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1)f particles impinging from the left on a
_ _jy absorblng shutter located at the origin which is
— nIy turned off In an instant.
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= The transient current has a close mathematical
~_resemblance with the intensity of light in the Fresnel
diffraction by a straight edge.



ture of the solutions for cut-off initial*
Ing both In the free case and i esence of
interaction |s§'fat if initially there is a zero
>0, 3 = 0+
antaneously a finite, though very smaII
finding the particle at any point x > 0.
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”1— HS- on -local behavior of the Schrodinger solution is due to
~|ts non-relativistic nature and not as a result of the quantum
shutter setup. The application of the Klein—Gordon equation
to the shutter problem shows that the probability density is
restricted to the accessible region x < ct (c is the speed of
light).
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X=x/N=xp/2mh

quantum
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Moshinsky’s quantum diffraction in time. X=x/A and
T=tv are dimensionless quantities. Observation point X,=2.
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Figure 1. Probability density versus distance x(pm) for state n = 6 at times (a) ¢ = 0,
(Pyr=0.03ms, (c)r =0.06ms, (d)t =0.09ms, (¢)r=0.12ms and ( /) r = 0.15ms.
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Figure 2. Probability current density (1 ms™!) as a function of time f (ms) at observation point
x =2 pum for states (a)yn = 1. (b)) n = 50, (c)n = 100 and (d) n = 150.
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3. A selection of Bohmian paths for states (a) n = 7 and (b)) n = 500,
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S Brohability and probability current density.
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FProbability densitv (1 ,u,m_l] versus distance x(pem) at time ¢+ = 0.1 ms for (a) a free
motionless Gaussian wave-packet and (c) a motionless truncated Gaussian wave-packet initially
confined in a box. Probability current density (1 ms~!) versus time f (ms) at observation point
x = 2 pmfor (&) a free motionless Gaussian wave-packet and () a motionless truncated Gaussian

wave-packet initially confined in a box.
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A selection of Bohmian paths for (a) a free motionless Gaussian wave-packet and (b) a

motionless truncated Gaussian wave-packet initially confined in a box.
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RIS Tfect Was discoveredby: S.
dyopadhyay, A. S. Majumdar, D. Home

I /e ar 2002 by calculating the time evolving
Srobability of reflection of a Gaussian wave
=1F cket from a rectangular potential barrier

Whl|e It IS perturbed by reducing its height.

—* The time evolving reflection probability is
given by

rivals .. ——



iIme interval is found duri \ Do
a enhancemefﬂ-'(superarrivals)!‘l‘n the perturbed
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4 erval and the amount of enhancement depend on
at which the barrier height is made zero.

:;' : omenon of superarrivals Is inherently
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;_ he origin of superarrlvals may be understood by
~considering the wave function to act as a ““field”’
- through which a disturbance from the “‘kick’” provided

by perturbing the barrier travels with a definite speed.
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Anulim treatment of reflection prokaniliky
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2 15 the time interval owver which the height of batrier
dimitish to zero

] 500 1500
t

The top curve corresponds to the static case and reaches
value 1 asymptotically. |R(f)|* for other curves correspond to vari-

ous values of €. The curve with the lowest asymptotic value corre-
sponds to the smallest value of € chosen for this set. As one in-
creases €. superarrivals are slowly wiped off.
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sical treatment ofi refilection prepaariiya

o 500
t

The time-varyving reflection probability for the classical
evolution i1s plotted for the same wvalues of € as previcus Fig The

absence of superarrivals in this case demonstrates the nonclassical
nature of this phenomenon.




) oy ° tcis the instant when the
: two curves cross each other,
and

R,(1)]=|Ry(1)

‘RF“-" > RN A ° td is the time from which
J‘ the curve corresponding to
; | the perturbed case starts

E ' deviating from that in the

unperturbed case

),

R,(t)

<|R4(1)
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QUiEntavive measure of SA
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The magnitude of superarrivals » diminishes with an
inerease i €, the time taken for barrier height reduction. This be-

havior 1s seen for three different detector positions x'=-—0.4,
— 0.5, and —0.6.
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Here we show that superarrivals diminish by decreasing

the width of the barrer. They completely disappear for a small
enough barrier width. The three curves for the perturbed cases cor-
respond to the widths of 0.016, 0.008, and 0.004,




(a) There exists a finite time interval A7 during which an
increase in the reflection probability (superarrivals) occurs
for the perturbed cases compared to the unperturbed situa-
tion.

are mherentlvy nonclassical.

(c) The magnitude of superarrivals # is appreciable only
" in cases where the wave packet has some significant overlap
with the barrier during its switching off. Both » and Af
(duration of superarrivals) fall off with increasing e.

(d) Superarrivals given by » gradually reduce to zero
upon decreasing the barrier width, while keeping the nitial
barrier height B fixed.




I} 15 the distance of detector from the bainier

[ 15 the time at which perturbation is started
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SIVENENENCE of duration of SA and signal velocity toithes
EIENOIRPELUIALION:
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The upper curve represents a plot of Ar (duration of
superarrivals) versus €. The lower curve is a plot of v, /v versus €.
Here the detector position x'= — 0.4,
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h behaviors of ,and  we infer the following
on for the origin of superarrlvals The barrier
tion imparts a “‘kick’’ on the impinging wave packet
S _and a part of it is reflected with a distortion. A finite
rbance proportional to this *“kick’” or the rate of
= perturbation propagates from the reducing barrier to the reflected
==t cket, which results in a proportional magnitude of
*'S‘uperarrlvals Note that information about the barrier
= perturbatlon reaches the detector at the instant td with a velocity
-~ -, which decreases with the decreasing magnitude of impulse
imparted to a wave packet. These results therefore suggest that
Information about the barrier perturbation propagates with a
d?fir;ic}e speed across the wave function that plays the role of a
“field.””
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