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Prologue

General-Relativistic Quantum Mechanics

Is there such a thing?

Freeman Dyson’s "Incompatible Worldviews"

"If this hypothesis were true, it would imply that theories
of quantum gravity are untestable and scientifically
meaningless ... and the search for a unified theory
could turn out to be an illusion."

Our question: Do these two theories have a common
(mathematical) problem, that can perhaps be addressed by
putting them together, like two pieces of the same puzzle?
Fundamental objects that are highly singular in both gravity and
electromagnetism: point mass and point charge.
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Prologue

The Singularity Problem in GR

The famous “Bridge" paper of Einstein & Rosen

They glued two copies of exterior Schwarzschild together at their
horizons, to obtain a spacetime free of singularities. But why?
Title: “The Particle Problem in the General Theory of Relativity",
Phys. Rev. 48 (1935).
“To what extent can general relativity account for atomic structure
of matter and for quantum effects?"
What they wanted: solutions of Einstein’s equations that have
particle-like features
Problem: They abhor singularities, so points are not allowed!

“Writers have occasionally noted the possibility that
material particles might be considered as singularities of
the field. This point of view, however, we cannot accept
at all...Every field theory must adhere to the fundamental
principle that singularities of the field are to be excluded."
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Prologue

Particles as Bridges

Einstein and Rosen come up with a solution that can represent a
single particle, without having any singularity:

“These solutions involve the mathematical representation
of physical space by a space of two identical sheets, a
[charged] particle being represented by a ’bridge’
connecting these sheets."

Two crazy ideas of E.&R.:

1 Particles can be represented within GR as bridges connecting two
vacuums

2 Space can be multi-sheeted (e.g. like a Riemann surface)

Who were those “writers" who liked singularities?
Einstein himself! and Herman Weyl
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Prologue

Particles as Singularities

Herman Weyl’s Singularity Theory of Matter (1921):

“Matter now appears as a real singularity of the field (...)
In the general theory of relativity the world can possess
arbitrary (...) connectedness: nothing excludes the
assumption that in its Analysis-Situs [i.e. topological]
properties it behaves like a four dimensional Euclidean
continuum, from which different tubes of infinite length in
one dimension are cut off."

Weyl’s crazy ideas:

1 A particle IS a singularity of space
2 These singularities need to be excised from spacetime: Matter is

where space isn’t.

Note: This also leads to spacetimes with non-trivial topology.
Ontology of Nothingness
PS: If you dislike a Weyl theory of matter, just wait five minutes!
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Prologue

The Singularity Problem in QM

Classical obstacle to formulating a Quantum Law of Motion for
point-like particles interacting with an electromagnetic field:
Maxwell-Lorentz Electrodynamics

1 Charges and currents are sources for the EM field (Maxwell)
2 EM Field act on charges and make the move (Lorentz)

Problems: (1) EM field of a point charge is undefined at the
charge’s location. (2) Self-Energy of a point charge is infinite.
These problems persist when one transitions to Quantum
Mechanics.
Wheeler’s Fundamental laws of general relativity:

1 Matter tells space how to curve
2 Space tells matter how to move

Problem: Infinite self-energy = infinite mass = infinite tidal forces
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Prologue

Our line of inquiry

Are there solutions of Einstein’s equations, possibly multi-sheeted,
with singularities that have particle-like features?

Can one prescribe a quantum law of motion for those singularities
in a way that is fully consistent with relativity?
Are the predictions of such a theory in agreement with physical
experiments?
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The Tiger

Special-Relativistic Hydrogen

Dirac’s Equation for Electron in Proton’s electrostatic Field,
γµ(−i∇µ + eAµ)Ψ + mΨ = 0; (Aµ) = (e

r ,0,0,0)

Clifford algebra: γµγν + γνγµ = 2ηµν14×4

in Hamiltonian form: i∂t Ψ = HΨ

Eigen-functions: Ψ(t ,x) = e−iEtψ(x) =⇒ Hψ = Eψ

σdisc(HDirac) =

 m√
1+ e4

(n−|k|+
√

k2−e4)2


n,k

n = 1,2,3, . . . , k = −n,−n + 1, . . . ,−1,1, . . . ,n − 1
Spectroscopy. s,p,d , f ,g, . . . Orbitals. Degenerate and
non-degenerate states. Hyperfine splitting. Lamb shift. QED.
More Nobel prizes!
σcont (HDirac) = (−∞,−m] ∪ [m,∞)

Negative Continuum: Dirac’s Sea, Hole Theory, Positron
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The Tiger

General-relativistic Hydrogen?

Einstein’s dream of unifying GR and QM

Gravity is much weaker than electromagnetism, so adding
gravitational effects to Dirac’s equation should shift spectral lines
by a tiny amount, if at all
Nasty Surprise: general-relativistic Dirac Hamiltonian has NO
discrete spectrum. (Belgiorno et al, Finster et al.)
Pathologies of well-known solutions to Einstein’s equations
Likely culprit: Infinite self-energy of point charges (linear
electromagnetics) causes the spacetime to be infinitely curved
close to the charge.
Two remedies:

1 Nonlinear electromagnetics can give rise to finite self-energies, and
thus milder singularities for the spacetime

2 Zero-gravity limit: working with topological remnants of gravity
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The Tiger

Nonlinear Electromagnetics

Maxwell’s equations involve four fields: E,B,D,H.

Need constitutive relations to close: E = E(D,B),H = H(D,B).
Maxwell’s vacuum law: E = D,H = B. Linear electromagnetics
Coulomb potential and the electrostatic energy of a point charge
Born’s idea: E = D/

√
1 + |D|2. Born-Infeld’s nonlinear

electromagentics. Finite self-energy
Einstein-Maxwell-Born-Infeld equations. The Hoffmann
spacetime. Conical singularities.
Dirac equation on Hoffmann spacetime: Self-adjointness of the
Hamiltonian, and the existence of discrete spectrum (M.K.
Balasubramanian, 2015)
The Great Challenge: going beyond spherical symmetry for
Einstein-Maxwell-Born-Infeld.
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The Tiger

General-relativistic Zero-Gravity Quantum Mechanics

Two sources of G-dependence for Einstein geometries

The coupling constant G
The dimension conversion constant G
Example: Reissner-Nordström, in spherical coordinates
gRN = diag(−f (r), 1

f (r) , r
2, r2 sin2 θ)

f (r) = 1− 2GM
c2r + GQ2

c4r2

Take the G→ 0 limit, recover Minkowski space
There are other famous solutions of Einstein’s Eqs, where the
zero-G limit does NOT give you back Minkowski space
Nontrivial geometry goes away, nontrivial topology remains
The Kerr-Newman solution (1965), and its Maximal Analytical
Extension (1968)
Appell-Sommerfeld: The zero-gravity limit of the
maximal-analytically-extended Kerr-Newman solution
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The Magic Hoop

Sommerfeld’s Magic Hoop

Sommerfeld (1896) Generalization of Riemann surfaces to 3-D

Two copies of R3 cross-glued at a disk (of radius a):
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Let’s watch a video!
There is a coordinate system that covers this manifold in a single
chart: Oblate Spheroidal Coordinates (r , θ, ϕ)
Add a time dimension to get a static spacetime.
It is flat (away from the ring) =⇒ it is a solution of E.V.E.
Points on the ring are conical singularities for the metric
zGKN = This spacetime + EM fields on it (P. Appell, 1888)
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Let’s watch a video!
There is a coordinate system that covers this manifold in a single
chart: Oblate Spheroidal Coordinates (r , θ, ϕ)
Add a time dimension to get a static spacetime.
It is flat (away from the ring) =⇒ it is a solution of E.V.E.
Points on the ring are conical singularities for the metric

zGKN = This spacetime + EM fields on it (P. Appell, 1888)
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The Magic Hoop

Sommerfeld’s Magic Hoop

Sommerfeld (1896) Generalization of Riemann surfaces to 3-D
Two copies of R3 cross-glued at a disk (of radius a):
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The Magic Hoop

Appell’s Magic Field

The Coulomb potential: φ(x) = Q
|x−x0| = Q√

(x−x0)·(x−x0)

Harmonic function on R3 \ {x0}.
Static electric field of a point charge located at x0: E = −∇xφ.
Appell (1888) replaced x0 by z0 = x0 + iy0 ∈ C3!
Φ(x) = Q√

(x−z0)·(x−z0)

Set E + iB = −∇xΦ.
New, multi-valued solution of Maxwell’s equations!
Singular on a ring of radius |y0| centered at x0, with n = y0/|y0|
the normal to the plane of the ring.
The solution becomes single-valued when its domain is extended
to the two-sheeted Sommerfeld space.
The singular ring appears to be positively charged in one sheet,
and negatively charged in the other sheet!!
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The Tiger and the Magic Hoop

Some of our results on zero-G Hydrogen spectrum

The Dirac Hamiltonian on zero-G Kerr Newman spacetime is
essentially self-adjoint

The spectrum is symmetric about zero.
Discrete spectrum is non-empty under some smallness conditions.
The continuous spectrum is (−∞,−m] ∪ [m,∞)
Profile of the positive energy ground state shows the tiger’s tail!

Excited states. Numerical approximation. Hyperfine splitting and
Lamb shift without QED!
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The Tiger and the Magic Hoop

Back to Einstein, Rosen, and Weyl

Recall: The ring singularity of the zGKN spacetime

It connects the two sheets of the (otherwise vacuum) spacetime
It’s the locus of singularities for the metric, so the two-sheeted
spacetime is defined outside a timelike 2-dim tube (circle x real
line)
It’s positively charged in one sheet, negatively charged in the other
Our radically new idea: Electron and Positron are not distinct
particles but in fact “two different sides of the same coin”
This resolves the paradox that Dirac’s equation “for the electron”
also seems to describe “a positron” in many situations, while it is a
true one-particle equation.
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The Tiger and the Magic Hoop

Topo-spin

We introduce the notion of TOPOLOGICAL SPIN in analogy to
Heisenberg’s iso-spin.

we identify the ring singularity of the zGKN spacetime with a
two-faced particle, one that appears as an electron in one sheet
and a positron in another sheet
The radius of the ring = anomalous magnetic moment of the
electron
Can we formulate a quantum law of motion for the (center of the)
ring?
YES! By relativity, it is the one that we have discussed! (at least
for quasi-static motions)
Anti-symmetry of the Dirac Hamiltonian with respect to topo-spin
flips gives rise to the matter-antimatter duality
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The Tiger and the Magic Hoop

My To-Do List

Characterize the discrete Dirac spectrum on zGKN completely!

Study zero-G general-relativistic Dirac spectrum for “Positronium”
(Bound states of an electron and a positron): 4-sheeted space
with two ring singularities + a multi-Appell field!
Limit of infinitely many rings may exhibit “ferro-topological phase
transition”: (Explanation of broken particle / anti-particle symmetry
in our world?).
Turn gravity back on! (Nonlinear EM, Perturbation method?)
Bring on the photons: mass-less spin one particles with no
longitudinal wave degree of freedom. (Singularities of the
electromagnetic field?) What is the wave function?
Photon-electron interactions: Compton scattering,
Emission/Absorption.
Model other particles (protons, etc) as singularities of Riemann
spaces branched over knots.
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Bring on the photons: mass-less spin one particles with no
longitudinal wave degree of freedom. (Singularities of the
electromagnetic field?) What is the wave function?

Photon-electron interactions: Compton scattering,
Emission/Absorption.
Model other particles (protons, etc) as singularities of Riemann
spaces branched over knots.
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Proofs

Proof of symmetry of spectrum

Let H be a matrix with a real eigenvalue E and a corresponding
eigenvector Ψ

HΨ = EΨ

Suppose there is another matrix C that anti-commutes with H,
and CΨ 6= 0:

CH + HC = 0

Then −E is also an eigenvalue of H, with eigenvector CΨ.
We found a C that does the job for our Hamiltonian H.
C is a topo-spin flip!
Eigenfunctions with positive energy are 99% supported in one
sheet, and those with negative energy are 99% supported in the
other sheet
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Proofs

Proof of existence of discrete spectrum

Ψ(t , r , θ, ϕ) = R(r)S(θ)e−i(Et−κϕ)


cos(Θ(θ)/2)e+iΩ(r)/2

sin(Θ(θ)/2)e−iΩ(r)/2

cos(Θ(θ)/2)e−iΩ(r)/2

sin(Θ(θ)/2)e+iΩ(r)/2



{
dΩ/dr = 2mr

∆ cos Ω + 2 λ
∆ sin Ω + 2aκ+γr

∆2 − 2E
d(ln R)/dr = mr

∆ sin Ω− λ
∆ cos Ω{

dΘ/dθ = 2(λ−ma cos θ cos Θ +
(
aE sin θ − κ

sin θ

)
sin Θ)

d(ln S)/dθ = −ma cos θ sin Θ−
(
aE sin θ − κ

sin θ

)
cos Θ.

Ψ ∈ L2 iff:{
Ω(−∞) = −π + cos−1(E), Ω(∞) = − cos−1(E)
Θ(0) = 0, Θ(π) = −π.
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Proofs

Flows on a finite cylinder


θ̇ = sin θ

Θ̇ = −2a sin θ cos θ cos Θ + 2aE sin2 θ sin Θ− 2κ sin Θ
+ 2λ sin θ

ξ̇ = cos2 ξ

Ω̇ = 2a sin ξ cos Ω + 2λ cos ξ sin Ω + 2γ sin ξ cos ξ
+ 2κ cos2 ξ − 2aE

Parameter-dependent flow on a cylinder{
ẋ = f (x)
ẏ = gµ(x , y)

(x , y) ∈ [x−, x+]× S1

Two equilibrium points on each boundary: f (x−) = f (x+) = 0 and
gµ(x±, y) = 0 =⇒ y ∈ {s±,n±}
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Proofs

Looking for Heteroclinic Orbits

Nodes N± = (x±,n±) and Saddles S± = (x±, s±)

Existence of N− to S+ and S− to N+ connecting orbits
(stable/unstable and center manifold theory.)
Existence of L2 eigenfunction iff there is an orbit connecting the
two saddles: S− to S+.
The Corridor formed by the two SN connectors.
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Saddle-Saddle connector exists iff the corridor collapses.

A. Shadi Tahvildar-Zadeh (Rutgers) GRQM July 20, 2016 22 / 29



Proofs

Topological Methods in Dynamical Systems

µ-dependent flow on a cylinder

a(µ) = area of corridor
w(µ) = winding number of corridor
a is a continuous function of µ
a > 0 iff w ≥ 1 (Green’s theorem).
a < 0 iff w ≤ 0.
a = 0 iff corridor is empty (i.e. there is a saddle connection.)
Construction of barriers to prove existence of corridors with given
winding number.
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Proofs

Area and Winding Number for Corridors

Working in the universal cover of the cylinder:
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Proofs

Topology of Nullclines

Orbits must increase while in the shaded region
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Proofs

Change in Nullcline Topology and Corridor Winding #
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Proofs

Barrier construction

.................
...

.................
...

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

.............

...........................................................................................................................................................................................................

..................................................
..

..................................................
..

..............................................
...

..........................
.................
...

...............
............

.............
..............
............
....................
.........................

...............
........
........
.........
.........
.......
........
.......
.........
.........
.........
.........
........
.........
...........
........
.........
..........
...........
..............
.............
.............
...............
.................

......................
.................................


......................

.....

...............
.........
.........
...........
.........
.........
..........
...........
..........
...........
..........
...........
............
............
............
............
..............
...........
............
..............
.............
...............
.................

......................
......................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

N̄−

S̃−

Ñ−
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Summary and Outlook

Summary

Zero-G general relativity is NOT necessarily special relativity, and
zero-G spacetimes NOT necessarily merely “wavy” perturbations
of Minkowski spacetime.

Topologically non-trivial spacetimes should be taken seriously
The Dirac equation on zGKN is well-posed; Naked singularity
means no harm!
The Dirac Hamiltonian on zGKN has symmetric spectrum with
scattering and bound states
Novel proposal: Dirac’s equation describes a single “particle /
anti-particle” structure: two “topo-spin” states
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Summary and Outlook

Fin!

THANK YOU FOR LISTENING!
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