Quantum effects in some problems with time-dependent boundary conditions

> S. Vshid Mousavi The University of Qom

Outline:

Diffraction in time (DIT)

Supperarrivals (SA)

DIT

 Diffraction in time was initially introduced by Moshinsky.

• A beam of particles impinging from the left on a totally absorbing shutter located at the origin which is suddenly turned off in an instant.

The transient current has a close mathematical resemblance with the intensity of light in the Fresnel diffraction by a straight edge. An interesting feature of the solutions for cut-off initial waves, occurring both in the free case and in the presence of a potential interaction is that, if initially there is a zero probability for the particle to be at x > 0, as soon as t = 0+, there is instantaneously a finite, though very small, probability of finding the particle at any point x > 0.

This non-local behavior of the Schrödinger solution is due to its non-relativistic nature and not as a result of the quantum shutter setup. The application of the Klein–Gordon equation to the shutter problem shows that the probability density is restricted to the accessible region x < ct (*c* is the speed of light).

Optics and Quantum mechanics

$$\psi(\vec{r},t) = \left[\frac{m}{\mathbf{\tau}\pi i\hbar(t-t')}\right]^{\mathbf{\tau}/\mathbf{\tau}} \int d\vec{r}' e^{\frac{im}{\mathbf{\tau}\hbar}\frac{(\vec{r}-\vec{r}')^{\mathbf{\tau}}}{t-t'}} \psi(\vec{r}',t')$$

$$E(x,y,z) = \frac{e^{-ik(z-z')}}{\lambda(z-z')} \int \int dx' dy' e^{\frac{-ik}{\gamma} \frac{(x-x')^{\gamma} + (y-y')^{\gamma}}{z-z'}} E(x',y',z')$$

Wave function for shutter problem

$$\psi(x, \circ) = e^{ipx/\hbar}$$
 $x \leq \circ$
 $= \circ$ $x > \circ$

$$M(x,t) = \frac{e^{-i\pi/\mathfrak{r}}}{\sqrt{\mathfrak{r}}} e^{i(px-Et)/\hbar} \left\{ \left[C\left(\xi(x,t)\right) + \frac{\mathfrak{r}}{\mathfrak{r}} \right] + i \left[S\left(\xi(x,t)\right) + \frac{\mathfrak{r}}{\mathfrak{r}} \right] \right\}$$

$$\xi(x,t) = \sqrt{\frac{m}{\pi\hbar t}} \left(\frac{p}{m}t - x\right)$$

Moshinky's quantum DIT

Moshinsky's quantum diffraction in time. $X \equiv x/\lambda$ and $T \equiv t\nu$ are dimensionless quantities. Observation point $X_0 = 2$.

 $X \equiv x/\lambda = xp/2\pi\hbar$

 $T \equiv t \nu = t \varepsilon / 2 \pi \hbar$

Diffraction by a straight edge

DIT of a particle in box with reflecting wall

$$\begin{split} \psi_n(x,t) &= \sqrt{\frac{m}{2\pi i \hbar t}} \sqrt{\frac{2}{L}} \int_0^L e^{\frac{im}{2\hbar t}(x-x')^2} \sin(k_n x') \, dx', \\ &= \sqrt{\frac{m}{4\pi i^3 \hbar t L}} \int_0^L e^{\frac{im}{2\hbar t}(x-x')^2} (e^{ik_n x'} - e^{-ik_n x'}) \, dx', \\ &\equiv \psi_{n,+}(x,t) + \psi_{n,-}(x,t), \end{split}$$

$$\psi_{n,+}(x,t) = \frac{1}{\sqrt{4i^3L}} e^{ik_n x - iE_n t/\hbar} [F_n(x-L,t) - F_n(x,t)],$$

1

$$\psi_{n,-}(x,t) = \frac{1}{\sqrt{4i^3L}} e^{-ik_n x - iE_n t/\hbar} [F_n(L-x,t) - F_n(-x,t)],$$

$$F_n(x,t) = \int_0^{\xi_n(x,t)} du \, e^{i\pi u^2/2}, \quad \xi_n(x,t) = \sqrt{\frac{m}{\pi \hbar t}} \left(v_n t - x \right)$$

Probability density

Figure 1. Probability density versus distance $x(\mu m)$ for state n = 6 at times (a) t = 0, (b) t = 0.03 ms, (c) t = 0.06 ms, (d) t = 0.09 ms, (e) t = 0.12 ms and (f) t = 0.15 ms.

Probability current density

Figure 2. Probability current density (1 ms^{-1}) as a function of time *t* (ms) at observation point $x = 2 \mu \text{m}$ for states (*a*) n = 1, (*b*) n = 50, (*c*) n = 100 and (*d*) n = 150.

Bohmian trajectories

Figure 3. A selection of Bohmian paths for states (a) n = 7 and (b) n = 500.

DIT of a particle in a box with absorbing wall

 Now, we consider the case in which initial wave function is a motionless localized Gaussian wave-packet inside the box with negligible overlap with the walls of the well.

$$\psi_0(x) = \frac{1}{(2\pi\sigma_0^2)^{1/4}} e^{-\frac{(x-x_0)^2}{4\sigma_0^2}} \chi_{[0,L]}(x)$$

$$\psi(x,t) = \frac{1}{\left(2\pi\sigma_0^2\right)^{1/4}} \sqrt{\frac{m}{2\pi i\hbar t}} \int_0^L dx' \, \mathrm{e}^{-\frac{(x'-x_0)^2}{4\sigma_0^2} + \frac{\mathrm{i}m}{2\hbar t}(x-x')^2}$$

Probability and probability current density

Probability density $(1 \ \mu m^{-1})$ versus distance $x(\mu m)$ at time t = 0.1 ms for (a) a free motionless Gaussian wave-packet and (c) a motionless truncated Gaussian wave-packet initially confined in a box. Probability current density $(1 \ ms^{-1})$ versus time t (ms) at observation point $x = 2 \ \mu m$ for (b) a free motionless Gaussian wave-packet and (d) a motionless truncated Gaussian wave-packet initially confined in a box.

Bohmian paths

A selection of Bohmian paths for (*a*) a free motionless Gaussian wave-packet and (*b*) a motionless truncated Gaussian wave-packet initially confined in a box.

Superarrivals

• This effect was discovered by S. Bandyopadhyay, A. S. Majumdar, D. Home in year 2002 by calculating the *time evolving* probability of reflection of a Gaussian wave packet from a rectangular potential barrier while it is perturbed by reducing its height. • The time evolving reflection probability is given by

$$|R(t)|^{2} = \int_{-\infty}^{x'} |\psi(x,t)|^{2} dx$$

- A finite time interval is found during which $|R(t)|^2$ shows an *enhancement* (superarrivals)! in the perturbed case even though the barrier height is reduced. This time interval and the amount of enhancement depend on the rate at which the barrier height is made zero. • The phenomenon of superarrivals is inherently quantum mechanical. The *origin* of superarrivals may be understood by considering the wave function to act as a "field" through which a disturbance from the "kick" provided
 - by perturbing the barrier travels with a definite speed.

Quantum treatment of reflection probability

value 1 asymptotically. $|R(t)|^2$ for other curves correspond to various values of ϵ . The curve with the lowest asymptotic value corresponds to the smallest value of ϵ chosen for this set. As one increases ϵ , superarrivals are slowly wiped off.

Classical treatment of reflection probability

The time-varying reflection probability for the classical evolution is plotted for the same values of ϵ as previous Fig. The absence of superarrivals in this case demonstrates the nonclassical nature of this phenomenon.

Three intervals

$$\begin{split} &|R_p(t)|^2 = |R_s(t)|^2, \qquad t \leq t_d, \\ &|R_p(t)|^2 > |R_s(t)|^2, \qquad t_d < t \leq t_c, \\ &|R_p(t)|^2 < |R_s(t)|^2, \qquad t > t_c, \end{split}$$

tc is the instant when the two curves cross each other, and

td is the time from which the curve corresponding to the perturbed case starts deviating from that in the unperturbed case

Quantitavive measure of SA

The magnitude of superarrivals η diminishes with an increase in ϵ , the time taken for barrier height reduction. This behavior is seen for three different detector positions x' = -0.4, -0.5, and -0.6.

Dependence of SA to width of the barrier

Here we show that superarrivals diminish by decreasing the width of the barrier. They completely disappear for a small enough barrier width. The three curves for the perturbed cases correspond to the widths of 0.016, 0.008, and 0.004.

Results:

(a) There exists a finite time interval Δt during which an *increase* in the reflection probability (superarrivals) occurs for the perturbed cases compared to the unperturbed situation.

(b) Superarrivals are inherently *nonclassical*.

(c) The magnitude of superarrivals η is appreciable only in cases where the wave packet has some *significant overlap* with the barrier during its switching off. Both η and Δt (duration of superarrivals) *fall off* with *increasing* ϵ .

(d) Superarrivals given by η gradually reduce to zero upon *decreasing* the barrier width, while keeping the initial barrier height *B* fixed.

Signal velocity:

How fast the influence of barrier perturbation travels across the wave packet?

 $v_e = \frac{D}{t_d - t_p}$

D is the distance of detector from the barrier

 t_p is the time at which perturbation is started

Dependence of duration of SA and signal velocity to the rate of perturbation:

superarrivals) versus ϵ . The lower curve is a plot of v_e/v_g versus ϵ . Here the detector position x' = -0.4.

Origin of SuperArrivals

From such behaviors of Δt , η , and υe we infer the following *explanation* for the origin of superarrivals. The barrier perturbation imparts a "'kick'' on the impinging wave packet that spits, and a part of it is reflected with a distortion. A finite disturbance proportional to this "kick" or the rate of perturbation propagates from the reducing barrier to the reflected packet, which results in a proportional magnitude of superarrivals. Note that information about the barrier perturbation reaches the detector at the instant td with a velocity ve, which decreases with the decreasing magnitude of impulse imparted to a wave packet. These results therefore suggest that information about the barrier perturbation propagates with a *definite speed* across the wave function that plays the role of a "field."

References:

- M. Moshinsky, Phys. Rev 88 (1952) 625
- S. Godoy, Phys. Rev A 65 (2002) 042111
- M. Moshinsky, Phys. Rev 88 (1952) 625
- A. del Campo and J. G. Muga, Europhys. Lett. 74 (2006) 965
- S. V. Mousavi, J. Phys. A 43 (2010) 035304
- S. Bandyopsdhyay, A. S. Majumdar and D. Home, *Phys. Rev* A 65 (2002) 052718