=25).

6) Unruh effect on Kerr geometry. As discussed in the lectures, Unruh effect computations
readily generalizes to static, globally hyperbolic spacetimes, like Schwarzchild or RN black holes:
An observer sitting at constant radial coordinate r is like an Unruh observer with constant temper-
ature T (r) = κ

2π
√

−|ξt|2
, where ξt is the time-like Killing vector field which generates the horizon.

Therefore, constant r surfaces are “isotemperature” surfaces. (5+5+5=15).

6-1) Work out the analysis for Unruh effect on Kerr geometry.

6-2) In the static geometries we introduced Hartle-Hawking vacuum state, that is the vacuum
state which is well-defined everywhere outside the event horizon. Define the analogue of Hartle-
Hawking state for Kerr geometry.

6-3) What are the isotemperature surfaces in the Kerr geometry?


