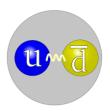
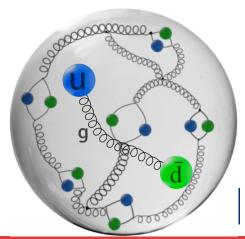

momentum distribution

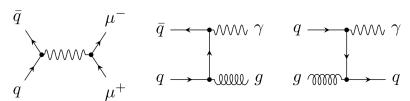
Hamed Abdolmaleki (On Behalf xFitter developer team)

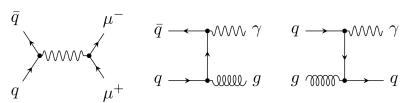
$FASER\nu$

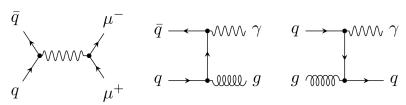
From FASER home page




Simple model of Pion structure


Theoretically, the pion is a simpler system than the proton. Consequently, the pion structure has been investigated in several nonperturbative theoretical models.


Experimentally, Pion structure is more complicated, so the pion PDF is known mostly from QCD analyses of Drell-Yan (DY) and prompt photon production data.


Dinamically, Within a dynamical approach, only the relatively well-known valence distribution is determined from DY data, with the sea and gluon content at a very low initial scale fixed by simplifying assumptions

Prompt photon (WA70) data provide constraints on both the quarks and gluons in our kinematic range

This analysis is based on Drell-Yan data from NA10 and E615 experiments, and on photon production data from the WA70 experiment.

Parameterization form: the π^- PDF, $xf(x,Q^2)$ parameterize at initial scale $Q_0^2=1.9~GeV^2$

$$xv(x) = A_v x^{B_v} (1 - x)^{C_v} (1 + D_v x^{\alpha}),$$

$$xS(x) = A_S x^{B_S} (1 - x)^{C_S} / \mathcal{B}(B_S + 1, C_S + 1),$$

$$xg(x) = A_g (C_g + 1) (1 - x)^{C_g},$$

Neglecting electroweak corrections and quark masses, charge symmetry is assumed: $d = \bar{u}$, and SU(3)-symmetric sea: $u = \bar{d} = s = \bar{s}$.

$$v = d_v - u_v = (d - \bar{d}) - (u - \bar{u}) = 2(d - u) = 2d_v,$$

 $S = 2u + 2\bar{d} + s + \bar{s} = 6u,$
 $g = g,$

Parameterization form: the π^- PDF, $xf(x,Q^2)$ parameterize at initial scale $Q_0^2=1.9~GeV^2$

$$xv(x) = A_v x^{B_v} (1 - x)^{C_v} (1 + D_v x^{\alpha}),$$

$$xS(x) = A_S x^{B_S} (1 - x)^{C_S} / \mathcal{B}(B_S + 1, C_S + 1),$$

$$xg(x) = A_g (C_g + 1) (1 - x)^{C_g},$$

Neglecting electroweak corrections and quark masses, charge symmetry is assumed: $d = \bar{u}$, and SU(3)-symmetric sea: $u = \bar{d} = s = \bar{s}$.

$$v = d_v - u_v = (d - \bar{d}) - (u - \bar{u}) = 2(d - u) = 2d_v,$$

 $S = 2u + 2\bar{d} + s + \bar{s} = 6u,$
 $g = g,$

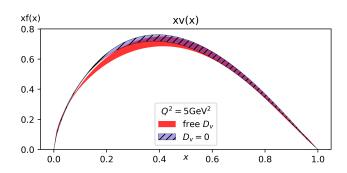
Quark-counting and momentum sum rules:

	•		
	$D_v=0$	free D_v	
$\chi^2/N_{ m DoF}$	444/373=1.19	437/372 = 1.18	
A_v	2.60	1.72	
$\langle xv \rangle$	0.56	$0.54 < xf >= \int_0^1 x$	cf(
B_v	0.75 ± 0.03	0.63 ± 0.06	
C_v	0.95 ± 0.03	0.26 ± 0.13	
D_v	0	-0.93 ± 0.06	
$A_S = \langle xS \rangle$	0.21 ± 0.08	0.25 ± 0.09	
B_S	0.5 ± 0.8	0.3 ± 0.7	
C_S	8 ± 3	6 ± 3	
$A_g = \langle xg \rangle$	0.23	0.20	
C_g	3 ± 1	3 ± 1	

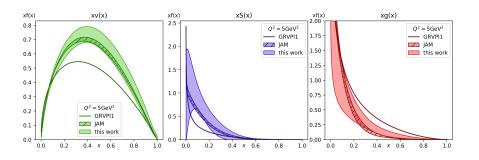
Minimazing:

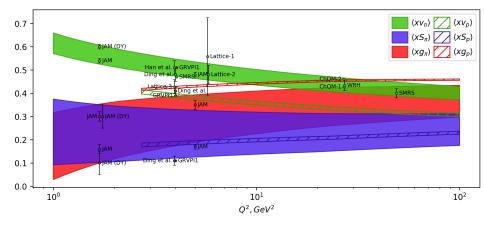
$$\chi^2 = \sum_{i} \frac{(d_i - \tilde{t}_i)^2}{\left(\delta_i^{\text{syst}}\right)^2 + \left(\sqrt{\frac{\tilde{t}_i}{d_i}} \delta_i^{\text{stat}}\right)^2} + \sum_{\alpha} b_{\alpha}^2,$$

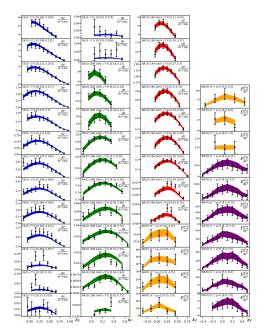
Experiment	Normalization uncertainty	Normalization factor	$\chi^2/N_{ m points}$
E615	15 %	1.160 ± 0.020	206/140
NA10 (194 Ge	V) 6.4%	0.997 ± 0.014	107/67
NA10 (286 Ge		0.927 ± 0.013	95/73
WA70	32%	0.737 ± 0.012	64/99



	$\langle xv \rangle$	$\langle xS \rangle$	$\langle xg \rangle$	Q^2 (GeV ²)
JAM [31]	0.54 ± 0.01	0.16 ± 0.02	0.30 ± 0.02	1.69
JAM (DY)	0.60 ± 0.01	0.30 ± 0.05	0.10 ± 0.05	1.69
this work	0.55 ± 0.06	0.26 ± 0.15	0.19 ± 0.16	1.69
Lattice-3 [18]	0.428 ± 0.030			4
SMRS [25]	0.47			4
Han et al. [44]	0.51 ± 0.03			4
GRVPI1 [27]	0.39	0.11	0.51	4
Ding et al. [11]	0.48 ± 0.03	0.11 ± 0.02	0.41 ± 0.02	4
this work	0.50 ± 0.05	0.25 ± 0.13	0.25 ± 0.13	4
JAM	0.48 ± 0.01	0.17 ± 0.01	0.35 ± 0.02	5
this work	0.49 ± 0.05	0.25 ± 0.12	0.26 ± 0.13	5
Lattice-1 [16]	0.558 ± 0.166			5.76
Lattice-2 [17]	0.48 ± 0.04			5.76
this work	0.48 ± 0.05	0.25 ± 0.12	0.27 ± 0.13	5.76
WRH [26]	0.434 ± 0.022			27
ChQM-1 [13]	0.428			27
ChQM-2 [15]	0.46			27
this work	0.42 ± 0.04	0.25 ± 0.10	0.32 ± 0.10	27
SMRS [25]	0.49 ± 0.02			49
this work	0.41 ± 0.04	0.25 ± 0.09	0.34 ± 0.09	49


	$\langle xv \rangle$	$\langle xS \rangle$	$\langle xg \rangle$	Q^2 (GeV ²)
JAM [31]	0.54 ± 0.01	0.16 ± 0.02	0.30 ± 0.02	1.69
JAM (DY)	0.60 ± 0.01	0.30 ± 0.05	0.10 ± 0.05	1.69
this work	0.55 ± 0.06	0.26 ± 0.15	0.19 ± 0.16	1.69
Lattice-3 [18]	0.428 ± 0.030)		4
SMRS [25]	0.47			4
Han et al. [44]	0.51 ± 0.03			4
GRVPI1 [27]	0.39	0.11	0.51	4
Ding et al. [11]	0.48 ± 0.03	0.11 ± 0.02	0.41 ± 0.02	4
this work	0.50 ± 0.05	0.25 ± 0.13	0.25 ± 0.13	4
JAM	0.48 ± 0.01	0.17 ± 0.01	0.35 ± 0.02	5
this work	0.49 ± 0.05	0.25 ± 0.12	0.26 ± 0.13	5
Lattice-1 [16]	0.558 ± 0.166	3		5.76
Lattice-2 [17]	0.48 ± 0.04			5.76
this work	0.48 ± 0.05	0.25 ± 0.12	0.27 ± 0.13	5.76
WRH [26]	0.434 ± 0.022	2		27
ChQM-1 [13]	0.428			27
ChQM-2 [15]	0.46			27
this work	0.42 ± 0.04	0.25 ± 0.10	0.32 ± 0.10	27
SMRS [25]	0.49 ± 0.02			49
this work	0.41 ± 0.04	0.25 ± 0.09	0.34 ± 0.09	49


Valence distrubution extracted by minimal parameterization: $D_v = 0$



Compared pion PDF with the modern pion PDFs

Thank you

