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Quantum mechanics

A fundamental theory for describing nature.

Particle physics, condensed matter, quantum optics, ...
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Quantum vs. Classical
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Quantum information science

What are the scientific and technological implications if we can manipulate and control
complex quantum systems to behave the way that we want instead of what they do
naturally?

« Entanglement Theory, Quantum Control Theory,
Quantum Estimation, Open Quantum Systems, p s | Quantum
Quantum Information Theory, ... " process

* Quantum Computation, Quantum Simulation,
Quantum Communication, Quantum Sensing, ...

» Applications in condensed matter, high-energy physics,
quantum gravity, ...
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Quantum computational supremacy

Based on computational complexity arguments, it is strongly believed that quantum
computers can perform certain computational tasks faster than classical computers.

Factoring problem: Find prime factors, N = p X q

Classical computer Quantum computer

500 digits in 1012 CPU years (2.2 GHz) 500 digits in 2 seconds
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Computational complexity

Easy = Solvable in a time that is a polynomial function of the size of the problem

Hard = not easy (not efficiently solvable)

Classically

Easy
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Computational complexity

Easy = Solvable in a time that is a polynomial function of the size of the problem

Hard = not easy (not efficiently solvable)

Quantum
polynomial time

Classically
Easy

Computational complexity
depends on physical law!
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Computational complexity

Easy = Solvable in a time that is a polynomial function of the size of the problem

Hard = not easy (not efficiently solvable)

Quantum
polynomial time

Classically
Easy

Computational complexity
depends on physical law!

Factoring problem that is important for public-key cryptography! £
But it requires around 20 million physical qubits! )
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Computational complexity

Easy = Solvable in a time that is a polynomial function of the size of the problem

Hard = not easy (not efficiently solvable)

Quantum
polynomial time

Classically

Easy

Computational complexity
depends on physical law!

Simulation of many physical systems!
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Boson sampling
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Boson sampling
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Boson sampling
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Boson sampling
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Boson sampling
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p :l U11U22U33 +U11U 23U32 +U12U21U33
+U12U 23U 31 +U13U 22U 31 +U13U 21U 32 |2

=1 >TTA.0l =Per(Ul,.)

ceS; i=1

Ryser’s algorithm evaluates permanents in
0 (2™ 1n?) arithmetic operations.

Sampling from the probability distribution of
photon-counting events at the output of an M-
mode linear-optical network for N input single
photons (N « M) cannot be simulated efficiently
classically [Aaronson & Arkhipov 2010].
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Science REPORTS

Cite as: H.-S. Zhong et al., Science

Quantum computational advantage using photons ;7\ icce.abes770 (2020,

Quantum computers promises to perform certain tasks that are believed to be intractable to classical
computers. Boson sampling is such a task and is considered as a strong candidate to demonstrate the
quantum computational advantage. We perform Gaussian boson sampling by sending 50 indistinguishable
single-mode squeezed states into a 100-mode ultralow-loss interferometer with full connectivity and
random matrix—the whole optical setup is phase-locked—and sampling the output using 100 high-
efficiency single-photon detectors. The obtained samples are validated against plausible hypotheses
exploiting thermal states, distinguishable photons, and uniform distribution. The photonic quantum
computer generates up to 76 output photon clicks, which yields an output state-space dimension of 103°
and a sampling rate that is ~10'4 faster than using the state-of-the-art simulation strategy and
supercomputers.
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Questions

* What are resources for quantum computational speedups?
[S. R-K, T. C. Ralph and C. M. Caves, Physical Review X 6, 021039 (2016)]

» How to develope similar protocols based on other physical systems?
[A. P. Lund, A. Liang, S. R-K, T. Rudolph, J. L. O’Brien and T. C. Ralph, Physical Review Letters
113, 100502 (2014)]

» How to characterize and verify quantum experiments?
[S. R-K, S. Baghbanzadeh, C. M. Caves, Phys. Rev. A 101, 043809 (2020).]
[S. R-K, M. Mehboudi, D. De Santis, D. Cavalcanti, A. Acin, Phys. Rev. A 104, 042212 (2021).]



Nonequilibrium thermometry

Temperature=?

Measureemnt

Classical or quantum probe states?

The mean square error of the estimator function is <(T‘(x) _T )2> > t
given by the Cramér-Rao bound for M = t/t O | T Tt FC(p;1L;t)
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S. Mirkhalaf, M. Mehboudi, S. R-K, arxiv:2207.10742v1 (2022). -



Summary

Quantum information science is a new way of thinking in physics with
interesting and useful scientific and technological applications.

Thank you for your attention!



