Quantum Cluster Methods for Strongly Correlated Electron Systems: Variational Approach

Peyman Sahebsara

Advanced School of Recent Progress in Condensed Matter Physics and Strongly Correlated Systems

5 - 9 July 2008

Part I : Correlated Electron Systems

Part II : *Quantum Cluster Methods*

Part III:

Variational Approach

Summary

Part I :

Lanczos algorithm (or Band Lanczos) is able to diagonalize the Hamiltonian Matrix for a small systems, and calculates the Green function

Part II :

- CPT :
 - The lattice is tiled by small identical clusters
 - It is able to calculate the Green function of the lattice, by solving the problem for small clusters
- **SFA**:
 - The grand potential can be written as a functional of the self-energy Σ
 - $F[\Sigma]$ is universal $\rightarrow \Omega_t[\Sigma] = \Omega' \operatorname{Tr} \ln(1 \mathsf{VG}')$
 - For a set of physical variable, grand potential is the saddle point in Ω -space. Now it is a function of the physical variables.

Part III

The Variational Cluster Approximation

Motivation

- CPT cannot describe broken symmetry states, because of the finite cluster size
- Idea : add a Weiss field term to the cluster Hamiltonian H',
 e.g., for antiferromagnetism:

$$H'_M = M \sum_a e^{i\mathbf{Q}\cdot\mathbf{r}_a} (n_{a\uparrow} - n_{a\downarrow})$$

- This term favors AF order, but does not appear in *H*, and must be subtracted from *V*
- SFA is the principle to set the value of M.

VCA : Basic Idea

- Set up a superlattice of clusters
- Choose a set of variational parameters,

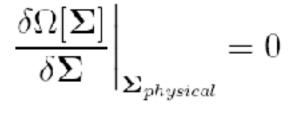
e.g. Weiss fields for broken symmetries

Set up the calculation of the Potthoff functional:

$$\Omega_{\mathsf{t}}[\mathsf{\Sigma}] = \Omega' - \frac{TL}{N} \sum_{\omega} \sum_{\tilde{\mathbf{k}}} \ln \det \left[1 - \mathsf{V}(\tilde{\mathbf{k}}) \mathsf{G}'(\tilde{\mathbf{k}}, \omega) \right]$$

- Use an optimization method to find the stationary points
- Adopt the cluster self-energy associated with the stationary point, and use it for the lattice

Variational Cluster Approximation



Therefore, $\Omega[\Sigma]$ can be written as the direct function of the physical variables *h*:

$$\Sigma = \Sigma(h)$$
$$\Omega = \Omega[\Sigma(h)] = \Omega(h)$$

Variational Cluster Approximation

$$\Omega = \Omega(h)$$

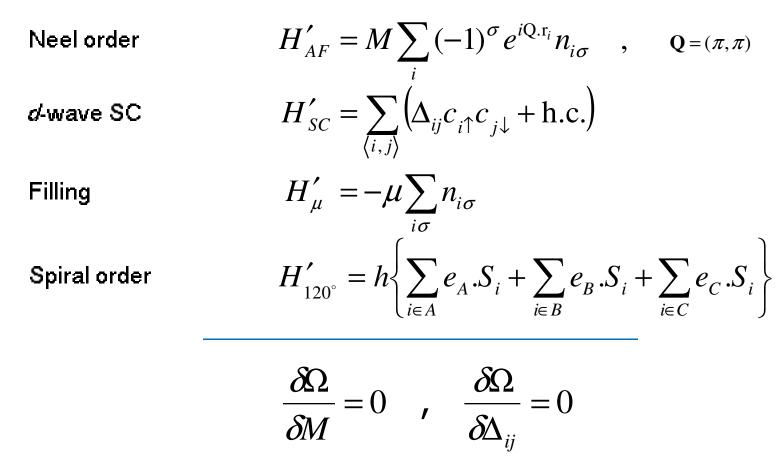
Best values of hopping and Weiss fields determined by a rigorous variational principle:

$$\frac{\partial \Omega}{\partial h} = 0$$

where $\Omega = (E - \mu N)$ is the grand potential at the physical solution.

Variational Cluster Approximation

- We add a Weiss field term to the cluster Hamiltonian H'
- This term favors AF order, but does not appear in H, and must be subtracted from V

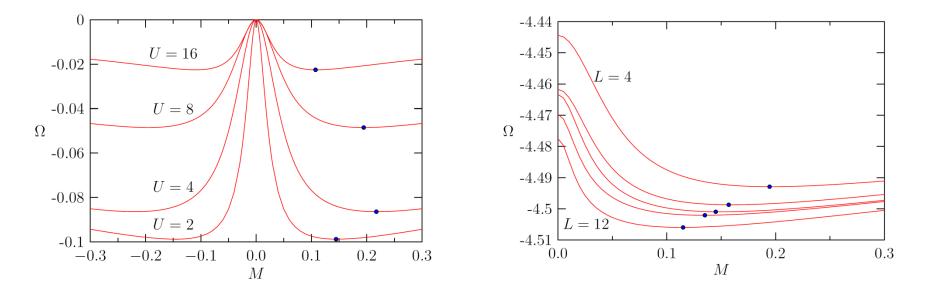


VCA: Néel Antiferromagnetism

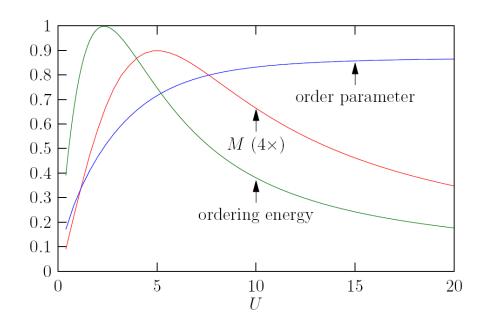
The AF Weiss field :

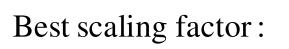
$$H'_M = M \sum_a e^{i\mathbf{Q}\cdot\mathbf{r}_a} (n_{a\uparrow} - n_{a\downarrow})$$

 Ω for the half-filled, square lattice Hubbard model:

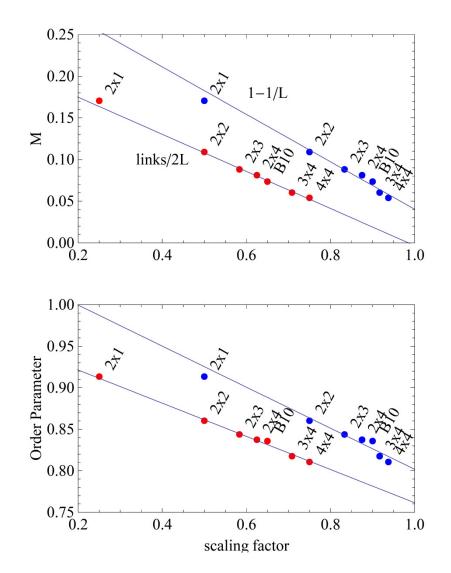


VCA : scaling factor

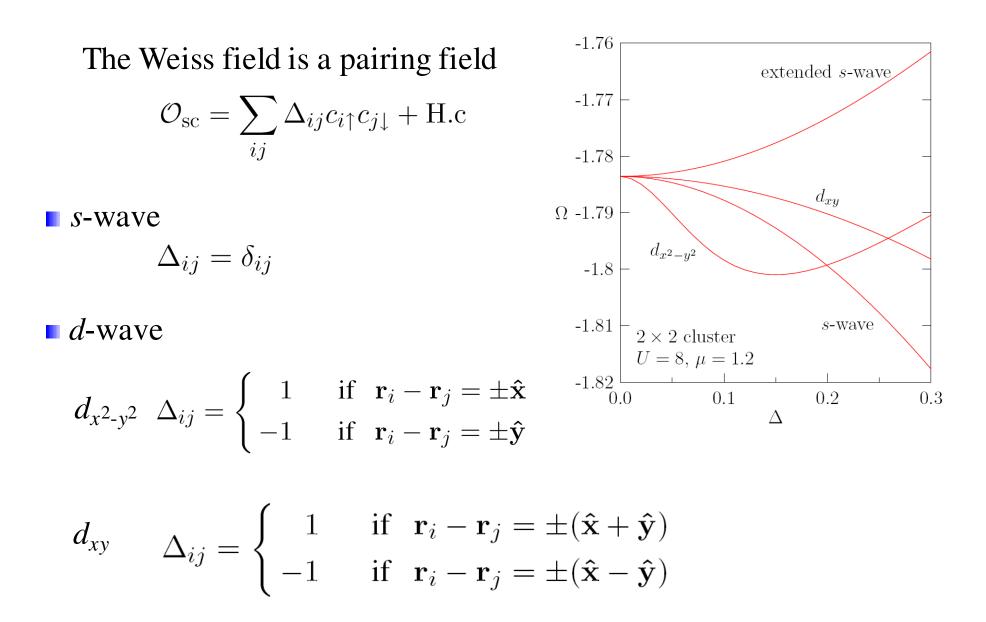




 $q = \frac{\text{number of links}}{2 \times \text{number of sites}}$



VCA : Superconductivity

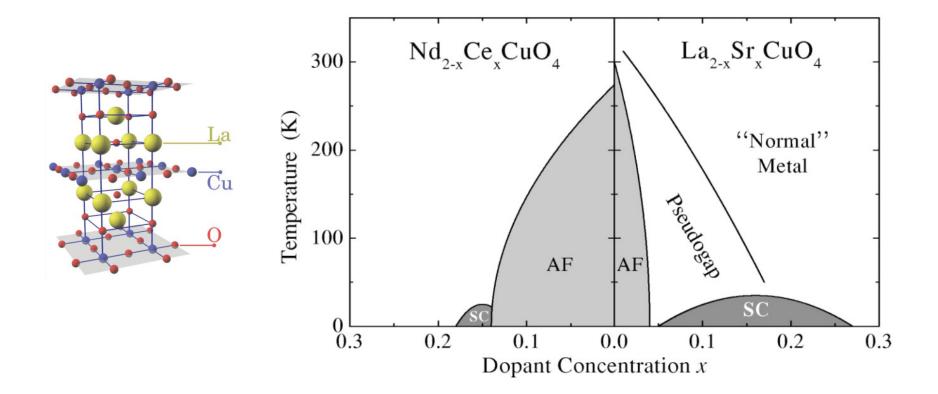


VCA : Superconductivity

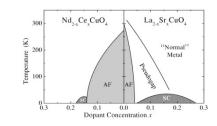
- particle number is not conserved now
- The Hilbert space is enlarged
- Nambu formalism is used

$$c_a = c_{a\uparrow} \qquad \qquad d_a = c_{a\downarrow}^{\dagger}$$

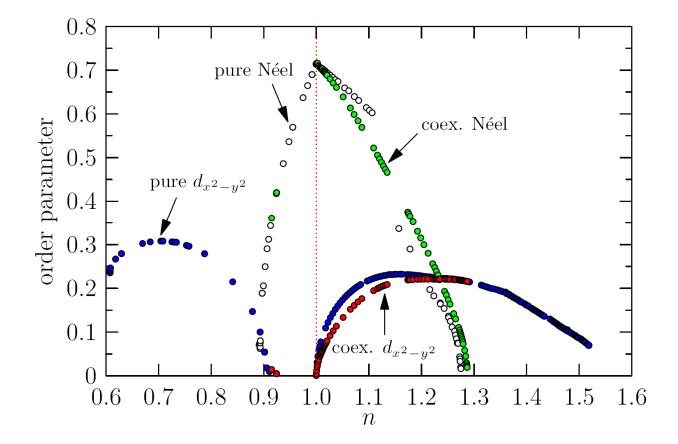
High T_c superconductors



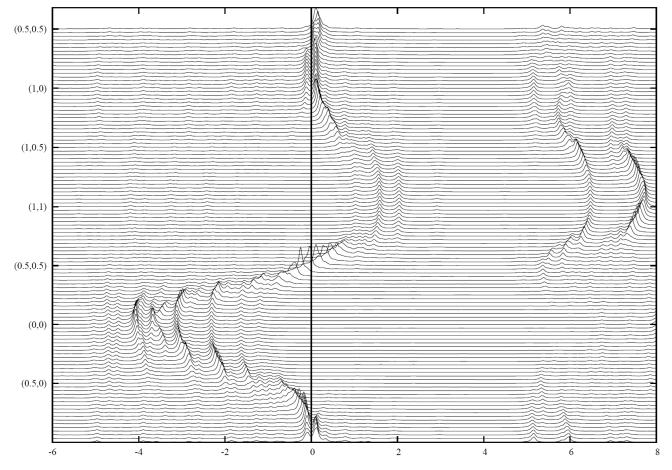
VCA : High T_c superconductors



One-band Hubbard model for the cuprates: t' = -0.3, t'' = 0.2, U = 8:

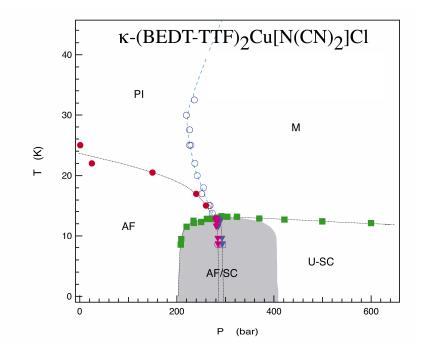


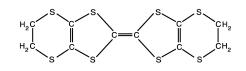
VCA : High T_c superconductors

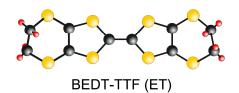


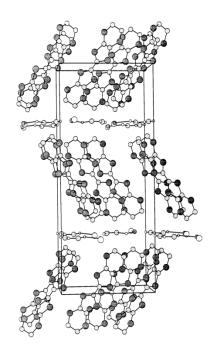
spectral function : 4x4_C2v, U=8, mu=1.5, tx=1, Dx=0.035, (spin up) (27/5/2008)

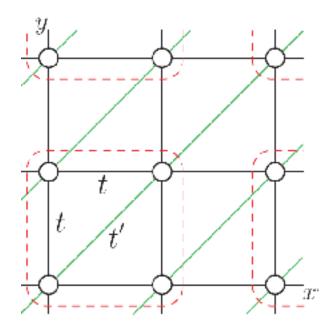
Organic compounds







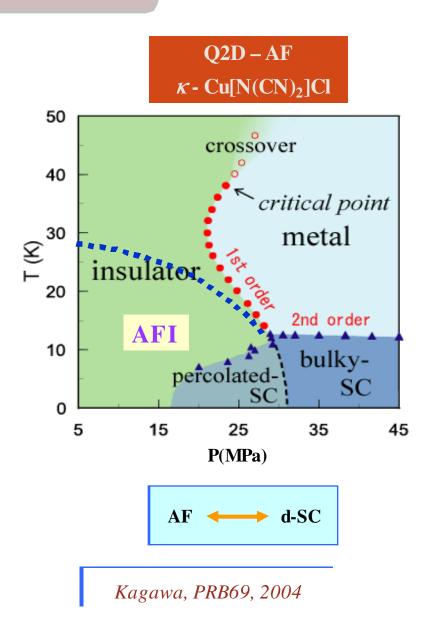




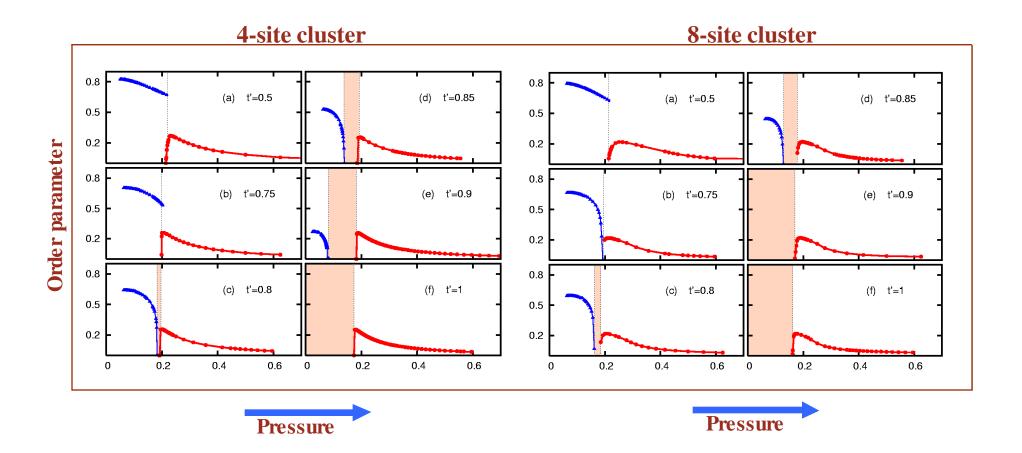
к-(ET) ₂ Х		
Х-	Ground State	t'/t
Cu ₂ (CN) ₃	Mott insulator	1.06
Cu[N(CN) ₂]Cl		0.75
Cu[N(CN) ₂]Br	SC	0.68
Cu(NCS) ₂	SC	0.84
Cu(CN)[N(CN) ₂]	SC	0.68
Ag(CN) ₂ H ₂ O	SC	0.60
l ₃	SC	0.58

 κ - Cu₂(CN)₃ 200 crossover 100 $(T_1 T)^{-1}$ max $R = R_0 + AT^2$ Paramagnetic ହ ⊢ 10 Insulator $T_1 T = \text{const.}$ (Spin liquid) onset T_C Fermi liquid Superconductor 2 6 7 8 3 5 P(10⁻¹GPa) SL 🔸 d-SC Kurosaki, PRL95, 2005

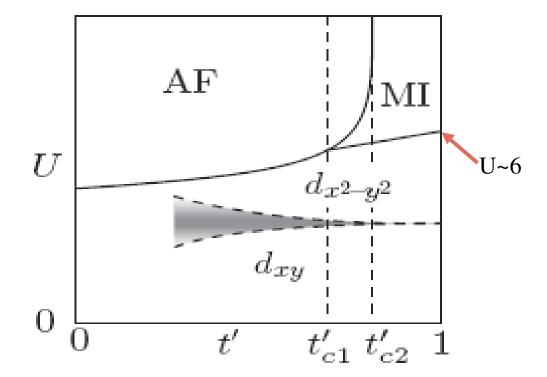
Q2D - SL



VCA : Organic compounds

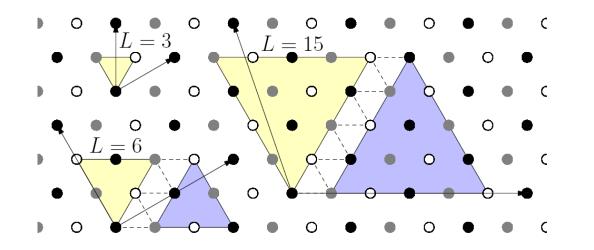


VCA : Organic compounds

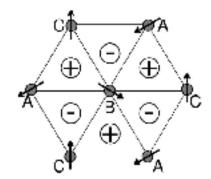


P. Sahebsara, and D. Sénéchal, PRL972006

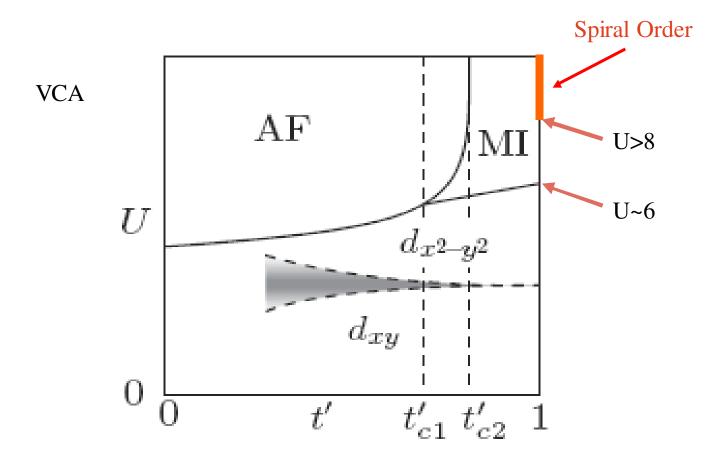
VCA: Organic compounds



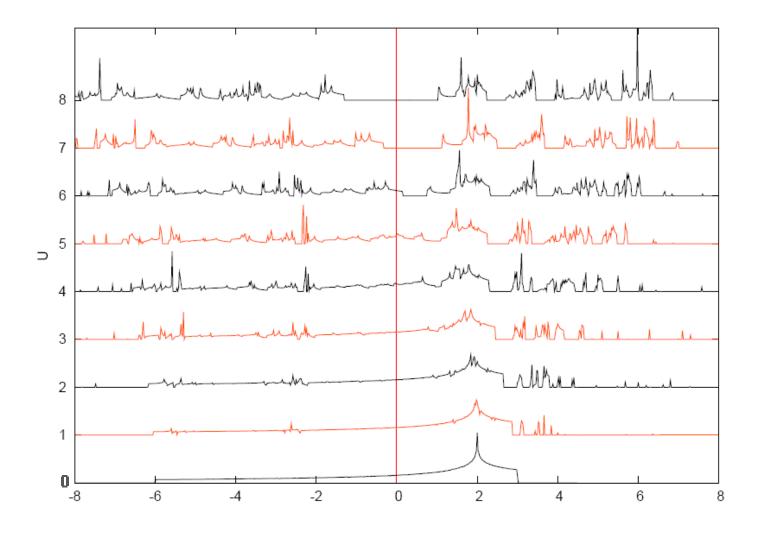
Spiral order



VCA : Organic compounds

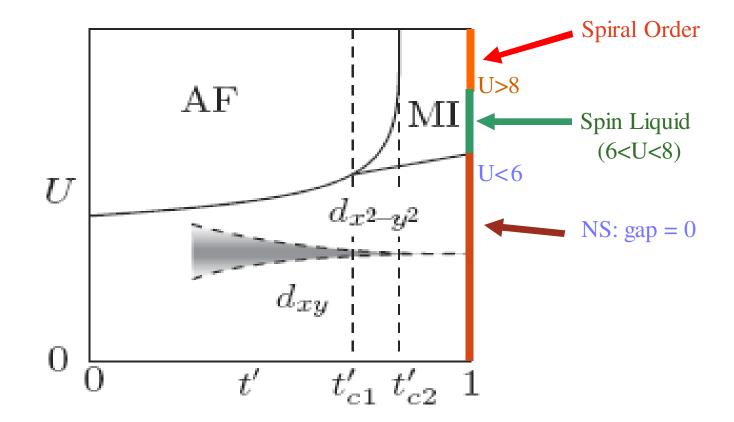


VCA: Organic compounds



P. Sahebsara, UPR, in press

VCA: Organic compounds

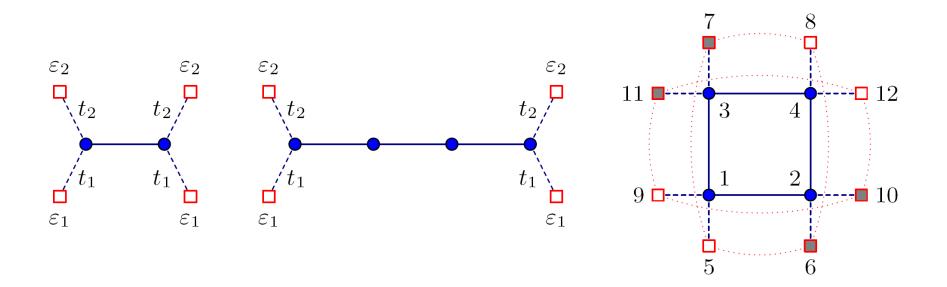


P. Sahebsara, and D. Sénéchal, PRL100, 2008

Cluster Dynamical Mean Field Theory

CDMFT: Basic Idea

To add variational degrees of freedom in the form of a bath of uncorrelated sites



CDMFT: The hybridization function

the cluster Green function takes the form

$$G'^{-1} = \omega - t - \Gamma(\omega) - \Sigma(\omega)$$

• $\Gamma(\omega)$ is the hybridization function:

$$\Gamma_{\mu\nu}(\omega) = \sum_{\alpha} \frac{\theta_{\mu\alpha}\theta_{\nu\alpha}^*}{\omega - \varepsilon_{\alpha}}$$

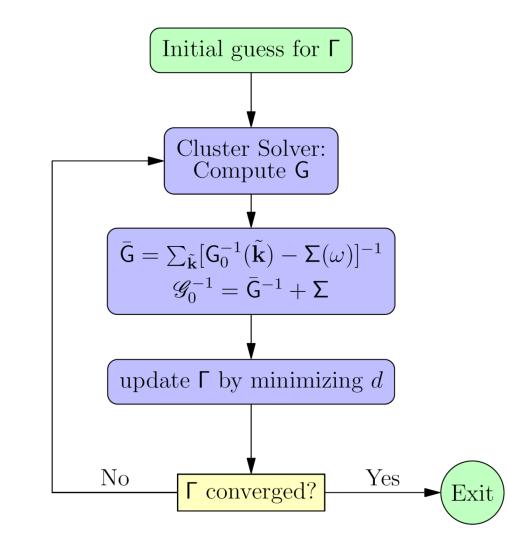
CDMFT: The hybridization function

The bath makes a contribution to the Potthoff functional:

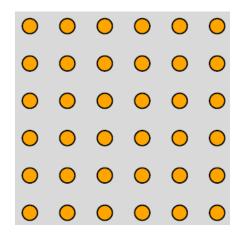
$$\Omega_{\text{bath}} = \sum_{\varepsilon_{\alpha} < 0} \varepsilon_{\alpha}$$

• On can in principle use the same methods as in VCA

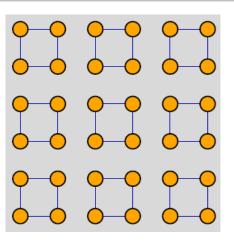
CDMFT : The Algorithm



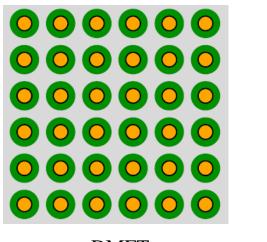
Summary

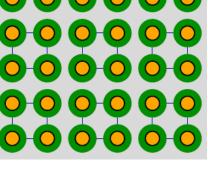


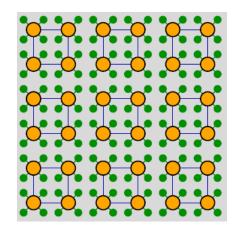
Original system



CPT - VCA







VCA + CDMFT

DMFT

C-DMFT

... and life is going on! Thank you