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Introduction

• Studying null (Carrollian) branes can have applications in black hole
physics, in particular black hole microstate counting, since the black hole
horizon is a null surface.
• Considering the difficulties in quantizing branes, null brane quantization
as the tensionless limit of this problem, is worthwhile to be studied even
only as a mathematical curiosity.
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Null brane action

The brane action can be written as

S = − T̃
2

∫
dp+1σ

√
−h

(
hab∂aXµ∂bXνgµν − Λ

)
. (1)

Taking a tensionless limit, this action will be transformed to an action for
the tensionless brane

SN.B. =
κ

2

∫
dτ

∫
Np

dpσ Va∂aXµ Vb∂bXνgµν , (2)
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Symmetries

The action is invariant under a diffeomorphism generated by ξa.
We have the transformations

δξXµ = LξXµ = ξ · ∂Xµ

δξgµν = Lξgµν = ξ · ∂gµν
δξVa = LξVa = ξ · ∂Va − Vb∂bξ

a − 1
2(∂bξ

b)Va (3)
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Gauge fixing and residual symmetry

Using the invariance of action under diffeomorphisms, we can fix a gauge
by setting

Va∂a = ∂τ (4)

Using this temporal gauge, the equations of motion are

∂τ (gµν∂τXν) = 0. (5)

There still remains a residual gauge symmetry given by

ζ =
(∑

i
∂if i(σj)τ + h(σj)

)
∂τ +

∑
i

f i(σj)∂i, (6)
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Gauge fixing and residual symmetry

We can define the operators L(i)(f i) (with no sum on i) and M(h) as

L(i)(f i) = f i∂i + (∂if i)τ∂τ , (7)

M(h) = h∂τ , (8)

again with no sum on i. The commutation relations are

[L(i)(f i), L(j)(g j)] = f iL(j)(∂ig j)− g jL(i)(∂jf i) (9)

[L(i)(f i),M(h)] = M(f i∂ih − h∂if i). (10)

This is a BMSp+1 algebra.
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Equations of motion and constraints

We consider a toroidal null p-brane in flat p+2-dimensional target
spacetime. The equations of motion implies

X µ = x µ
0 +A µ

i σ
i +

1
κ

B µ
0 τ +

∑
n⃗ ̸=0⃗

(
1
|⃗n| A µ

n⃗ e−i⃗n.σ⃗ +
1
κ

B µ
n⃗ τ e−i⃗n.σ⃗

)
, (11)

where µ ∈ {+,−, i} and i = 1, ..., p.
The stress tensor is

Tα
β = V αV ρ∂ρX µ∂βXµ − 1

2V λV ρ∂λX µ∂ρXµδ
α
β . (12)

Ida Mehin Rasulian (IPM Physics) Null brane quantization April 18, 2024 8 / 34



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Equations of motion and constraints

Therefore we have
T 0

i = Ẋ.∂iX = Ti(τ, σ⃗), (13)

T 0
0 = −T i

i =
1
2 Ẋ 2 = T0. (14)

The conserved charge for the transformation (6) is

Q =

∫
d pσJ 0 =

∫
d pσ

(∑
i

Tif i + T0(
∑

i
∂if iτ + h)

)
, (15)

and we have
L i

n⃗ =

∫
d pσ(Ti + iniτT0)ei⃗n.σ⃗, (16)

and
Mn⃗ =

∫
d pσT0ei⃗n.σ⃗. (17)
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Equations of motion and constraints

Given the solution to the equations of motion, we find

Mn⃗ =
(2π)p

2
∑

k⃗

B
µk⃗Bµ

n⃗−k⃗ (18)

Li
n⃗ =

(2π)p

2

2Bn⃗µAµ
i − i

∑
k̸⃗=0

ki

|⃗k|
Ak⃗µBµ

n⃗−k⃗

 (19)
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Equations of motion and constraints

And the constraints can be written as

Bµ
0 B0µ +

∑
k⃗ ̸=0

B
µk⃗Bµ

−k⃗ = 0, (20a)

2Bµ
0 Bn⃗µ +

∑
k̸⃗={0,⃗n}

B
µk⃗Bµ

n⃗−k⃗ = 0, n⃗ ≠ 0 (20b)

Bµ
0 Aµi − i

∑
k⃗ ̸=0

ki

|⃗k|
Bµ

−k⃗Aµk⃗ = 0, (21a)

ni
|⃗n|B

µ
0 Aµn⃗ + iBµ

n⃗Aµi +
∑

k̸⃗={0,⃗n}

ki

|⃗k|
Bµ

n⃗−k⃗Aµk⃗ = 0, n⃗ ̸= 0 (21b)
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Toroidal null 2-brane in light cone gauge

In light-cone gauge we choose

X+ = x+0 + p+τ. (22)

For simplicity we assume the torus to be an orthogonal torus with radii Ri,
then the winding and momentum modes are given by

B+
0 = p+, B+

n⃗ = 0, Bi
0 =

mi
Ri
. (23)

Ai
j = wiRiδ

i
j, A±

i = 0, wi,mi,∈ Z. (24)
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Toroidal null 2-brane in light cone gauge

In light cone gauge and for null 2-brane, the constraints can be written as

M 2 := 2p+B−
0 =

∑
i

m2
i

R2
i
+

1
2
∑
k⃗ ̸=0

Bi
k⃗Bi

−k⃗, (25a)

Li := miw i − i
∑
k̸⃗=0

ki

|⃗k|
Aj

k⃗Bj
−k⃗ = 0, i = 1, 2, (25b)

Kn⃗ := iϵijniw jRjBj
n⃗ +

∑
k̸⃗=0,⃗n

ϵij(ni − ki)kj

|⃗k|
Al

k⃗Bl
n⃗−k⃗ = 0, (25c)
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Quantization

[Ai
n⃗,A

j
m⃗] = 0 = [Bi

n⃗,B
j
m⃗]

[Ai
n⃗,B

j
m⃗] =i|⃗n| δm⃗+n⃗,0δ

ij.
(26)

We define a new set of “normalized oscillators”,

Ci
k⃗ :=

√
κ

2|⃗k|
(Ai

k⃗ +
i
κ

Bi
k⃗), (Ci

k⃗)
† :=

√
κ

2|⃗k|
(Ai

−k⃗ −
i
κ

Bi
−k⃗), k⃗ ̸= 0

(27)
with commutators

[Ci
k⃗,C

j
l⃗] = 0 = [(Ci

k⃗)
†, (Cj

l⃗)
†], [Ci

k⃗, (C
j
l⃗)
†] = δk⃗,⃗l δ

ij (28)
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Quantization

In terms of the “creation-annihilaton” operators, we can write

M2 =
∑

i

m2
i

R2
i
+

1
κ

∑
k⃗

|⃗k|(Nk⃗ − Xk⃗ − X†
k⃗) + A (29a)

Li = miwi +
1
κ

∑
k⃗

kiNk⃗ (29b)

where
Nk⃗ =

∑
i

Ci†
k⃗ Ci

k⃗, Xk⃗ =
∑

i
Ci

k⃗Ci
−k⃗. (30)

and A is some normal ordering constant.
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Quantization

The Kn⃗ constraint can be written as

Kn⃗ = i
√

2κ√
|⃗n|
ϵijniωjRj(Cj

n⃗ − Cj†
−n⃗)

+
∑

k̸⃗=0⃗,⃗n

ϵij(ni − ki)kj

√
|⃗k|

|⃗n − k⃗|
(Cl

k⃗Cl
n⃗−k⃗ − Cl†

−k⃗Cl†
k⃗−n⃗ + Cl†

−k⃗Cl
n⃗−k⃗ − Cl

k⃗Cl†
k⃗−n⃗).

(31)

With the above (M2)† = M2, (Li)† = Li, (Kn⃗)
† = K−n⃗.
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Algebra of Constraints

[M2,Li] = 0, [M2,Kn⃗] = 0,
[Li,Lj] = 0, [Li,Kn⃗] = −niKn⃗
[Km⃗,Kn⃗] = iϵijminjKm⃗+n⃗

(32)

The algebra of Kn⃗ is the area preserving diffeomorphism algebra on T2,
SDiff(T2).
Kn⃗ commutes with the area operator, therefore it’s action preserves area.
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Hilbert space

We require our physical states to satisfy

⟨Ψ̃|Li|Ψ⟩ = 0, ⟨Ψ̃|Kn⃗|Ψ⟩ = 0, ∀ |Ψ⟩, |Ψ̃⟩ ∈ Hphys. (33)

Our zero-excitation states are defined by

Ci
n⃗|0;mi,wi⟩ = 0 ∀n⃗ ̸= 0. (34)

A generic excited state is a sum of monomials. A monomial is an excited
state like

|α⟩ =
∏
i,⃗p

(Ci†
p⃗ )

αi
p⃗ |0;mi,wi⟩. (35)

where αi
p⃗ are integer numbers.
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Classification of physical Hilbert space

We have 3 classes of physical states considering the action of Li on these
states.
• States which are zero-eigenstates of Li for both i = 1, 2, which we call
Class 1 states.
• States which are zero-eigenstates of Li for only one of i = 1 or i = 2
which we call Class 1.5P.
• States which are not zero-eigenstates of Li which we call Class 2P.
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Li and Kn⃗ constraint for Class 1

Class 1 states by definition satsify the Li constraint.
Regarding the Kn⃗ constraint, we can also see it will be automatically
satisfied since

LiKn⃗|0, 0⟩ = −niKn⃗|0, 0⟩ (36)

which follows from [Kn⃗,Li] = niKn⃗.
Therefore ⟨0′, 0′|Kn⃗|0, 0⟩ = 0.

Class 1 states form a complete physical Hilbert space by themselves.
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Class 2P of the null string

Class-2P states are a subset of non-zero eigenstates of L that satisfy
physicality condition.

By definition of being in Class-2,

L|ψ⟩ = |ψc⟩, (37)

where |ψc⟩ is an unphysical state.
All states in the Class-2P, physical or unphysical can be written as a
superposition of nonzero eigenstates of L

|ψ⟩ =
∑
ℓ

ψℓ|ℓ⟩, |ψc⟩ =
∑
ℓ

ψc
ℓ |ℓ⟩, ψc

ℓ = ℓψℓ. (38)
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Class 2P of the null string

Eq. (37) implies

⟨ψ|L L|ψ⟩ = ⟨ψ|L2|ψ⟩ = ⟨ψc|ψc⟩ ̸= 0 =⇒ L2|ψ⟩ ∈ Hphys . (39)

Similarly, one learns that L|ψc⟩ ∈ Hphys and L2|ψc⟩ ∈ Hc
phys, and

∑
ℓ

ℓ|ψℓ|2 = 0,
∑
ℓ

1
ℓ
|ψℓ|2 = 0, (40)

where we used orthonormality of |ℓ⟩ states.
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Class 2P of the null string

Since
L|ψ⟩ ∈ Hc

phys, L|ψc⟩ ∈ Hphys, L2|ψ⟩ ∈ Hphys, (41)

there is a Z2 mapping between Hphys and Hc
phys and hence one may

identify states in Hphys by modding H by this Z2.

Any state in Hphys or Hc
phys may be expanded in terms of eigenstates of

L2. Recalling that the physicality condition, ⟨ϕ|L|ψ⟩ = 0 for every physical
state, is bilinear in |ψ⟩, |ϕ⟩, this condition may be imposed separately for
each eigenstate of L2.
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Class 2P of the null string

We can write the eigenstates of L2 as

L|ℓ,±⟩ = ±ℓ|ℓ,±⟩, ℓ > 0. (42)

Next, let us define

|ℓ⟩± :=
1√
2
(|ℓ,+⟩ ± |ℓ,−⟩), ℓ > 0. (43)

One may readily check that

L|ℓ⟩± = ℓ|ℓ⟩∓ , L2|ℓ⟩± = ℓ2|ℓ⟩± , ℓ > 0.

±⟨ℓ|ℓ̃⟩± = δℓ,ℓ̃, ±⟨ℓ|ℓ̃⟩∓ = 0
(44)
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Class 2P of the null string

The above provides the key to our construction: We can take Hphys to be
spanned by |ℓ⟩+ (or |ℓ⟩−) and Hc

phys by |ℓ⟩− (or |ℓ⟩+).

Figure: Depiction of L spectrum, ℓ. The origin (blue circle) corresponds to ℓ = 0
Class-1 physical states. The black circles in ℓ > 0 correspond to Class-2P physical
states. The gray circles (ℓ < 0) are modded out by the Z2 symmetry which maps
+ℓ to −ℓ; ℓ < 0 correspond to unphysical Hilbert space Hc

phys. Union of Class-1
and Class-2P (ℓ ≥ 0) specifies the largest Hphys. Each dot corresponds to an
infinite set of states which correspond states of different mass from zero to
infinity.
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Li constraint for Class 2P

States of the form

|ℓ1, ℓ2⟩s1,s2
=

1
2(|ℓ1, ℓ2⟩+s1 |−ℓ1, ℓ2⟩+s2 |ℓ1,−ℓ2⟩+s1s2 |−ℓ1,−ℓ2⟩), (45)

with s1, s2 taking ± values, are eigenstates of L2
i with eigenvalues ℓ2i and

L1|ℓ1, ℓ2⟩s1,s2
= ℓ1|ℓ1, ℓ2⟩−s1,s2

, L2|ℓ1, ℓ2⟩s1,s2
= ℓ2|ℓ1, ℓ2⟩s1,−s2

, (46)

and |ℓ1, ℓ2⟩s1,s2
states with different s1, s2 are orthogonal to each other,

s1,s2
⟨ℓ1, ℓ2|ℓ̃1, ℓ̃2⟩s̃1 ,̃s2

= δℓ1,ℓ̃1
δℓ2,ℓ̃2

δs1 ,̃s1δs2 ,̃s2 (47)
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Li constraint for Class 2P

Therefore, for a generic ℓ1, ℓ2, the Hilbert space is divided into 4 sectors,
for 4 (s1, s2) choices.
If we work with one sector, say the one with s1 = s2 = +1, one readily
sees that

+,+⟨ℓ1, ℓ2|Li|ℓ̃1, ℓ̃2⟩+,+ = 0, ∀ ℓi, ℓ̃i. (48)

So, we have solved for Li constraints by modding out the Hilbert space by
Z2 × Z2. We remark that each |ℓ1, ℓ2⟩+,+ state for a given ℓi is infinitely
degenerate.
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Li constraint for Class 2P
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Kn⃗ constraint for Class 2P

The Kn⃗ constraint in fact restricts the type of monomials |l1, l2⟩ that can
be used in the construction of physical states.
We define 2 parameters1 attributed to a given monomial that Kn⃗
necessarily changes.
Requiring the monomials used in the construction of physical states to
have fixed such parameters, we can see that the Kn⃗ constraint will be
automatically satisfied.

1We need 2 parameters, since Kn⃗ has 2 degrees of freedom n1 and n2.
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Kn⃗ constraint for Class 2P

Given a monomial
|α⟩ =

∏
i,⃗p

(Ci†
p⃗ )

αi
p⃗ |Ω⟩ (49)

we construct two numbers defined as

A =
∑

p⃗
ϵijpjα

i
p⃗ (50)

and
B =

∑
p⃗
αi

p⃗pi (51)
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Kn⃗ constraint for Class 2P

We can show that Kn⃗ transforms this monomial to a sum of some
monomials whose A and B either changes as

A → A − n1, B → B − n2 (52)

or as
A → A − n2, B → B − n1. (53)

Therefore if we require our physical states to have a fixed (A,B) structure
we can guarantee that the Kn⃗ constraint is satisfied.
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Kn⃗ constraint for Class 2P

Regarding completeness, suppose we have fixed our physical states to have
A = A0 and B = B0.
Consider the spectrum is not complete and we can add another state with
A = A0 + δ and B = B0 + λ to the spectrum.
Then the action of K(δ,λ) on this states results states with A = A0 and
B = B0 among other terms. Then since the mentioned part was already
considered in the spectrum, the Kn⃗ constraint will be violated. Therefore
our chosen spectrum is complete.
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Coclusions and Outlook

• Physicality is a constraint that should be satisfied for a set of states as a
whole.
• There is a new set of states in the null string theory that has not been
anticipated in the literature.
• Similar states form the interesting part of null brane theory where
satisfying the Kn⃗ constraint becomes a dilemma.
• We have proposed a solution for this dilemma by introducing some
parameters atributed to a monomial that Kn⃗ changes. By requiring these
parameters to be fixed in the physical hilbert space, we solve the Kn⃗
problem.
• There seems to be an important mathematical basis for this choice that
has to do with the fact that Kn⃗ is the generator of area preserving
diffeomorphisms. This needs to be clarified.
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Thank you.
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