Null brane quantization

Ida Mehin Rasulian
School of Physics, Institute for Research in Fundamental Sciences
In collaboration with Dr. M.M. Sheikh-Jabbari
April 18, 2024

Overview

(1) Introduction
(2) Null brane action and symmetries
(3) Gauge fixing and residual symmetry
(4) Equations of motion and constraints
(5) Toroidal null 2-brane in light cone gauge
(6) Hilbert space
(7) Class 1 states
(8) Class 2 P of the null string
(9) Class 2P states

Introduction

- Studying null (Carrollian) branes can have applications in black hole physics, in particular black hole microstate counting, since the black hole horizon is a null surface.
- Considering the difficulties in quantizing branes, null brane quantization as the tensionless limit of this problem, is worthwhile to be studied even only as a mathematical curiosity.

Null brane action

The brane action can be written as

$$
\begin{equation*}
S=-\frac{\tilde{T}}{2} \int d^{p+1} \sigma \sqrt{-h}\left(h^{a b} \partial_{a} X^{\mu} \partial_{b} X^{\nu} g_{\mu \nu}-\Lambda\right) \tag{1}
\end{equation*}
$$

Taking a tensionless limit, this action will be transformed to an action for the tensionless brane

$$
\begin{equation*}
S_{\text {N.B. }}=\frac{\kappa}{2} \int d \tau \int_{\mathcal{N}_{p}} d^{p} \sigma \mathcal{V}^{a} \partial_{a} X^{\mu} \mathcal{V}^{b} \partial_{b} X^{\nu} g_{\mu \nu} \tag{2}
\end{equation*}
$$

Symmetries

The action is invariant under a diffeomorphism generated by ξ^{a}. We have the transformations

$$
\begin{array}{r}
\delta_{\xi} X^{\mu}=\mathcal{L}_{\xi} X^{\mu}=\xi \cdot \partial X^{\mu} \\
\delta_{\xi} g_{\mu \nu}=\mathcal{L}_{\xi} g_{\mu \nu}=\xi \cdot \partial g_{\mu \nu} \\
\delta_{\xi} \mathcal{V}^{a}=\mathcal{L}_{\xi} \mathcal{V}^{a}=\xi \cdot \partial \mathcal{V}^{a}-\mathcal{V}^{b} \partial_{b} \xi^{a}-\frac{1}{2}\left(\partial_{b} \xi^{b}\right) \mathcal{V}^{a} \tag{3}
\end{array}
$$

Gauge fixing and residual symmetry

Using the invariance of action under diffeomorphisms, we can fix a gauge by setting

$$
\begin{equation*}
\mathcal{V}^{a} \partial_{a}=\partial_{\tau} \tag{4}
\end{equation*}
$$

Using this temporal gauge, the equations of motion are

$$
\begin{equation*}
\partial_{\tau}\left(g_{\mu \nu} \partial_{\tau} X^{\nu}\right)=0 \tag{5}
\end{equation*}
$$

There still remains a residual gauge symmetry given by

$$
\begin{equation*}
\zeta=\left(\sum_{i} \partial_{i} f^{i}\left(\sigma^{j}\right) \tau+h\left(\sigma^{j}\right)\right) \partial_{\tau}+\sum_{i} f^{i}\left(\sigma^{j}\right) \partial_{i} \tag{6}
\end{equation*}
$$

Gauge fixing and residual symmetry

We can define the operators $L^{(i)}\left(f^{i}\right)$ (with no sum on i) and $M(h)$ as

$$
\begin{gather*}
L^{(i)}\left(f^{i}\right)=f^{i} \partial_{i}+\left(\partial_{i} f^{i}\right) \tau \partial_{\tau} \tag{7}\\
M(h)=h \partial_{\tau} \tag{8}
\end{gather*}
$$

again with no sum on i. The commutation relations are

$$
\begin{gather*}
{\left[L^{(i)}\left(f^{i}\right), L^{(j)}\left(g^{j}\right)\right]=f^{i} L^{(j)}\left(\partial_{i} g^{j}\right)-g^{j} L^{(i)}\left(\partial_{j} f^{i}\right)} \tag{9}\\
{\left[L^{(i)}\left(f^{i}\right), M(h)\right]=M\left(f^{i} \partial_{i} h-h \partial_{i} f^{i}\right)} \tag{10}
\end{gather*}
$$

This is a BMS_{p+1} algebra.

Equations of motion and constraints

We consider a toroidal null p-brane in flat $\mathrm{p}+2$-dimensional target spacetime. The equations of motion implies

$$
\begin{equation*}
X^{\mu}=x_{0}^{\mu}+A_{i}^{\mu} \sigma^{i}+\frac{1}{\kappa} B_{0}^{\mu} \tau+\sum_{\vec{n} \neq \overrightarrow{0}}\left(\frac{1}{|\vec{n}|} A_{\vec{n}}^{\mu} e^{-i \vec{n} . \vec{\sigma}}+\frac{1}{\kappa} B_{\vec{n}}^{\mu} \tau e^{-i \vec{n} . \vec{\sigma}}\right), \tag{11}
\end{equation*}
$$

where $\mu \in\{+,-, i\}$ and $i=1, \ldots, p$.
The stress tensor is

$$
\begin{equation*}
T_{\beta}^{\alpha}=V^{\alpha} V^{\rho} \partial_{\rho} X^{\mu} \partial_{\beta} X_{\mu}-\frac{1}{2} V^{\lambda} V^{\rho} \partial_{\lambda} X^{\mu} \partial_{\rho} X_{\mu} \delta_{\beta}^{\alpha} \tag{12}
\end{equation*}
$$

Equations of motion and constraints

Therefore we have

$$
\begin{gather*}
T_{i}^{0}=\dot{X} \cdot \partial_{i} X=T_{i}(\tau, \vec{\sigma}) \tag{13}\\
T_{0}^{0}=-T_{i}^{i}=\frac{1}{2} \dot{X}^{2}=T_{0} \tag{14}
\end{gather*}
$$

The conserved charge for the transformation (6) is

$$
\begin{equation*}
Q=\int d^{p} \sigma J^{0}=\int d^{p} \sigma\left(\sum_{i} T_{i} f^{i}+T_{0}\left(\sum_{i} \partial_{i} f^{i} \tau+h\right)\right) \tag{15}
\end{equation*}
$$

and we have

$$
\begin{equation*}
L_{\vec{n}}^{i}=\int d^{p} \sigma\left(T_{i}+i n_{i} \tau T_{0}\right) e^{i \vec{n} . \vec{\sigma}} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{\vec{n}}=\int d^{p} \sigma T_{0} e^{i \vec{i} \cdot \vec{\sigma}} \tag{17}
\end{equation*}
$$

Equations of motion and constraints

Given the solution to the equations of motion, we find

$$
\begin{gather*}
M_{\vec{n}}=\frac{(2 \pi)^{p}}{2} \sum_{\vec{k}} B_{\mu \vec{k}} B_{\vec{n}-\vec{k}}^{\mu} \tag{18}\\
L_{\vec{n}}^{i}=\frac{(2 \pi)^{p}}{2}\left(2 B_{\vec{n} \mu} A_{i}^{\mu}-i \sum_{\vec{k} \neq 0} \frac{k_{i}}{|\vec{k}|} A_{\vec{k} \mu} B_{\vec{n}-\vec{k}}^{\mu}\right) \tag{19}
\end{gather*}
$$

Equations of motion and constraints

And the constraints can be written as

$$
\begin{gather*}
B_{0}^{\mu} B_{0 \mu}+\sum_{\vec{k} \neq 0} B_{\mu \vec{k}} B_{-\vec{k}}^{\mu}=0, \tag{20a}\\
2 B_{0}^{\mu} B_{\vec{n} \mu}+\sum_{\vec{k} \neq\{0, \vec{n}\}} B_{\mu \vec{k}} B_{\vec{n}-\vec{k}}^{\mu}=0, \quad \vec{n} \neq 0 \tag{20b}\\
B_{0}^{\mu} A_{\mu i}-i \sum_{\vec{k} \neq 0} \frac{k_{i}}{|\vec{k}|} B_{-\vec{k}}^{\mu} A_{\mu \vec{k}}=0, \tag{21a}\\
\frac{n_{i}}{|\vec{n}|} B_{0}^{\mu} A_{\mu \vec{n}}+i B_{\vec{n}}^{\mu} A_{\mu i}+\sum_{\vec{k} \neq\{0, \vec{n}\}} \frac{k_{i}}{|\vec{k}|} B_{\vec{n}-\vec{k}}^{\mu} A_{\mu \vec{k}}=0, \quad \vec{n} \neq 0 \tag{21b}
\end{gather*}
$$

Toroidal null 2-brane in light cone gauge

In light-cone gauge we choose

$$
\begin{equation*}
X^{+}=x_{0}^{+}+p^{+} \tau \tag{22}
\end{equation*}
$$

For simplicity we assume the torus to be an orthogonal torus with radii R_{i}, then the winding and momentum modes are given by

$$
\begin{align*}
& B_{0}^{+}=p^{+}, \quad B_{\vec{n}}^{+}=0, \quad B_{0}^{i}=\frac{m_{i}}{R_{i}} . \tag{23}\\
& A_{j}^{i}=w^{i} R_{i} \delta^{i}{ }_{j}, \quad A_{i}^{ \pm}=0, \quad w^{i}, m_{i}, \in \mathbb{Z} . \tag{24}
\end{align*}
$$

Toroidal null 2-brane in light cone gauge

In light cone gauge and for null 2-brane, the constraints can be written as

$$
\begin{align*}
\mathbf{M}^{2} & :=2 p^{+} \mathbf{B}_{0}^{-}=\sum_{i} \frac{m_{i}^{2}}{R_{i}^{2}}+\frac{1}{2} \sum_{\vec{k} \neq 0} \mathbf{B}_{\vec{k}}^{i} \mathbf{B}_{-\vec{k}}^{i} \tag{25a}\\
\mathbf{L}_{i} & :=m_{i} w^{i}-i \sum_{\vec{k} \neq 0} \frac{k_{i}}{|\vec{k}|} \mathbf{A}_{\vec{k}}^{j} \mathbf{B}_{-\vec{k}}^{j}=0, \quad i=1,2, \tag{25b}\\
\mathbf{K}_{\vec{n}} & :=i \epsilon^{i j} n_{i} w^{j} R_{j} \mathbf{B}_{\vec{n}}^{j}+\sum_{\vec{k} \neq 0, \vec{n}} \frac{\epsilon^{i j}\left(n_{i}-k_{i}\right) k_{j}}{|\vec{k}|} \mathbf{A}_{\vec{k}}^{\prime} \mathbf{B}_{\vec{n}-\vec{k}}^{\prime}=0, \tag{25c}
\end{align*}
$$

Quantization

$$
\begin{align*}
& {\left[\mathbf{A}_{\vec{n}}^{i}, \mathbf{A}_{\vec{m}}^{j}\right]=0=\left[\mathbf{B}_{i}^{i}, \mathbf{B}_{\vec{m}}^{j}\right]} \\
& {\left[\mathbf{A}_{\vec{n}}^{i}, \mathbf{B}_{\vec{m}}^{j}\right]=|\vec{n}| \delta_{\tilde{m}+\vec{n}, 0} \delta^{j} .} \tag{26}
\end{align*}
$$

We define a new set of "normalized oscillators",

$$
\begin{equation*}
\mathbf{C}_{\vec{k}}^{i}:=\sqrt{\frac{\kappa}{2|\vec{k}|}}\left(\mathbf{A}_{\vec{k}}^{i}+\frac{i}{\kappa} \mathbf{B}_{\vec{k}}^{i}\right), \quad\left(\mathbf{C}_{\vec{k}}^{i}\right)^{\dagger}:=\sqrt{\frac{\kappa}{2|\vec{k}|}}\left(\mathbf{A}_{-\vec{k}}^{i}-\frac{i}{\kappa} \mathbf{B}_{-\vec{k}}^{i}\right), \quad \vec{k} \neq 0 \tag{27}
\end{equation*}
$$

with commutators

$$
\begin{equation*}
\left[\mathbf{C}_{\vec{k}}^{i}, \mathbf{C}_{\vec{j}}^{j}\right]=0=\left[\left(\mathbf{C}_{\vec{k}}^{i}\right)^{\dagger},\left(\mathbf{C}_{\vec{l}}^{j}\right)^{\dagger}\right], \quad\left[\mathbf{C}_{\vec{k}}^{i},\left(\mathbf{C}_{\vec{l}}^{j}\right)^{\dagger}\right]=\delta_{\vec{k}, \vec{T}} \delta^{i j} \tag{28}
\end{equation*}
$$

Quantization

In terms of the "creation-annihilaton" operators, we can write

$$
\begin{align*}
\mathbf{M}^{2} & =\sum_{i} \frac{m_{i}^{2}}{R_{i}^{2}}+\frac{1}{\kappa} \sum_{\vec{k}}|\vec{k}|\left(\mathbf{N}_{\vec{k}}-\mathbf{X}_{\vec{k}}-\mathbf{X}_{\vec{k}}^{\dagger}\right)+A \tag{29a}\\
\mathbf{L}_{i} & =m_{i} w^{i}+\frac{1}{\kappa} \sum_{\vec{k}} k_{i} \mathbf{N}_{\vec{k}} \tag{29b}
\end{align*}
$$

where

$$
\begin{equation*}
\mathbf{N}_{\vec{k}}=\sum_{i} \mathbf{C}_{\vec{k}}^{i \dagger} \mathbf{C}_{\vec{k}}^{i}, \quad \mathbf{X}_{\vec{k}}=\sum_{i} \mathbf{C}_{\vec{k}}^{i} \mathbf{C}_{-\vec{k}}^{i} \tag{30}
\end{equation*}
$$

and A is some normal ordering constant.

Quantization

The $\mathbf{K}_{\vec{n}}$ constraint can be written as

$$
\begin{align*}
\mathbf{K}_{\vec{n}} & =i \frac{\sqrt{2 \kappa}}{\sqrt{|\vec{n}|}} \epsilon^{i j} n_{i} \omega_{j} R_{j}\left(\mathbf{C}_{\vec{n}}^{j}-\mathbf{C}_{-\vec{n}}^{\mathbf{j}}\right) \\
& +\sum_{\vec{k} \neq \overrightarrow{0}, \vec{n}} \epsilon^{i j}\left(n_{i}-k_{i}\right) k_{j} \sqrt{\frac{|\vec{k}|}{|\vec{n}-\vec{k}|}}\left(\mathbf{C}_{\vec{k}}^{\prime} \mathbf{C}_{\vec{n}-\vec{k}}^{\prime}-\mathbf{C}_{-\vec{k}}^{\mu} \mathbf{C}_{\vec{k}-\vec{n}}^{\mu}+\mathbf{C}_{-\vec{k}}^{\mu} \mathbf{C}_{\vec{n}-\vec{k}}^{\prime}-\mathbf{C}_{\vec{k}}^{\prime} \mathbf{C}_{\vec{k}-\vec{n}}^{\mu}\right) \tag{31}
\end{align*}
$$

With the above $\left(\mathbf{M}^{2}\right)^{\dagger}=\mathbf{M}^{2},\left(\mathbf{L}_{i}\right)^{\dagger}=\mathbf{L}_{i},\left(\mathbf{K}_{\vec{n}}\right)^{\dagger}=\mathbf{K}_{-\vec{n}}$.

Algebra of Constraints

$$
\begin{aligned}
& {\left[\mathbf{M}^{2}, \mathbf{L}_{i}\right]=0, \quad\left[\mathbf{M}^{2}, \mathbf{K}_{\vec{n}}\right]=0} \\
& {\left[\mathbf{L}_{i}, \mathbf{L}_{j}\right]=0, \quad\left[\mathbf{L}_{i}, \mathbf{K}_{\vec{n}}\right]=-n_{i} \mathbf{K}_{\vec{n}}} \\
& {\left[\mathbf{K}_{\vec{m}}, \mathbf{K}_{\vec{n}}\right]=i \epsilon_{i j} m_{i} n_{j} \mathbf{K}_{\vec{m}+\vec{n}}}
\end{aligned}
$$

The algebra of $\mathbf{K}_{\vec{n}}$ is the area preserving diffeomorphism algebra on T^{2}, $\operatorname{SDiff}\left(T^{2}\right)$.
$\mathbf{K}_{\vec{n}}$ commutes with the area operator, therefore it's action preserves area.

Hilbert space

We require our physical states to satisfy

$$
\begin{equation*}
\langle\tilde{\Psi}| \mathbf{L}_{i}|\Psi\rangle=0, \quad\langle\tilde{\Psi}| \mathbf{K}_{\vec{n}}|\Psi\rangle=0, \quad \forall|\Psi\rangle,|\tilde{\Psi}\rangle \in \mathcal{H}_{\text {phys }} \tag{33}
\end{equation*}
$$

Our zero-excitation states are defined by

$$
\begin{equation*}
\mathbf{C}_{\vec{n}}^{i}\left|0 ; m_{i}, w^{i}\right\rangle=0 \quad \forall \vec{n} \neq 0 \tag{34}
\end{equation*}
$$

A generic excited state is a sum of monomials. A monomial is an excited state like

$$
\begin{equation*}
|\alpha\rangle=\prod_{i, \vec{p}}\left(\mathbf{C}_{\vec{p}}^{i \dagger}\right)^{\alpha_{\vec{p}}^{i}}\left|0 ; m_{i}, w^{i}\right\rangle . \tag{35}
\end{equation*}
$$

where $\alpha_{\vec{p}}^{i}$ are integer numbers.

Classification of physical Hilbert space

We have 3 classes of physical states considering the action of \mathbf{L}_{i} on these states.

- States which are zero-eigenstates of \mathbf{L}_{i} for both $i=1,2$, which we call Class 1 states.
- States which are zero-eigenstates of \mathbf{L}_{i} for only one of $i=1$ or $i=2$ which we call Class 1.5P.
- States which are not zero-eigenstates of \mathbf{L}_{i} which we call Class $2 P$.

\mathbf{L}_{i} and $\mathbf{K}_{\vec{n}}$ constraint for Class 1

Class 1 states by definition satsify the \mathbf{L}_{i} constraint.
Regarding the $\mathbf{K}_{\vec{n}}$ constraint, we can also see it will be automatically satisfied since

$$
\begin{equation*}
\mathbf{L}_{i} \mathbf{K}_{\vec{n}}|0,0\rangle=-n_{i} \mathbf{K}_{\vec{n}}|0,0\rangle \tag{36}
\end{equation*}
$$

which follows from $\left[\mathbf{K}_{\vec{n}}, \mathbf{L}_{i}\right]=n_{i} \mathbf{K}_{\vec{n}}$.
Therefore $\left\langle 0^{\prime}, 0^{\prime}\right| \mathbf{K}_{\vec{n}}|0,0\rangle=0$.
Class 1 states form a complete physical Hilbert space by themselves.

Class 2P of the null string

Class-2P states are a subset of non-zero eigenstates of \mathbf{L} that satisfy physicality condition.

By definition of being in Class-2,

$$
\begin{equation*}
\mathbf{L}|\psi\rangle=\left|\psi^{c}\right\rangle \tag{37}
\end{equation*}
$$

where $\left|\psi^{c}\right\rangle$ is an unphysical state.
All states in the Class-2P, physical or unphysical can be written as a superposition of nonzero eigenstates of \mathbf{L}

$$
\begin{equation*}
|\psi\rangle=\sum_{\ell} \psi_{\ell}|\ell\rangle, \quad\left|\psi^{c}\right\rangle=\sum_{\ell} \psi_{\ell}^{c}|\ell\rangle, \quad \psi_{\ell}^{c}=\ell \psi_{\ell} \tag{38}
\end{equation*}
$$

Class 2P of the null string

Eq. (37) implies

$$
\begin{equation*}
\langle\psi| \mathbf{L} \mathbf{L}|\psi\rangle=\langle\psi| \mathbf{L}^{2}|\psi\rangle=\left\langle\psi^{c} \mid \psi^{c}\right\rangle \neq 0 \quad \Longrightarrow \quad \mathbf{L}^{2}|\psi\rangle \in \mathcal{H}_{\text {phys }} . \tag{39}
\end{equation*}
$$

Similarly, one learns that $\mathbf{L}\left|\psi^{c}\right\rangle \in \mathcal{H}_{\text {phys }}$ and $\mathbf{L}^{2}\left|\psi^{c}\right\rangle \in \mathcal{H}_{\text {phys }}^{c}$, and

$$
\begin{equation*}
\sum_{\ell} \ell\left|\psi_{\ell}\right|^{2}=0, \quad \sum_{\ell} \frac{1}{\ell}\left|\psi_{\ell}\right|^{2}=0 \tag{40}
\end{equation*}
$$

where we used orthonormality of $|\ell\rangle$ states.

Class 2P of the null string

Since

$$
\begin{equation*}
\mathbf{L}|\psi\rangle \in \mathcal{H}_{\text {phys }}^{c}, \quad \mathbf{L}\left|\psi^{c}\right\rangle \in \mathcal{H}_{\text {phys }}, \quad \mathbf{L}^{2}|\psi\rangle \in \mathcal{H}_{\text {phys }} \tag{41}
\end{equation*}
$$

there is a \mathbb{Z}_{2} mapping between $\mathcal{H}_{\text {phys }}$ and $\mathcal{H}_{\text {phys }}^{c}$ and hence one may identify states in $\mathcal{H}_{\text {phys }}$ by modding \mathcal{H} by this \mathbb{Z}_{2}.

Any state in $\mathcal{H}_{\text {phys }}$ or $\mathcal{H}_{\text {phys }}^{c}$ may be expanded in terms of eigenstates of \mathbf{L}^{2}. Recalling that the physicality condition, $\langle\phi| \mathbf{L}|\psi\rangle=0$ for every physical state, is bilinear in $|\psi\rangle,|\phi\rangle$, this condition may be imposed separately for each eigenstate of \mathbf{L}^{2}.

Class 2P of the null string

We can write the eigenstates of \mathbf{L}^{2} as

$$
\begin{equation*}
\mathbf{L}|\ell, \pm\rangle= \pm \ell|\ell, \pm\rangle, \quad \ell>0 \tag{42}
\end{equation*}
$$

Next, let us define

$$
\begin{equation*}
|\ell\rangle_{ \pm}:=\frac{1}{\sqrt{2}}(|\ell,+\rangle \pm|\ell,-\rangle), \quad \ell>0 . \tag{43}
\end{equation*}
$$

One may readily check that

$$
\begin{array}{r}
\mathbf{L}|\ell\rangle_{ \pm}=\ell|\ell\rangle_{\mp}, \quad \mathbf{L}^{2}|\ell\rangle_{ \pm}=\ell^{2}|\ell\rangle_{ \pm}, \quad \ell>0 . \\
\quad\langle\ell \mid \tilde{\ell}\rangle_{ \pm}=\delta_{\ell, \tilde{\ell},}, \quad{ }_{ \pm}\langle\ell \mid \tilde{\ell}\rangle_{\mp}=0 \tag{44}
\end{array}
$$

Class 2P of the null string

The above provides the key to our construction: We can take $\mathcal{H}_{\text {phys }}$ to be spanned by $|\ell\rangle_{+}$(or $|\ell\rangle_{-}$) and $\mathcal{H}_{\text {phys }}^{c}$ by $|\ell\rangle_{-}$(or $|\ell\rangle_{+}$).

Figure: Depiction of \mathbf{L} spectrum, ℓ. The origin (blue circle) corresponds to $\ell=0$ Class-1 physical states. The black circles in $\ell>0$ correspond to Class-2P physical states. The gray circles $(\ell<0)$ are modded out by the \mathbb{Z}_{2} symmetry which maps $+\ell$ to $-\ell ; \ell<0$ correspond to unphysical Hilbert space $\mathcal{H}_{\text {phys }}^{c}$. Union of Class-1 and Class-2P $(\ell \geq 0)$ specifies the largest $\mathcal{H}_{\text {phys }}$. Each dot corresponds to an infinite set of states which correspond states of different mass from zero to infinity.

\mathbf{L}_{i} constraint for Class 2P

States of the form

$$
\left|\ell_{1}, \ell_{2}\right\rangle_{s_{1}, s_{2}}=\frac{1}{2}\left(\left|\ell_{1}, \ell_{2}\right\rangle+s_{1}\left|-\ell_{1}, \ell_{2}\right\rangle+s_{2}\left|\ell_{1},-\ell_{2}\right\rangle+s_{1} s_{2}\left|-\ell_{1},-\ell_{2}\right\rangle\right) \text {, (45) }
$$

with s_{1}, s_{2} taking \pm values, are eigenstates of \mathbf{L}_{i}^{2} with eigenvalues ℓ_{i}^{2} and

$$
\begin{equation*}
\mathbf{L}_{1}\left|\ell_{1}, \ell_{2}\right\rangle_{s_{1}, s_{2}}=\ell_{1}\left|\ell_{1}, \ell_{2}\right\rangle_{-s_{1}, s_{2}}, \quad \mathbf{L}_{2}\left|\ell_{1}, \ell_{2}\right\rangle_{s_{1}, s_{2}}=\ell_{2}\left|\ell_{1}, \ell_{2}\right\rangle_{s_{1},-s_{2}} \tag{46}
\end{equation*}
$$

and $\left|\ell_{1}, \ell_{2}\right\rangle_{s_{1}, s_{2}}$ states with different s_{1}, s_{2} are orthogonal to each other,

$$
\begin{equation*}
{ }_{s_{1}, s_{2}}\left\langle\ell_{1}, \ell_{2} \mid \tilde{\ell}_{1}, \tilde{\ell}_{2}\right\rangle_{\tilde{s}_{1}, \tilde{s}_{2}}=\delta_{\ell_{1}, \tilde{\ell}_{1}} \delta_{\ell_{2}, \tilde{\ell}_{2}} \delta_{s_{1}, \tilde{s}_{1}} \delta_{s_{2}, \tilde{s}_{2}} \tag{47}
\end{equation*}
$$

\mathbf{L}_{i} constraint for Class 2P

Therefore, for a generic ℓ_{1}, ℓ_{2}, the Hilbert space is divided into 4 sectors, for $4\left(s_{1}, s_{2}\right)$ choices.
If we work with one sector, say the one with $s_{1}=s_{2}=+1$, one readily sees that

$$
\begin{equation*}
{ }_{+,+}\left\langle\ell_{1}, \ell_{2}\right| \mathbf{L}_{i}\left|\tilde{\ell}_{1}, \tilde{\ell}_{2}\right\rangle_{+,+}=0, \quad \forall \ell_{i}, \tilde{\ell}_{j} . \tag{48}
\end{equation*}
$$

So, we have solved for \mathbf{L}_{i} constraints by modding out the Hilbert space by $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. We remark that each $\left|\ell_{1}, \ell_{2}\right\rangle_{+,+}$state for a given ℓ_{i} is infinitely degenerate.

\mathbf{L}_{i} constraint for Class 2P

$\mathrm{K}_{\vec{n}}$ constraint for Class 2P

The $\mathbf{K}_{\vec{n}}$ constraint in fact restricts the type of monomials $\left|l_{1}, l_{2}\right\rangle$ that can be used in the construction of physical states.

We define 2 parameters ${ }^{1}$ attributed to a given monomial that $\mathbf{K}_{\vec{n}}$ necessarily changes.

Requiring the monomials used in the construction of physical states to have fixed such parameters, we can see that the $\mathbf{K}_{\vec{n}}$ constraint will be automatically satisfied.

[^0]
$\mathrm{K}_{\vec{n}}$ constraint for Class 2P

Given a monomial

$$
\begin{equation*}
|\alpha\rangle=\prod_{i, \vec{p}}\left(\mathbf{C}_{\vec{p}}^{i \dagger}\right)^{\alpha_{\vec{p}}^{i}}|\Omega\rangle \tag{49}
\end{equation*}
$$

we construct two numbers defined as

$$
\begin{equation*}
A=\sum_{\vec{p}} \epsilon^{i j} p_{j} \alpha_{\vec{p}}^{i} \tag{50}
\end{equation*}
$$

and

$$
\begin{equation*}
B=\sum_{\vec{p}} \alpha_{\vec{p}}^{i} p_{i} \tag{51}
\end{equation*}
$$

$\mathrm{K}_{\vec{n}}$ constraint for Class 2P

We can show that $\mathbf{K}_{\vec{n}}$ transforms this monomial to a sum of some monomials whose A and B either changes as

$$
\begin{equation*}
A \rightarrow A-n_{1}, \quad B \rightarrow B-n_{2} \tag{52}
\end{equation*}
$$

or as

$$
\begin{equation*}
A \rightarrow A-n_{2}, \quad B \rightarrow B-n_{1} . \tag{53}
\end{equation*}
$$

Therefore if we require our physical states to have a fixed (A, B) structure we can guarantee that the $\mathbf{K}_{\vec{n}}$ constraint is satisfied.

$\mathrm{K}_{\vec{n}}$ constraint for Class 2P

Regarding completeness, suppose we have fixed our physical states to have $A=A_{0}$ and $B=B_{0}$.

Consider the spectrum is not complete and we can add another state with $A=A_{0}+\delta$ and $B=B_{0}+\lambda$ to the spectrum.

Then the action of $\mathbf{K}_{(\delta, \lambda)}$ on this states results states with $A=A_{0}$ and $B=B_{0}$ among other terms. Then since the mentioned part was already considered in the spectrum, the $\mathbf{K}_{\vec{n}}$ constraint will be violated. Therefore our chosen spectrum is complete.

Coclusions and Outlook

- Physicality is a constraint that should be satisfied for a set of states as a whole.
- There is a new set of states in the null string theory that has not been anticipated in the literature.
- Similar states form the interesting part of null brane theory where satisfying the $\mathbf{K}_{\vec{n}}$ constraint becomes a dilemma.
- We have proposed a solution for this dilemma by introducing some parameters atributed to a monomial that $\mathbf{K}_{\vec{n}}$ changes. By requiring these parameters to be fixed in the physical hilbert space, we solve the $\mathbf{K}_{\vec{n}}$ problem.
- There seems to be an important mathematical basis for this choice that has to do with the fact that $\mathbf{K}_{\vec{n}}$ is the generator of area preserving diffeomorphisms. This needs to be clarified.

Thank you.

[^0]: ${ }^{1}$ We need 2 parameters, since $\mathbf{K}_{\vec{n}}$ has 2 degrees of freedom n_{1} and n_{2}.

