Course on “Statistical Physics of Fields In and Out of Equilibrium”
School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
Spring Semester 2016 (1394-1395) / Code (IPM): 113558

Lecturer: Ali Naji (School of Physics, IPM)
Office: Room 503, Farmanieh Central Building (IPM)
Email: a.naji@ipm.ir; Tel: +98-21-22280692 ext. 3039

Subjects covered in this course:

Statistical Physics of Fields In Equilibrium

Part I — Preliminaries

- Statistical physics and thermodynamics of many-particle systems
 - A conceptual review in four lectures based on the classic text by Landau & Lifshitz (Vol. 5)
- Statistical fields: A scenery (slide presentation)
 - Spin & particle models: From classical to modern examples
 - Modern applications of statistical field theory in soft & condensed matter physics
- Statistical field theory: Basic methods
 - Construction of continuum field actions
 - Coarse-graining of microscopic Hamiltonians
 - Symmetries & phenomenological actions (or effective ‘Hamiltonians’)
 - Classical field theory
 - Calculus of variations
 - The least-action principle & Euler-Lagrange equations
 - Continuous symmetries & Noether’s theorem
 - Energy-momentum (or stress-energy) tensor
 - Fluctuating fields & functional-integral methods
 - Path integrals: An overview
 - Functional integrals & the partition function
 - Generating functionals & connected correlation (Green) functions
 - Response functions & the fluctuation-dissipation theorem
 - Gaussian integrals & Wick’s theorem (‘free field theory’)
 - Formal perturbative expansion of field interaction
 - Feynman diagrams
 - Other routes to constructing field theories
 - A modern (re)formulation of the Hubbard-Stratonovich transformation
 - Construction of exact field theories: From O(n) model to Coulomb fluids
 - Edwards-Gupta method: Effective field theory for Ising & O(n) models
- Saddle-point method
 - Mean field theory as a steepest descent (saddle-point) approximation
 - Loop expansion & Gaussian-fluctuation (one-loop) corrections
 - Saddle-point approximation in the presence of zero modes (included in Homework #15)
- Other useful techniques (applicable to Part II)
 - Schwinger-Dyson equations
 - Ward identities (included in Homework #7)

Further information about this course, including problem sets and term-essay topics, are available at: http://physics.ipm.ac.ir/~naji/fields_SS2016.html
• Functional determinants (applicable to Part III)
 - Van Vleck-Pauli-Morette (VVPM) formula
 - Spectral ζ-functions & heat kernel: An overview
 - ζ-function regularization
 - Gel’fand-Yaglom (GY) formula: Contour integration approach
 - Coleman’s proof of GY formula (included in Homework #9)
 - Equivalence of VVPM & GY formulas (included in Homework #9)
• Zero modes (applicable to Part IV) (included in Homework #15)
 - Continuous symmetry & Goldstone modes
 - Gaussian-fluctuation (one-loop) corrections in the presence of zero modes
 - Perturbative expansion in the presence of zero modes

✦ Part II — Field theory for Coulomb fluids (or “Coulomb gases”)
 ‣ Coulomb interactions & Coulomb fluids in soft matter and biology (slide presentation)
 ‣ Coulomb fluids: General formalism
 • Exact field action via Hubbard-Stratonovich transformation
 ‣ Mean-field theory
 • Multi-component Coulomb fluids (“ionic mixtures” or “electrolytes”)
 - Saddle-point approximation: The nonlinear Poisson-Boltzmann equation
 - Electrical double layers: The Gouy-Chapman theory
 - Linearization approximation: The Debye-Hückel theory
 - Generalized electrostatic stress tensor (not covered in this Course)
 • Confined one-component (“counterion-only”) Coulomb fluids
 - Counterions at a single charged wall: Mean-field density profile
 - Counterions between two charged walls: Effective counterion-mediated interactions
 ‣ Beyond mean-field theory (I): Weak-coupling regime
 • Bulk ionic mixtures (“Yukawa” plasmas)
 - Quadratic Debye-Hückel field action
 - Break down of the virial expansion & the origin of Debye screening
 - Singular correlation corrections to the equation of state (bulk limiting laws)
 • Confined one-component (“counterion-only”) Coulomb fluids: One-loop corrections
 - Fluctuation corrections to counterion density: One & two walls (included in Homework #8)
 - Gaussian-fluctuation corrections to counterion-mediated interactions between two walls
 ‣ Beyond mean-field theory (II): Strong-coupling regime (slide presentation)
 • Weak vs strong couplings: A unified field-theoretic approach
 • Strong-coupling theory: Virial expansion restored for confined Coulomb fluids
 • Recent advances in the theory & simulations of confined Coulomb fluids

✦ Part III — Fluctuation-induced phenomena (Casimir & pseudo-Casimir effects)
 ‣ A plethora of fluctuation-induced phenomena (slide presentation)
 • Examples from quantum vacuum fluctuations to superfluid films to liquid crystals to Derjaguin-Landau-Verwey-Overbeek theory of colloidal stability
 ‣ Quantum vacuum & electromagnetic field fluctuations
 • Non-retarded Casimir forces: Perfect “mirrors” at zero temperature
 • Thermal (classical) Casimir forces: Massless fields at high temperature
 • Lifshitz theory for dielectrics at finite temperature: Retardation effects
 ‣ Fluctuation-induced effects in correlated liquids
 • Pseudo-Casimir forces in superfluid helium films
 • Pseudo-Casimir forces in nematic liquid-crystalline films (included in Homework #10)
Fluctuation-induced effects in Coulomb fluids
- Massive field fluctuations & Pseudo-Casimir effect in “Yukawa” plasmas
- Fluctuations on a non-uniform background: Confined Coulomb fluids revisited

Part IV — Phase transitions and critical phenomena

General aspects and examples (blackboard & slide presentation)
- Bulk phases and phase transitions in simple fluids & ferromagnets
- Classifications of (bulk) phase transitions: Thermodynamic non-analyticities
- Discontinuous (first-order) transitions: Phase separation & coexistence region
- Continuous (second-order) transitions: Critical points
- Multicritical points & other typical features of phase diagrams
- Modern perspective on phase transitions
 - Criticality, correlations, scaling & universality
 - Critical exponents: Experiments, simulations & theory
 - Critical exponents: Thermodynamic inequalities
 - Examples from liquid crystals to lipids to superfluids to superconductors
 - Order parameter & broken symmetry

Ising model
- Ising model in one dimension
 - Exact transfer matrix solution, spin correlations & correlation length
 - Kinks & the absence of finite-T spontaneous magnetization
 - Nature of the singularity & phase transition at $T = 0$
- Ising model in two dimensions
 - Domain walls & the existence of finite-T phase transition
 - Critical exponents (Onsager’s exact results)
- Mean-field theory in arbitrary dimension
 - Weiss molecular-field theory
 - Bragg-Williams (variational) approximation
 - Infinite-range (or infinite-dimensional) Ising model
 - Mean-field phase diagrams: First- & second-order transitions
- Ising critical exponents: Mean field vs exact vs simulation results
- Yang-Lee theory of phase transitions (not covered in this Course)

Landau mean-field theory
- Landau-Ginzburg phenomenology
- ϕ^4 theory
 - Spontaneous symmetry breaking
 - Thermodynamic limit & the ergodicity breaking
 - Critical exponents: Mean-field Ising universality class
- ϕ^3 theory: Continuous vs discontinuous transition
- ϕ^6 theory: Tricritical point (included in Homework #11)
- Liquid-vapor transition
 - Virial expansion & the van der Waals equation of state
 - Maxwell construction, phase coexistence & the critical point
 - Comparison with ϕ^4 theory of ferromagnets
- Ginzburg-Landau theory of superconductivity (included in Homework #11)

Gaussian-fluctuation (one-loop) corrections
- Landau-Ginzburg-Wilson Hamiltonian
 - Field fluctuations & stiffness
 - Correlation functions & susceptibility
 - Modified singularities: Free energy & heat capacity
- Liquid-vapor system: Critical opalescence
 • Upper critical dimension & the Ginzburg criterion
 • Dimensional analysis & anomalous dimensions

› Widom scaling
 • Homogeneous functions
 • Widom scaling hypothesis
 • Critical exponents: Scaling laws
 • Spatial scale-invariance & hyperscaling laws
 • Hyperscaling above dimension four: A paradox?

› Real-space renormalization group (RG) transformation
 • Kadanoff block spins & derivation of Widom scaling
 • Wilson block spins, fixed points & calculation of critical exponents
 • General properties of RG flows & some characteristic fixed points
 • Ising model on a triangular lattice: Real-space RG in two dimensions

› Momentum-space RG transformation
 • RG scheme revisited: Coarse grain, rescale & renormalize
 • Gaussian model: Exact solution & RG analysis
 • Dangerous irrelevant variables: Hyperscaling revisited

› \(\phi^4 \) theory
 • Perturbative RG & Feynman diagrams
 • \(\epsilon \)-expansion & critical exponents to order \(O(\epsilon) \)
 • Supplementary remarks
 - Finite anomalous dimension to order \(O(\epsilon^2) \)
 - Asymptotic behavior of \(\epsilon \)-expansion
 - Results from resummation techniques
 - Ising universality class: Comparison with experiments & simulations

› Continuous symmetry
 • Discrete symmetry breaking: Domain walls revisited
 • Continuous symmetry breaking
 - Goldstone modes: Examples from crystalline solids to (Heisenberg) ferromagnets to liquid crystals to superfluid Helium
 - Goldstone’s theorem revisited
 - Massless fluctuations & the lower critical dimension
 - Mermin-Wagner (-Hohenberg-Coleman) theorem
 • Coupling to gauge fields: Anderson-Higgs mechanism (included in Homework #12)

› Other subjects (not covered in this Course / potential subjects for term essays)
 • Nonlinear \(\sigma \) model: Critical behavior near dimension two
 • XY model, topological defects & the Kosterlitz-Thouless transition
 • RG for the two-dimensional Coulomb gas
 • Two-dimensional solids & melting

Statistical Physics of Fields Out of Equilibrium

	• Part V — Dissipative dynamics of fields near and far from equilibrium

› Dissipative (Brownian) dynamics of particles
 • Elements of the theory of stochastic processes
 • Langevin equation: From phenomenological to formal derivation
 • (Smoluchowski-) Fokker-Planck equation
 • Path-integral formulation of Brownian motion
Dissipative dynamics of fields: A scenery (slide presentation)
- Models of dissipative field dynamics: Examples from nucleation & spinodal decomposition to elastic membranes & growing surfaces to active fluids & bacterial suspensions

Critical dynamics & dynamic scale-invariance near equilibrium
- Non-conserved dynamics (Model A: Stochastic time-dependent Landau-Ginzburg equation)
- Conserved dynamics (Model B: Stochastic Cahn–Hilliard equation)
- An overview of dynamic perturbation theory

Critical dynamics & dynamic scale-invariance far from equilibrium (slide presentation)
- Kardar-Parisi-Zhang equation
- Dynamic RG at a glance: The KPZ universality class

Field theory for stochastic partial differential equations
- Langevin-type partial differential equations
- Generalized (Smoluchowski-) Fokker-Planck equation (included in Homework #16)
- Basics of functional-integral representation & the Martin-Siggia-Rose action