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Summary

Part I :
Lanczos algorithm (or Band Lanczos) is able to diagonalize the 

Hamiltonian Matrix for a small systems, and calculates the Green 

function 

Part II :

CPT :

The lattice is tiled by small identical clusters

It is able to calculate the Green function of the lattice, by 

solving the problem for small clusters

SFA : 

The grand potential can be written as a functional of the 

self-energy Σ

F[Σ] is universal  →

For a set of physical variable, grand potential is the saddle 

point in Ω-space. Now it is a function of the physical variables.



Approximation

The Variational Cluster 

Approximation

Part III



Motivation

CPT cannot describe broken symmetry states, because of 

the finite cluster size

Idea : add a Weiss field term to the cluster Hamiltonian H’, 

e.g., for  antiferromagnetism:

This term favors AF order, but does not appear in H, and 

must be subtracted from V

SFA is the principle to set the value of M .



VCA : Basic Idea

Set up a superlattice of clusters 

Choose a set of variational parameters, 

e.g. Weiss fields for broken symmetries 

Set up the calculation of the Potthoff functional:

Use an optimization method to find the stationary points 

Adopt the cluster self-energy associated with the stationary 

point, and use it for the lattice



Variational Cluster Approximation
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Best values of hopping and Weiss fields determined by

a rigorous variational principle:

 0=
Ω
hδ

δ

where                       is the grand potential at the physical 

solution.
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Variational Cluster Approximation
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We add a Weiss field term to the cluster Hamiltonian H’

This term favors AF order, but does not appear in H, and 

must be subtracted from V

Variational Cluster Approximation
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VCA : Néel Antiferromagnetism

The AF Weiss field :

for the half-filled, square lattice Hubbard model:Ω



VCA : scaling factor

Best scaling factor :



VCA : Superconductivity

The Weiss field is a pairing field

s-wave

d-wave

dx2-y2

dxy



VCA : Superconductivity

particle number is not conserved now

The Hilbert space is enlarged

Nambu formalism is used



Structure and Phase Diagram

High Tc superconductors



One-band Hubbard model for the cuprates: t’ = -0.3, t” = 0.2, U = 8:

VCA : High Tc superconductors



VCA : High Tc superconductors 



Structure and Phase Diagram

Organic compounds
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d-SCAF

Q2D – AF

κ κ κ κ - Cu[N(CN)2]Cl

AFIAFIAFIAFIAFIAFI

P(MPa)

Kagawa, PRB69, 2004

Structure and Phase Diagram

SL d-SC

Kurosaki, PRL95, 2005

Q2D - SL  

κ κ κ κ - Cu2(CN)3



VCA : Organic compounds
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VCA : Organic compounds

U~6P. Sahebsara, and D. Sénéchal, PRL97 2006



VCA : Organic compounds
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VCA : Organic compounds

VCA

U~6

U>8

Spiral Order



VCA : Organic compounds0000 P. Sahebsara, IJPR, in press



VCA : Organic compounds

U<6

U>8

Spiral Order

NS: gap = 0

Spin Liquid

(6<U<8)P. Sahebsara, and D. Sénéchal, PRL100,  2008



Mean Field Theory

Cluster Dynamical 

Mean Field Theory



CDMFT : Basic Idea

To add variational degrees of freedom in the form of a bath of 

uncorrelated sites



CDMFT : The hybridization function

the cluster Green function takes the form

Γ(ω) is the hybridization function:



The bath makes a contribution to the Potthoff functional:

CDMFT : The hybridization function

On can in principle use the same methods as in VCA



CDMFT : The Algorithm



Summary

Original system CPT - VCA

DMFT C-DMFT

VCA + CDMFT



... and life is going on!

Thank you


