# Gravitational Energy Momentum Tensor at Null Infinity 

H. Adami, M.M. Sheikh-Jabbari, Vahid Taghiloo

HEPCo@Physics School

Institute for Advanced Studies
in Basic Sciences
Gava Zang, Zanjan, Iran

## Matter and Gravitational EMT

Let us consider Gravity + Matter action

$$
S\left[g_{\mu \nu}, \Phi\right]=S_{\text {gravity }}+S_{\text {matter }}
$$

One can read the energy-momentum tensor of the matter as


Bulk diffeomorphism invariance yields

$$
\nabla_{\mu} T_{\text {matter }}^{\prime \prime \prime}=0
$$

How about the energy-momentum tensor of gravity?

$$
T_{\mu \mu} \quad \frac{1}{\sqrt{g}} \delta S_{\text {gravity }} \delta g^{\mu \nu}=e o m=0
$$

## Matter and Gravitational EMT

Let us consider Gravity + Matter action

$$
S\left[g_{\mu \nu}, \Phi\right]=S_{\text {gravity }}+S_{\text {matter }}
$$

One can read the energy-momentum tensor of the matter as

$$
T_{\mu \nu}^{\text {matter }} \sim \frac{1}{\sqrt{g}} \frac{\delta S_{\text {matter }}}{\delta g^{\mu \nu}}
$$

Bulk diffeomorphism invariance yields

How about the energy-momentum tensor of gravity?


## Matter and Gravitational EMT

Let us consider Gravity + Matter action

$$
S\left[g_{\mu \nu}, \Phi\right]=S_{\text {gravity }}+S_{\text {matter }}
$$

One can read the energy-momentum tensor of the matter as

$$
T_{\mu \nu}^{\text {matter }} \sim \frac{1}{\sqrt{g}} \frac{\delta S_{\text {matter }}}{\delta g^{\mu \nu}}
$$

Bulk diffeomorphism invariance yields

$$
\nabla_{\mu} T_{\text {matter }}^{\mu \nu}=0
$$

How about the energy-momentum tensor of gravity?


## Matter and Gravitational EMT

Let us consider Gravity + Matter action

$$
S\left[g_{\mu \nu}, \Phi\right]=S_{\text {gravity }}+S_{\text {matter }}
$$

One can read the energy-momentum tensor of the matter as

$$
T_{\mu \nu}^{\text {matter }} \sim \frac{1}{\sqrt{g}} \frac{\delta S_{\text {matter }}}{\delta g^{\mu \nu}}
$$

Bulk diffeomorphism invariance yields

$$
\nabla_{\mu} T_{\text {matter }}^{\mu \nu}=0
$$

How about the energy-momentum tensor of gravity?


## Matter and Gravitational EMT

Let us consider Gravity + Matter action

$$
S\left[g_{\mu \nu}, \Phi\right]=S_{\text {gravity }}+S_{\text {matter }}
$$

One can read the energy-momentum tensor of the matter as

$$
T_{\mu \nu}^{\text {matter }} \sim \frac{1}{\sqrt{g}} \frac{\delta S_{\text {matter }}}{\delta g^{\mu \nu}}
$$

Bulk diffeomorphism invariance yields

$$
\nabla_{\mu} T_{\text {matter }}^{\mu \nu}=0
$$

How about the energy-momentum tensor of gravity?

$$
T_{\mu \nu}^{\text {gravity }} \sim \frac{1}{\sqrt{g}} \frac{\delta S_{\text {gravity }}}{\delta g^{\mu \nu}}=\text { eom }=0
$$

## Brown-York quasi-local EMT

Let us consider Bulk + Boundary

$$
S\left[g_{\mu \nu}, \Phi\right]=S_{\text {gravity }}+S_{\text {boundary }}
$$

In addition to $g_{\mu \nu}$, we have the induced metric of the boundary $\gamma_{\mu \nu}$,


The boundary diffeomorphism invariance yields

$$
\nabla_{\mu} T_{\text {gravity }}^{\mu \nu}=0
$$

Boundaries: Asymptotic boundaries, Black hole horizon, etc

## Brown-York quasi-local EMT

Let us consider Bulk + Boundary

$$
S\left[g_{\mu \nu}, \Phi\right]=S_{\text {gravity }}+S_{\text {boundary }}
$$

In addition to $g_{\mu \nu}$, we have the induced metric of the boundary $\gamma_{\mu \nu}$,

$$
T_{\mu \nu}^{\text {gravity }} \sim \frac{1}{\sqrt{\gamma}} \frac{\delta S}{\delta \gamma^{\mu \nu}} \quad \text { Brown-York EMT [Brown-York '93] }
$$

The boundary diffeomorphism invariance yields

Boundaries: Asymptotic boundaries, Black hole horizon, etc

## Brown-York quasi-local EMT

Let us consider Bulk + Boundary

$$
S\left[g_{\mu \nu}, \Phi\right]=S_{\text {gravity }}+S_{\text {boundary }}
$$

In addition to $g_{\mu \nu}$, we have the induced metric of the boundary $\gamma_{\mu \nu}$,

$$
T_{\mu \nu}^{\text {gravity }} \sim \frac{1}{\sqrt{\gamma}} \frac{\delta S}{\delta \gamma^{\mu \nu}} \quad \text { Brown-York EMT [Brown-York '93] }
$$

The boundary diffeomorphism invariance yields

$$
\nabla_{\mu} T_{\text {gravity }}^{\mu \nu}=0
$$

Boundaries: Asymptotic boundaries, Black hole horizon, etc

## Brown-York quasi-local EMT

Let us consider Bulk + Boundary

$$
S\left[g_{\mu \nu}, \Phi\right]=S_{\text {gravity }}+S_{\text {boundary }}
$$

In addition to $g_{\mu \nu}$, we have the induced metric of the boundary $\gamma_{\mu \nu}$,

$$
T_{\mu \nu}^{\text {gravity }} \sim \frac{1}{\sqrt{\gamma}} \frac{\delta S}{\delta \gamma^{\mu \nu}} \quad \text { Brown-York EMT [Brown-York '93] }
$$

The boundary diffeomorphism invariance yields

$$
\nabla_{\mu} T_{\text {gravity }}^{\mu \nu}=0
$$

Boundaries: Asymptotic boundaries, Black hole horizon, etc

## Implications

- Gravitational energy, angular momentum, and radiation
- Holography
- Fluid/Gravity correspondence [S. Bhattacharyya, V. E. Hubeny, S. Minwalla, and M. Rangamani, 2008]


## Implications

- Gravitational energy, angular momentum, and radiation
- Holography
- Fluid/Gravity correspondence
[S. Bhattacharyya, V. E. Hubeny, S. Minwalla, and M. Rangamani, 2008]


## Implications

- Gravitational energy, angular momentum, and radiation
- Holography
- Fluid/Gravity correspondence
[S. Bhattacharyya, V. E. Hubeny, S. Minwalla, and M. Rangamani, 2008]


## Null infinity v.s AdS timelike boundary



Minkowski

## Solution space

Theory: 3dim Einstein gravity with $\Lambda=0 \quad R_{\mu \nu}=0$
Line element:

$$
\mathrm{d} s^{2}=g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=-V \mathrm{~d} v^{2}+2 \eta \mathrm{~d} v \mathrm{~d} r+\mathcal{R}^{2}(\mathrm{~d} \phi+U \mathrm{~d} v)^{2}
$$

## Solution:

$$
\begin{aligned}
& \mathcal{R}=\Omega+r \eta \lambda \\
& U=\mathcal{U}+\frac{1}{\lambda \mathcal{R}} \frac{\eta^{\prime}}{\eta}+\frac{8 G \Upsilon-\Omega \Pi^{\prime}}{2 \lambda \mathcal{R}^{2}} \\
& V=\frac{1}{\lambda^{2}}\left[-8 G \mathcal{M}-2 \operatorname{Sch}[\sigma ; \phi]+\lambda \Omega \mathcal{D}_{v} \Pi+\left(\frac{\eta^{\prime}}{\eta}\right)^{2}\right. \\
& \left.+\frac{\left(8 G \Upsilon-\Omega \Pi^{\prime}\right)^{2}}{4 \mathcal{R}^{2}}-\frac{2 \mathcal{R}}{\eta} \mathcal{D}_{v}(\eta \lambda)+\left(\frac{8 G \Upsilon-\Omega \Pi^{\prime}}{\mathcal{R}}\right) \frac{\eta^{\prime}}{\eta}\right]
\end{aligned}
$$

where $\Pi:=2 \ln \left|\eta \lambda \Omega^{-1}\right|$ and

$$
\operatorname{Sch}[\sigma ; \phi]:=\frac{\sigma^{\prime \prime \prime}}{\sigma^{\prime}}-\frac{3}{2}\left(\frac{\sigma^{\prime \prime}}{\sigma^{\prime}}\right)^{2}, \quad \sigma:=\int \lambda \mathrm{d} \phi
$$

## Solution space

Theory: 3dim Einstein gravity with $\Lambda=0 \quad R_{\mu \nu}=0$
Line element:

$$
\mathrm{d} s^{2}=g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=-V \mathrm{~d} v^{2}+2 \eta \mathrm{~d} v \mathrm{~d} r+\mathcal{R}^{2}(\mathrm{~d} \phi+U \mathrm{~d} v)^{2}
$$

## Solution:


where $\Pi:=2 \ln \left|\eta \lambda \Omega^{-1}\right|$ and


## Solution space

Theory:
3dim Einstein gravity with $\Lambda=0 \quad R_{\mu \nu}=0$
Line element:

$$
\mathrm{d} s^{2}=g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=-V \mathrm{~d} v^{2}+2 \eta \mathrm{~d} v \mathrm{~d} r+\mathcal{R}^{2}(\mathrm{~d} \phi+U \mathrm{~d} v)^{2}
$$

Solution:

$$
\begin{aligned}
& \mathcal{R}=\Omega+r \eta \lambda \\
& U=\mathcal{U}+\frac{1}{\lambda \mathcal{R}} \frac{\eta^{\prime}}{\eta}+\frac{8 G \Upsilon-\Omega \Pi^{\prime}}{2 \lambda \mathcal{R}^{2}} \\
& V=\frac{1}{\lambda^{2}}\left[-8 G \mathcal{M}-2 \operatorname{Sch}[\sigma ; \phi]+\lambda \Omega \mathcal{D}_{\nu} \Pi+\left(\frac{\eta^{\prime}}{\eta}\right)^{2}\right. \\
& \left.+\frac{\left(8 G \Upsilon-\Omega \Pi^{\prime}\right)^{2}}{4 \mathcal{R}^{2}}-\frac{2 \mathcal{R}}{\eta} \mathcal{D}_{v}(\eta \lambda)+\left(\frac{8 G \Upsilon-\Omega \Pi^{\prime}}{\mathcal{R}}\right) \frac{\eta^{\prime}}{\eta}\right]
\end{aligned}
$$

where $\Pi:=2 \ln \left|\eta \lambda \Omega^{-1}\right|$ and

$$
\operatorname{Sch}[\sigma ; \phi]:=\frac{\sigma^{\prime \prime \prime}}{\sigma^{\prime}}-\frac{3}{2}\left(\frac{\sigma^{\prime \prime}}{\sigma^{\prime}}\right)^{2}, \quad \sigma:=\int^{\phi} \lambda \mathrm{d} \phi
$$

## Solution space

Integration functions: $\{\eta, \mathcal{U}, \Omega, \lambda, \mathcal{M}, \Upsilon\}$

## Constraint equations

$$
\begin{aligned}
& \mathcal{D}_{v} \mathcal{M}+\frac{1}{4 G} \mathcal{U}^{\prime \prime \prime}=0 \\
& \mathcal{D}_{V} \Upsilon-\lambda\left(\frac{\mathcal{M}}{\lambda^{2}}\right)^{\prime}+\frac{1}{4 G}\left(\lambda^{-1}\right)^{\prime \prime \prime}=0
\end{aligned}
$$

we have defined

$$
\mathcal{D}_{v} O_{w}:=\partial_{v} O_{w}-\mathcal{U} \partial_{\phi} O_{w}-w O_{w} \partial_{\phi} \mathcal{U}
$$

For example $\mathcal{M}, \Upsilon, \Omega, \Pi$ are of weight $2,2,1,1$ respectively.

## Solution space

Integration functions: $\{\eta, \mathcal{U}, \Omega, \lambda, \mathcal{M}, \Upsilon\}$

## Constraint equations

$$
\begin{aligned}
& \mathcal{D}_{v} \mathcal{M}+\frac{1}{4 G} \mathcal{U}^{\prime \prime \prime}=0 \\
& \mathcal{D}_{\vee} \Upsilon-\lambda\left(\frac{\mathcal{M}}{\lambda^{2}}\right)^{\prime}+\frac{1}{4 G}\left(\lambda^{-1}\right)^{\prime \prime \prime}=0
\end{aligned}
$$

we have defined
$\mathcal{D}_{v} O_{w}:=\partial_{v} O_{w}-\mathcal{U} \partial_{\phi} O_{w}-w O_{w} \partial_{\phi} \mathcal{U}$
For example $\mathcal{M}, \Upsilon, \Omega, \Pi$ are of weight 2,2,1,1 respectively.

## Solution space

Integration functions: $\{\eta, \mathcal{U}, \Omega, \lambda, \mathcal{M}, \Upsilon\}$

## Constraint equations

$$
\begin{aligned}
& \mathcal{D}_{v} \mathcal{M}+\frac{1}{4 G} \mathcal{U}^{\prime \prime \prime}=0 \\
& \mathcal{D}_{v} \Upsilon-\lambda\left(\frac{\mathcal{M}}{\lambda^{2}}\right)^{\prime}+\frac{1}{4 G}\left(\lambda^{-1}\right)^{\prime \prime \prime}=0
\end{aligned}
$$

we have defined

$$
\mathcal{D}_{v} O_{w}:=\partial_{v} O_{w}-\mathcal{U} \partial_{\phi} O_{w}-w O_{w} \partial_{\phi} \mathcal{U}
$$

For example $\mathcal{M}, \Upsilon, \Omega, \Pi$ are of weight $2,2,1,1$ respectively.

## Boundary symmetries

## Boundary symmetries

Boundary symmetries:

$$
\xi=\mathrm{T} \lambda \partial_{v}+\left[\mathrm{Y}-\mathcal{U} \lambda T+\frac{(T \lambda)^{\prime}}{\lambda \mathcal{R}}\right] \partial_{\phi}+\xi^{r} \partial_{r}
$$

with

$$
\begin{aligned}
\xi^{r}= & \frac{1}{\eta \lambda}\left[\mathrm{Z}-T \lambda \mathcal{D}_{v} \Omega-(\Omega Y)^{\prime}-\frac{1}{\eta}\left(\frac{\eta(T \lambda)^{\prime}}{\lambda}\right)^{\prime}\right] \\
& \left.-\frac{r}{2}(W)+T \lambda \mathcal{D}_{v} \Pi-2 e^{\Pi / 2} Z+Y \Pi^{\prime}\right) \\
& -\frac{8 G \Upsilon-\Omega \Pi^{\prime}}{2 \eta \lambda^{2} \mathcal{R}}(T \lambda)^{\prime}
\end{aligned}
$$

## Symplectic potential and ambiguities

Symplectic potential [Lee-Wald '90]:

$$
\Theta^{\mu}[g ; \delta g]:=\underbrace{\frac{\sqrt{-g}}{8 \pi G} \nabla^{[\alpha}\left(g^{\mu] \beta} \delta g_{\alpha \beta}\right)}_{\text {Lee-Wald symplectic pot }}+\underbrace{\nabla_{\nu} Y^{\mu \nu}[g ; \delta g]}_{Y \text {-freedom }}+\underbrace{\delta L_{\mathcal{B}}^{\mu}[g]}_{\text {boundary Lagrangian }}
$$

We choose $Y$-freedom s.t to remove $r$-dependence:

where $l^{\mu}$ and $n^{\nu}$ are two null vector fields

We fix the boundary Lagrangian later by requiring a well-defined action principle.

## Symplectic potential and ambiguities

Symplectic potential [Lee-Wald '90]:

$$
\Theta^{\mu}[g ; \delta g]:=\underbrace{\frac{\sqrt{-g}}{8 \pi G} \nabla^{[\alpha}\left(g^{\mu] \beta} \delta g_{\alpha \beta}\right)}_{\text {Lee-Wald symplectic pot }}+\underbrace{\nabla_{\nu} Y^{\mu \nu}[g ; \delta g]}_{Y \text {-freedom }}+\underbrace{\delta L_{\mathcal{B}}^{\mu}[g]}_{\text {boundary Lagrangian }}
$$

We choose $Y$-freedom s.t to remove $r$-dependence:

$$
Y^{\mu \nu}[\delta g ; g]=\frac{1}{8 \pi G}\left(2 \delta \sqrt{-g} n^{[\mu} l^{\nu]}+3 \sqrt{-g} \delta n^{[\mu} l^{\nu]}\right)
$$

where $I^{\mu}$ and $n^{\nu}$ are two null vector fields

$$
I^{\mu} \partial_{\mu}=\partial_{v}+\frac{V}{2 \eta} \partial_{r}-U \partial_{\phi}, \quad n^{\mu} \partial_{\mu}=-\frac{1}{\eta} \partial_{r}, \quad n \cdot I=-1
$$

We fix the boundary Lagrangian later by requiring a well-defined action principle.

## Symplectic potential and ambiguities

Symplectic potential [Lee-Wald '90]:

$$
\Theta^{\mu}[g ; \delta g]:=\underbrace{\frac{\sqrt{-g}}{8 \pi G} \nabla^{[\alpha}\left(g^{\mu] \beta} \delta g_{\alpha \beta}\right)}_{\text {Lee-Wald symplectic pot }}+\underbrace{\nabla_{\nu} Y^{\mu \nu}[g ; \delta g]}_{Y \text {-freedom }}+\underbrace{\delta L_{\mathcal{B}}^{\mu}[g]}_{\text {boundary Lagrangian }}
$$

We choose $Y$-freedom s.t to remove $r$-dependence:

$$
Y^{\mu \nu}[\delta g ; g]=\frac{1}{8 \pi G}\left(2 \delta \sqrt{-g} n^{[\mu} /^{\nu]}+3 \sqrt{-g} \delta n^{[\mu} l^{\nu]}\right)
$$

where $I^{\mu}$ and $n^{\nu}$ are two null vector fields

$$
I^{\mu} \partial_{\mu}=\partial_{\nu}+\frac{V}{2 \eta} \partial_{r}-U \partial_{\phi}, \quad n^{\mu} \partial_{\mu}=-\frac{1}{\eta} \partial_{r}, \quad n \cdot I=-1
$$

We fix the boundary Lagrangian later by requiring a well-defined action principle.

## On-shell symplectic potential

(partially) on-shell symplectic potential:

$$
\boldsymbol{\Theta}:=\int \boldsymbol{\Theta}^{\mu} \mathrm{d}^{2} x_{\mu}, \quad \boldsymbol{\Theta}=\boldsymbol{\Theta}_{\mathcal{H}}+\mathbf{\Theta}_{\mathcal{C}}+(\text { total variation term })
$$

## hydrodynamic and corner symplectic potentials

$$
\begin{aligned}
\Theta_{\mathcal{H}} & :=-\frac{1}{2 \pi} \int \mathrm{~d}^{2} x\left[\mathcal{M} \delta\left(\lambda^{-1}\right)+\Upsilon \delta \mathcal{U}\right] \\
\Theta_{\mathcal{C}} & :=\frac{1}{16 \pi G} \int \mathrm{~d}^{2} x \partial_{\nu}(\Omega \delta \Pi)
\end{aligned}
$$

## On-shell symplectic potential

(partially) on-shell symplectic potential:

$$
\boldsymbol{\Theta}:=\int \boldsymbol{\Theta}^{\mu} \mathrm{d}^{2} x_{\mu}, \quad \boldsymbol{\Theta}=\boldsymbol{\Theta}_{\mathcal{H}}+\mathbf{\Theta}_{\mathcal{C}}+(\text { total variation term })
$$

hydrodynamic and corner symplectic potentials

$$
\begin{aligned}
\boldsymbol{\Theta}_{\mathcal{H}} & :=-\frac{1}{2 \pi} \int \mathrm{~d}^{2} x\left[\mathcal{M} \delta\left(\lambda^{-1}\right)+\Upsilon \delta \mathcal{U}\right] \\
\boldsymbol{\Theta}_{\mathcal{C}} & :=\frac{1}{16 \pi G} \int \mathrm{~d}^{2} \times \partial_{v}(\Omega \delta \Pi)
\end{aligned}
$$

## Surface charge

## Surface charge variation

Surface charge variation:

$$
\begin{aligned}
\delta Q_{\xi}= & \frac{1}{16 \pi G} \int_{0}^{2 \pi} \mathrm{~d} \phi(W \delta \Omega+Z \delta \Pi) \\
& +\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{~d} \phi(T \delta \mathcal{M}+Y \delta \Upsilon)
\end{aligned}
$$

The charge algebra is the direct sum of the $\mathfrak{F}$ cisenberg and the $6 m s_{3}$ algebras. The former is spanned by $\Omega$ and $\Pi$ while the latter is spanned by $\mathcal{M}$ and $\Upsilon$.

## Surface charge

## Surface charge variation

Surface charge variation:

$$
\begin{aligned}
\delta Q_{\xi}= & \frac{1}{16 \pi G} \int_{0}^{2 \pi} \mathrm{~d} \phi(W \delta \Omega+Z \delta \Pi) \\
& +\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{~d} \phi(T \delta \mathcal{M}+Y \delta \Upsilon)
\end{aligned}
$$

The charge algebra is the direct sum of the $\mathfrak{H e c i s e n b e r g}$ and the $\mathfrak{b m s}{ }_{3}$ algebras. The former is spanned by $\Omega$ and $\Pi$ while the latter is spanned by $\mathcal{M}$ and $\Upsilon$.

## Geometry of null infinity

Conformal induced metric:

$$
\left.\mathrm{d} s^{2}\right|_{\mathcal{I}}=\lim _{r \rightarrow \infty} \frac{\mathrm{~d} s^{2}}{\mathcal{R}^{2}}
$$

$$
k_{a} \mathrm{~d} x^{a}:=\mathrm{d} \phi+\mathcal{U} \mathrm{d} v
$$

Kernel of induced metric:

$$
\gamma_{a b} I^{b}=0, \quad l^{a} \partial_{a}:=\lambda\left(\partial_{v}-\mathcal{U} \partial_{\phi}\right)
$$

Dual of the kernel:

$$
n_{a} \mathrm{~d} x^{a}=-\lambda^{-1} \mathrm{~d} v, \quad l^{a} n_{a}=-1
$$

## Projection:

$$
P_{b}^{a}:=\delta_{b}^{a}+n_{b} I^{a}, \quad P_{b}^{a} I^{b}=P_{b}^{a} n_{a}=0
$$

Partially inverse:

$$
h^{a c} \gamma_{c b}=P_{b}^{a}, \quad h^{a b}=k^{a} k^{b}, \quad k^{a} \partial_{a}:=\partial_{\phi}
$$

Null-volume form:

## Geometry of null infinity

Conformal induced metric:

$$
\left.\mathrm{d} s^{2}\right|_{\mathcal{I}}=\lim _{r \rightarrow \infty} \frac{\mathrm{~d} s^{2}}{\mathcal{R}^{2}}
$$

$$
\gamma_{a b}=k_{a} k_{b}, \quad k_{a} \mathrm{~d} x^{a}:=\mathrm{d} \phi+\mathcal{U} \mathrm{d} v
$$

Kernel of induced metric:

$$
\gamma_{a b} I^{b}=0, \quad l^{a} \partial_{a}:=\lambda\left(\partial_{v}-\mathcal{U} \partial_{\phi}\right)
$$

## Dual of the kernel:

$$
n_{a} \mathrm{~d} x^{a}=-\lambda^{-1} \mathrm{~d} v, \quad I^{a} n_{a}=-1
$$

## Projection:

$$
P_{b}^{a}:=\delta_{b}^{a}+n_{b} I^{a}, \quad P_{b}^{a} l^{b}=P_{b}^{a} n_{a}=0
$$

Partially inverse:


Null-volume form:

## Geometry of null infinity

Conformal induced metric:

$$
\begin{gathered}
\left.\mathrm{ds}^{2}\right|_{\mathcal{I}}=\lim _{r \rightarrow \infty} \frac{\mathrm{~d} s^{2}}{\mathcal{R}^{2}} \\
\gamma_{a b}=k_{a} k_{b}, \quad k_{a} \mathrm{~d} x^{a}:=\mathrm{d} \phi+\mathcal{U} \mathrm{d} v
\end{gathered}
$$

Kernel of induced metric:

$$
\gamma_{a b} I^{b}=0, \quad I^{a} \partial_{a}:=\lambda\left(\partial_{v}-\mathcal{U} \partial_{\phi}\right)
$$

Dual of the kernel:

$$
n_{a} \mathrm{~d} x^{a}=-\lambda^{-1} \mathrm{~d} v, \quad l^{a} n_{a}=-1
$$

## Projection:



Partially inverse:


## Geometry of null infinity

Conformal induced metric:

$$
\begin{gathered}
\left.\mathrm{ds}^{2}\right|_{\mathcal{I}}=\lim _{r \rightarrow \infty} \frac{\mathrm{~d} s^{2}}{\mathcal{R}^{2}} \\
\gamma_{a b}=k_{a} k_{b}, \quad k_{a} \mathrm{~d} x^{a}:=\mathrm{d} \phi+\mathcal{U} \mathrm{d} v
\end{gathered}
$$

Kernel of induced metric:

$$
\gamma_{a b} I^{b}=0, \quad I^{a} \partial_{a}:=\lambda\left(\partial_{v}-\mathcal{U} \partial_{\phi}\right)
$$

Dual of the kernel:

$$
n_{a} \mathrm{~d} x^{a}=-\lambda^{-1} \mathrm{~d} v, \quad I^{a} n_{a}=-1
$$

## Projection:

$$
P_{b}^{a}:=\delta_{b}^{a}+n_{b} I^{a},
$$



Partially inverse:

$k^{a} \partial_{a}:=\partial_{\phi}$

## Geometry of null infinity

Conformal induced metric:

$$
\begin{gathered}
\left.\mathrm{ds}^{2}\right|_{\mathcal{I}}=\lim _{r \rightarrow \infty} \frac{\mathrm{~d} s^{2}}{\mathcal{R}^{2}} \\
\gamma_{a b}=k_{a} k_{b}, \quad k_{a} \mathrm{~d} x^{a}:=\mathrm{d} \phi+\mathcal{U} \mathrm{d} v
\end{gathered}
$$

Kernel of induced metric:

$$
\gamma_{a b} I^{b}=0, \quad l^{a} \partial_{a}:=\lambda\left(\partial_{v}-\mathcal{U} \partial_{\phi}\right)
$$

Dual of the kernel:

$$
n_{a} \mathrm{~d} x^{a}=-\lambda^{-1} \mathrm{~d} v, \quad I^{a} n_{a}=-1
$$

Projection:

$$
P_{b}^{a}:=\delta_{b}^{a}+n_{b} I^{a}, \quad P_{b}^{a} I^{b}=P_{b}^{a} n_{a}=0
$$

Partially inverse:


## Geometry of null infinity

Conformal induced metric:

$$
\begin{gathered}
\left.\mathrm{ds}^{2}\right|_{\mathcal{I}}=\lim _{r \rightarrow \infty} \frac{\mathrm{~d} s^{2}}{\mathcal{R}^{2}} \\
\gamma_{a b}=k_{a} k_{b}, \quad k_{a} \mathrm{~d} x^{a}:=\mathrm{d} \phi+\mathcal{U} \mathrm{d} v
\end{gathered}
$$

Kernel of induced metric:

$$
\gamma_{a b} I^{b}=0, \quad l^{a} \partial_{a}:=\lambda\left(\partial_{v}-\mathcal{U} \partial_{\phi}\right)
$$

Dual of the kernel:

$$
n_{a} \mathrm{~d} x^{a}=-\lambda^{-1} \mathrm{~d} v, \quad I^{a} n_{a}=-1
$$

Projection:

$$
P_{b}^{a}:=\delta_{b}^{a}+n_{b} I^{a}, \quad P_{b}^{a} I^{b}=P_{b}^{a} n_{a}=0
$$

Partially inverse:

$$
h^{a c} \gamma_{c b}=P_{b}^{a}, \quad h^{a b}=k^{a} k^{b}, \quad k^{a} \partial_{a}:=\partial_{\phi}
$$

## Geometry of null infinity

Conformal induced metric:

$$
\begin{gathered}
\left.\mathrm{ds}^{2}\right|_{\mathcal{I}}=\lim _{r \rightarrow \infty} \frac{\mathrm{~d} s^{2}}{\mathcal{R}^{2}} \\
\gamma_{a b}=k_{a} k_{b}, \quad k_{a} \mathrm{~d} x^{a}:=\mathrm{d} \phi+\mathcal{U} \mathrm{d} v
\end{gathered}
$$

Kernel of induced metric:

$$
\gamma_{a b} I^{b}=0, \quad I^{a} \partial_{a}:=\lambda\left(\partial_{v}-\mathcal{U} \partial_{\phi}\right)
$$

Dual of the kernel:

$$
n_{a} \mathrm{~d} x^{a}=-\lambda^{-1} \mathrm{~d} v, \quad I^{a} n_{a}=-1
$$

Projection:

$$
P_{b}^{a}:=\delta_{b}^{a}+n_{b} I^{a}, \quad P_{b}^{a} I^{b}=P_{b}^{a} n_{a}=0
$$

Partially inverse:

$$
h^{a c} \gamma_{c b}=P_{b}^{a}, \quad h^{a b}=k^{a} k^{b}, \quad k^{a} \partial_{a}:=\partial_{\phi}
$$

Null-volume form:

$$
\gamma=\lambda^{-2}
$$

## Null boundary connection

Null connection:

$$
\Gamma_{a b}^{c}=\frac{1}{2} h^{c d}\left(\partial_{a} \gamma_{b d}+\partial_{b} \gamma_{a d}-\partial_{d} \gamma_{a b}\right)+h^{c d} K_{d a} n_{b}+I^{c} S_{a b}
$$

where $K_{a b}:=\frac{1}{2} \mathcal{L}_{1} \gamma_{a b}$ and

$$
S_{a b}:=-3 \partial_{(a} n_{b)}-n_{(a} \mathcal{L}_{1} n_{b)}+2 \partial_{c} I^{c} n_{a} n_{b}
$$

## Torsion:

$$
T_{a b}^{c}:=2 \Gamma_{[a]}^{c}=2 h^{c d} K_{d[a b} n_{b]}
$$

## Null boundary connection

Null connection:

$$
\Gamma_{a b}^{c}=\frac{1}{2} h^{c d}\left(\partial_{a} \gamma_{b d}+\partial_{b} \gamma_{a d}-\partial_{d} \gamma_{a b}\right)+h^{c d} K_{d a} n_{b}+I^{c} S_{a b}
$$

where $K_{a b}:=\frac{1}{2} \mathcal{L}_{l} \gamma_{a b}$ and

$$
S_{a b}:=-3 \partial_{(a} n_{b)}-n_{(a} \mathcal{L}_{l} n_{b)}+2 \partial_{c} I^{c} n_{a} n_{b}
$$

Torsion:

$$
T_{a b}^{c}:=2 \Gamma_{[a b]}^{c}=2 h^{c d} K_{d[a} n_{b]}
$$

## EMT from symplectic potential

Canonical structure of symplectic potential:


Symplectic potential in our case:

$$
\Theta_{\mathcal{H}}=-\frac{1}{2 \pi} \int d^{2} \times\left[\mathcal{M} \delta\left(\lambda^{-1}\right)+\Upsilon \delta \mathcal{U}\right]
$$

We recognize:

$$
\begin{aligned}
\mathcal{T}^{a}{ }_{b} & =-\mathcal{P} k^{a} k_{b}-\Upsilon l^{a} k_{b} & & \text { Stress tensor } \\
p^{a} & =\mathcal{M} l^{a} & & \text { Null current }
\end{aligned}
$$

Equation of state [J. de Boer et.al. 2022]:

$$
\mathcal{T}^{a}{ }_{a}+p^{a} n_{a}=0 \quad \Longrightarrow \quad \mathcal{P}+\mathcal{M}=0
$$

These hydrodynamics quantities are not conserved!

## EMT from symplectic potential

Canonical structure of symplectic potential:

$$
\boldsymbol{\Theta}_{\mathcal{H}}=\frac{1}{2 \pi} \int \mathrm{~d} x^{2} \sqrt{\gamma} T^{a b} \delta \gamma_{a b} \quad \text { non-degenerate case }
$$

$\Theta_{\mathcal{H}}=\frac{1}{2 \pi} \int \mathrm{~d}^{2} \times \sqrt{\gamma}\left(T^{a b} \delta \gamma_{a b}+P^{a} \delta n_{a}\right)$
degenerate case

Symplectic potential in our case:

$$
\Theta_{\mathcal{H}}=-\frac{1}{2 \pi} \int d^{2} \times\left[M \delta\left(\lambda^{-1}\right)+\Upsilon \delta \mathcal{U}\right]
$$

We recognize:

$$
\begin{aligned}
\mathcal{T}^{a}{ }_{b} & =-\mathcal{P} k^{a} k_{b}-\Upsilon l^{a} k_{b} & & \text { Stress tensor } \\
p^{a} & =\mathcal{M} l^{a} & & \text { Null current }
\end{aligned}
$$

Equation of state [J. de Boer et.al. 2022]:

$$
\mathcal{T}^{a}{ }_{a}+p^{a} n_{a}=0 \quad \Longrightarrow \quad \mathcal{P}+\mathcal{M}=0
$$

These hydrodynamics quantities are not conserved!

## EMT from symplectic potential

Canonical structure of symplectic potential:

$$
\begin{array}{ll}
\boldsymbol{\Theta}_{\mathcal{H}}=\frac{1}{2 \pi} \int \mathrm{~d} x^{2} \sqrt{\gamma} T^{a b} \delta \gamma_{a b} & \text { non-degenerate } c \\
\boldsymbol{\Theta}_{\mathcal{H}}=\frac{1}{2 \pi} \int \mathrm{~d}^{2} x \sqrt{\gamma}\left(\mathrm{~T}^{a b} \delta \gamma_{a b}+P^{a} \delta n_{a}\right) & \text { degenerate case }
\end{array}
$$

Symplectic potential in our case:

$$
\Theta_{\mathcal{H}}=-\frac{1}{2 \pi} \int \mathrm{~d}^{2} \times\left[\mathcal{M} \delta\left(\lambda^{-1}\right)+\Upsilon \delta \mathcal{U}\right]
$$

We recognize:

$$
\begin{aligned}
\mathcal{T}^{a}{ }_{b} & =-\mathcal{P} k^{a} k_{b}-\Upsilon l^{a} k_{b} & & \text { Stress tensor } \\
p^{a} & =\mathcal{M} l^{a} & & \text { Null current }
\end{aligned}
$$

Equation of state [J. de Boer et.al. 2022]:


## EMT from symplectic potential

Canonical structure of symplectic potential:

$$
\begin{array}{ll}
\boldsymbol{\Theta}_{\mathcal{H}}=\frac{1}{2 \pi} \int \mathrm{~d} x^{2} \sqrt{\gamma} T^{a b} \delta \gamma_{a b} & \text { non-degenerate case } \\
\boldsymbol{\Theta}_{\mathcal{H}}=\frac{1}{2 \pi} \int \mathrm{~d}^{2} \times \sqrt{\gamma}\left(\mathrm{T}^{a b} \delta \gamma_{a b}+P^{a} \delta n_{a}\right) & \text { degenerate case }
\end{array}
$$

Symplectic potential in our case:

$$
\boldsymbol{\Theta}_{\mathcal{H}}=-\frac{1}{2 \pi} \int \mathrm{~d}^{2} x\left[\mathcal{M} \delta\left(\lambda^{-1}\right)+\Upsilon \delta \mathcal{U}\right]
$$

We recognize:

$$
\begin{aligned}
\mathcal{T}^{a}{ }_{b} & =-\mathcal{P} k^{a} k_{b}-\Upsilon l^{a} k_{b} & & \text { Stress tensor } \\
p^{a} & =\mathcal{M} l^{a} & & \text { Null current }
\end{aligned}
$$

Equation of state [J. de Boer et.al. 2022]:

## EMT from symplectic potential

Canonical structure of symplectic potential:

$$
\begin{array}{ll}
\boldsymbol{\Theta}_{\mathcal{H}}=\frac{1}{2 \pi} \int \mathrm{~d} x^{2} \sqrt{\gamma} T^{a b} \delta \gamma_{a b} & \text { non-degenerate } c \\
\boldsymbol{\Theta}_{\mathcal{H}}=\frac{1}{2 \pi} \int \mathrm{~d}^{2} x \sqrt{\gamma}\left(\mathrm{~T}^{a b} \delta \gamma_{a b}+P^{a} \delta n_{a}\right) & \text { degenerate case }
\end{array}
$$

Symplectic potential in our case:

$$
\boldsymbol{\Theta}_{\mathcal{H}}=-\frac{1}{2 \pi} \int \mathrm{~d}^{2} x\left[\mathcal{M} \delta\left(\lambda^{-1}\right)+\Upsilon \delta \mathcal{U}\right]
$$

We recognize:

$$
\begin{aligned}
\mathcal{T}^{a}{ }_{b} & =-\mathcal{P} k^{a} k_{b}-\Upsilon I^{a} k_{b} & & \text { Stress tensor } \\
p^{a} & =\mathcal{M} l^{a} & & \text { Null current }
\end{aligned}
$$

Equation of state [J. de Boer et.al. 2022]:

## EMT from symplectic potential

Canonical structure of symplectic potential:

$$
\begin{array}{ll}
\boldsymbol{\Theta}_{\mathcal{H}}=\frac{1}{2 \pi} \int \mathrm{~d} x^{2} \sqrt{\gamma} T^{a b} \delta \gamma_{a b} & \text { non-degenerate } c \\
\boldsymbol{\Theta}_{\mathcal{H}}=\frac{1}{2 \pi} \int \mathrm{~d}^{2} x \sqrt{\gamma}\left(\mathrm{~T}^{a b} \delta \gamma_{a b}+P^{a} \delta n_{a}\right) & \text { degenerate case }
\end{array}
$$

Symplectic potential in our case:

$$
\boldsymbol{\Theta}_{\mathcal{H}}=-\frac{1}{2 \pi} \int \mathrm{~d}^{2} x\left[\mathcal{M} \delta\left(\lambda^{-1}\right)+\Upsilon \delta \mathcal{U}\right]
$$

We recognize:

$$
\begin{aligned}
\mathcal{T}^{a}{ }_{b} & =-\mathcal{P} k^{a} k_{b}-\Upsilon I^{a} k_{b} & & \text { Stress tensor } \\
p^{a} & =\mathcal{M} l^{a} & & \text { Null current }
\end{aligned}
$$

Equation of state [J. de Boer et.al. 2022]:

$$
\mathcal{T}^{a}{ }_{a}+p^{a} n_{a}=0 \quad \Longrightarrow \quad \mathcal{P}+\mathcal{M}=0
$$

These hydrodynamics quantities are not conserved!

## EMT from symplectic potential

Canonical structure of symplectic potential:

$$
\begin{array}{ll}
\boldsymbol{\Theta}_{\mathcal{H}}=\frac{1}{2 \pi} \int \mathrm{~d} x^{2} \sqrt{\gamma} T^{a b} \delta \gamma_{a b} & \text { non-degenerate } c \\
\boldsymbol{\Theta}_{\mathcal{H}}=\frac{1}{2 \pi} \int \mathrm{~d}^{2} x \sqrt{\gamma}\left(\mathrm{~T}^{a b} \delta \gamma_{a b}+P^{a} \delta n_{a}\right) & \text { degenerate case }
\end{array}
$$

Symplectic potential in our case:

$$
\boldsymbol{\Theta}_{\mathcal{H}}=-\frac{1}{2 \pi} \int \mathrm{~d}^{2} x\left[\mathcal{M} \delta\left(\lambda^{-1}\right)+\Upsilon \delta \mathcal{U}\right]
$$

We recognize:

$$
\begin{aligned}
\mathcal{T}^{a}{ }_{b} & =-\mathcal{P} k^{a} k_{b}-\Upsilon I^{a} k_{b} & & \text { Stress tensor } \\
p^{a} & =\mathcal{M} l^{a} & & \text { Null current }
\end{aligned}
$$

Equation of state [J. de Boer et.al. 2022]:

$$
\mathcal{T}^{a}{ }_{a}+p^{a} n_{a}=0 \quad \Longrightarrow \quad \mathcal{P}+\mathcal{M}=0
$$

These hydrodynamics quantities are not conserved!

## Conserved EMT

We can add a total variation term (boundary Lagrangian) to the symp. pot.:

## Boundary action

$$
S_{\mathcal{B}}:=\int \mathrm{d}^{2} \times L_{\mathcal{B}}=-\int \mathrm{d} v \int_{0}^{2 \pi} \frac{\mathrm{~d} \phi}{2 \pi \sigma^{\prime}}\left(\mathcal{M}+\frac{1}{4 G} \operatorname{Sch}[\sigma ; \phi]\right)
$$

where $\operatorname{Sch}[\sigma ; \phi]:=\frac{\sigma^{\prime \prime \prime}}{\sigma^{\prime}}-\frac{3}{2}\left(\frac{\sigma^{\prime \prime}}{\sigma^{\prime}}\right)^{2}$

$$
\Theta_{\mathcal{H}}=\frac{1}{2 \pi} \int \mathrm{~d}^{2} \times \sqrt{\gamma}\left(\mathrm{T}^{a b} \delta \gamma_{a b}+P^{a} \delta n_{a}\right)
$$

## Total conserved EMT

Conserved EMT:
$\mathrm{T}^{a}{ }_{b}=\mathcal{T}^{a}{ }_{b}+\mathcal{A}^{a}{ }_{b}$
$D_{b} T^{b}{ }_{a}=0$
Conserved stress tensor $P^{a}=D^{a}+A^{a} \quad \quad D_{a} P^{a}=0 \quad$ Conserved null current

## Conserved EMT

We can add a total variation term (boundary Lagrangian) to the symp. pot.:

## Boundary action

$$
S_{\mathcal{B}}:=\int \mathrm{d}^{2} \times L_{\mathcal{B}}=-\int \mathrm{d} v \int_{0}^{2 \pi} \frac{\mathrm{~d} \phi}{2 \pi \sigma^{\prime}}\left(\mathcal{M}+\frac{1}{4 G} \operatorname{Sch}[\sigma ; \phi]\right)
$$

where $\operatorname{Sch}[\sigma ; \phi]:=\frac{\sigma^{\prime \prime \prime}}{\sigma^{\prime}}-\frac{3}{2}\left(\frac{\sigma^{\prime \prime}}{\sigma^{\prime}}\right)^{2}$.

$$
\Theta_{\mathcal{H}}=\frac{1}{2 \pi} \int \mathrm{~d}^{2} \times \sqrt{\gamma}\left(\mathrm{T}^{a b} \delta \gamma_{a b}+P^{a} \delta n_{a}\right)
$$



## Conserved EMT

We can add a total variation term (boundary Lagrangian) to the symp. pot.:

## Boundary action

$$
S_{\mathcal{B}}:=\int \mathrm{d}^{2} \times L_{\mathcal{B}}=-\int \mathrm{d} v \int_{0}^{2 \pi} \frac{\mathrm{~d} \phi}{2 \pi \sigma^{\prime}}\left(\mathcal{M}+\frac{1}{4 G} \operatorname{Sch}[\sigma ; \phi]\right)
$$

where $\operatorname{Sch}[\sigma ; \phi]:=\frac{\sigma^{\prime \prime \prime}}{\sigma^{\prime}}-\frac{3}{2}\left(\frac{\sigma^{\prime \prime}}{\sigma^{\prime}}\right)^{2}$.

$$
\boldsymbol{\Theta}_{\mathcal{H}}=\frac{1}{2 \pi} \int \mathrm{~d}^{2} x \sqrt{\gamma}\left(\mathrm{~T}^{a b} \delta \gamma_{a b}+P^{a} \delta n_{a}\right)
$$

Total conserved EMT

Conserved EMT


## Conserved EMT

We can add a total variation term (boundary Lagrangian) to the symp. pot.:

## Boundary action

$$
S_{\mathcal{B}}:=\int \mathrm{d}^{2} \times L_{\mathcal{B}}=-\int \mathrm{d} v \int_{0}^{2 \pi} \frac{\mathrm{~d} \phi}{2 \pi \sigma^{\prime}}\left(\mathcal{M}+\frac{1}{4 G} \operatorname{Sch}[\sigma ; \phi]\right)
$$

where $\operatorname{Sch}[\sigma ; \phi]:=\frac{\sigma^{\prime \prime \prime}}{\sigma^{\prime}}-\frac{3}{2}\left(\frac{\sigma^{\prime \prime}}{\sigma^{\prime}}\right)^{2}$.

$$
\boldsymbol{\Theta}_{\mathcal{H}}=\frac{1}{2 \pi} \int \mathrm{~d}^{2} x \sqrt{\gamma}\left(\mathrm{~T}^{a b} \delta \gamma_{a b}+P^{a} \delta n_{a}\right)
$$

## Total conserved EMT

Conserved EMT:

$$
\begin{array}{rlrl}
\mathrm{T}^{a}{ }_{b} & =\mathcal{T}^{a}{ }_{b}+\mathcal{A}^{a}{ }_{b}, & D_{b} \mathrm{~T}^{b}{ }_{a} & =0 \\
& & \text { Conserved stress tensor } \\
\mathrm{P}^{a} & =p^{a}+A^{a}, & D_{a} P^{a} & =0
\end{array}
$$

## Anomalous EMT

Anomalous EMT:

$$
\mathcal{A}^{a}{ }_{b}=\mathcal{A} k^{a} k_{b} \quad A^{a}=\mathcal{A} l^{a}+\mathcal{B} k^{a}
$$

where

$$
\begin{aligned}
& \mathcal{A}:=\mathcal{A}^{a}{ }_{a}=-\frac{1}{8 G}\left(k^{c} \partial_{c} \theta_{k}+\frac{1}{4} \theta_{k}^{2}\right) \\
& \mathcal{B}:=k_{a} A^{a}=-\frac{1}{8 G}\left(k^{c} \partial_{c} \theta_{l}-I^{c} \partial_{c} \theta_{k}\right)
\end{aligned}
$$

Expansions at null infinity:

$$
\theta_{1}:=D_{a} l^{a}=-2 \lambda U^{\prime}, \quad \theta_{k}:=D_{a} k^{a}=-2 \lambda^{-1} \lambda^{\prime}
$$

## Anomalous EMT

Anomalous EMT:

$$
\mathcal{A}^{a}{ }_{b}=\mathcal{A} k^{a} k_{b} \quad A^{a}=\mathcal{A} l^{a}+\mathcal{B} k^{a}
$$

where

$$
\begin{aligned}
\mathcal{A} & :=\mathcal{A}^{a}{ }_{a}=-\frac{1}{8 G}\left(k^{c} \partial_{c} \theta_{k}+\frac{1}{4} \theta_{k}^{2}\right) \\
\mathcal{B} & :=k_{a} A^{a}=-\frac{1}{8 G}\left(k^{c} \partial_{c} \theta_{l}-I^{c} \partial_{c} \theta_{k}\right)
\end{aligned}
$$

## Expansions at null infinity:

## Anomalous EMT

Anomalous EMT:

$$
\mathcal{A}^{a}{ }_{b}=\mathcal{A} k^{a} k_{b} \quad A^{a}=\mathcal{A} l^{a}+\mathcal{B} k^{a}
$$

where

$$
\begin{aligned}
\mathcal{A} & :=\mathcal{A}^{a}{ }_{a}=-\frac{1}{8 G}\left(k^{c} \partial_{c} \theta_{k}+\frac{1}{4} \theta_{k}^{2}\right) \\
\mathcal{B} & :=k_{a} A^{a}=-\frac{1}{8 G}\left(k^{c} \partial_{c} \theta_{l}-I^{c} \partial_{c} \theta_{k}\right)
\end{aligned}
$$

Expansions at null infinity:

$$
\theta_{l}:=D_{a} I^{a}=-2 \lambda \mathcal{U}^{\prime}, \quad \theta_{k}:=D_{a} k^{a}=-2 \lambda^{-1} \lambda^{\prime}
$$

## Properties of null EMT

- Null EMT $=$ Stress tensor + Null current.
- The (2,0)-type stress tensor is not symmetric. [J. de Boer et.al. 2022]
- It satisfies the following Equation of state

$$
T+P^{a} n_{a}=0 \quad \rightarrow \quad \text { Energy }+ \text { Pressure }=0
$$

- Comparision with AdS case [M. Henningson, K. Skenderis '98]:


## Energy + Pressure $=$ central charge $\times$ Ricci scalar

Vanishing of the RHS resembles logarithmic celestial conformal field theories [A. Fiorucci, D. Grumiller, R. Ruzziconi, 2024].

## Properties of null EMT

- Null EMT $=$ Stress tensor + Null current.
- The (2,0)-type stress tensor is not symmetric. [J. de Boer et.al. 2022]
- It satisfies the following Equation of state

$$
\top+P^{a} n_{a}=0 \quad \rightarrow \quad \text { Energy }+ \text { Pressure }=0
$$

- Comparision with AdS case [M. Henningson, K. Skenderis '98]:

$$
\text { Energy }+ \text { Pressure }=\text { central charge } \times \text { Ricci scalar }
$$

Vanishing of the RHS resembles logarithmic celestial conformal field theories [A. Fiorucci, D. Grumiller, R. Ruzziconi, 2024].

## Properties of null EMT

- Null EMT $=$ Stress tensor + Null current.
- The (2,0)-type stress tensor is not symmetric. [J. de Boer et.al. 2022]
- It satisfies the following Equation of state

$$
\mathrm{T}+P^{a} n_{a}=0 \quad \rightarrow \quad \text { Energy }+ \text { Pressure }=0
$$

- Comparision with AdS case [M. Henningson, K. Skenderis '98]:


## Properties of null EMT

- Null EMT $=$ Stress tensor + Null current.
- The (2,0)-type stress tensor is not symmetric. [J. de Boer et.al. 2022]
- It satisfies the following Equation of state

$$
\mathrm{T}+P^{a} n_{a}=0 \quad \rightarrow \quad \text { Energy }+ \text { Pressure }=0
$$

- Comparision with AdS case [M. Henningson, K. Skenderis '98]:

$$
\text { Energy }+ \text { Pressure }=\text { central charge } \times \text { Ricci scalar }
$$

Vanishing of the RHS resembles logarithmic celestial conformal field theories [A. Fiorucci, D. Grumiller, R. Ruzziconi, 2024].

## Symplectic form

## Symplectic form

Finally, the symplectic form is:

$$
\begin{aligned}
\Omega= & \frac{1}{2 \pi} \int \mathrm{~d}^{2} x\left[\delta\left(\sqrt{\gamma} \mathrm{~T}^{a b}\right) \wedge \delta \gamma_{a b}+\delta\left(\sqrt{\gamma} P^{a}\right) \wedge \delta n_{a}\right] \\
& +\frac{1}{16 \pi G} \int \mathrm{~d}^{2} x \partial_{v}(\delta \Omega \wedge \delta \Pi)
\end{aligned}
$$

## Summary

- We constructed a conserved gravitational EMT (stress tensor + null current) at null infinity in 3dim asymptotically flat spacetimes.
- By demanding a well-defined action principle and the existence of a conserved EMT, we found a Schwarzian action as the boundary action.


## Summary

- We constructed a conserved gravitational EMT (stress tensor + null current) at null infinity in 3dim asymptotically flat spacetimes.
- By demanding a well-defined action principle and the existence of a conserved EMT, we found a Schwarzian action as the boundary action.


## Outlook

- Null EMT from limits:

```
    lim
    limh->\infty}\mathrm{ (Brown-York EMT at AdS boundary)
- Implications of the emergence of the Schwarzian action at null infinity:
    o Celestial Sachdev-Ye-Kitaev (CSYK) model
    - Chaos in three-dimensional flat holography
- EMT at null infinity in 4 spacetime dimensions.
- Fluid/Gravity correspondence in flat spacetimes.
```


## Outlook

- Null EMT from limits:
- $\lim _{r \rightarrow \infty}$ (Brown-York EMT in bulk)
${ }^{\circ} \lim _{\ell \rightarrow \infty}$ (Brown-York EMT at AdS boundary)
- Implications of the emergence of the Schwarzian action at null infinity:
- Celestial Sachdev-Ye-Kitaev (CSYK) model
- Chaos in three-dimensional flat holography
- EMT at null infinity in 4 spacetime dimensions.
- Fluid/Gravity correspondence in flat spacetimes.

Thank You!

## Outlook

- Null EMT from limits:
- $\lim _{r \rightarrow \infty}$ (Brown-York EMT in bulk)
- $\lim _{\ell \rightarrow \infty}$ (Brown-York EMT at AdS boundary)
- Implications of the emergence of the Schwarzian action at null infinity:
- Celestial Sachdev-Ye-Kitaev (CSYK) model
- Chaos in three-dimensional flat holography
- EMT at null infinity in 4 spacetime dimensions.
- Fluid/Gravity correspondence in flat spacetimes.


## Outlook

- Null EMT from limits:
- $\lim _{r \rightarrow \infty}$ (Brown-York EMT in bulk)
- $\lim _{\ell \rightarrow \infty}$ (Brown-York EMT at AdS boundary)
- Implications of the emergence of the Schwarzian action at null infinity:

Celestial Sachdev-Ye-Kitaev (CSYK) model
Chaos in three-dimensional flat holography

- EMT at null infinity in 4 spacetime dimensions.
- Fluid/Gravity correspondence in flat spacetimes.


## Outlook

- Null EMT from limits:
- $\lim _{r \rightarrow \infty}$ (Brown-York EMT in bulk)
- $\lim _{\ell \rightarrow \infty}$ (Brown-York EMT at AdS boundary)
- Implications of the emergence of the Schwarzian action at null infinity:
- Celestial Sachdev-Ye-Kitaev (CSYK) model

Chaos in three-dimensional flat holography

- EMT at null infinity in 4 spacetime dimensions.
- Fluid/Gravity correspondence in flat spacetimes.


## Outlook

- Null EMT from limits:
- $\lim _{r \rightarrow \infty}$ (Brown-York EMT in bulk)
- $\lim _{\ell \rightarrow \infty}$ (Brown-York EMT at AdS boundary)
- Implications of the emergence of the Schwarzian action at null infinity:
- Celestial Sachdev-Ye-Kitaev (CSYK) model
- Chaos in three-dimensional flat holography
- EMT at null infinity in 4 spacetime dimensions.
- Fluid/Gravity correspondence in flat spacetimes.


## Outlook

- Null EMT from limits:
- $\lim _{r \rightarrow \infty}$ (Brown-York EMT in bulk)
- $\lim _{\ell \rightarrow \infty}$ (Brown-York EMT at AdS boundary)
- Implications of the emergence of the Schwarzian action at null infinity:
- Celestial Sachdev-Ye-Kitaev (CSYK) model
- Chaos in three-dimensional flat holography
- EMT at null infinity in 4 spacetime dimensions.
- Fluid/Gravity correspondence in flat spacetimes.


## Outlook

- Null EMT from limits:
- $\lim _{r \rightarrow \infty}$ (Brown-York EMT in bulk)
- $\lim _{\ell \rightarrow \infty}$ (Brown-York EMT at AdS boundary)
- Implications of the emergence of the Schwarzian action at null infinity:
- Celestial Sachdev-Ye-Kitaev (CSYK) model
- Chaos in three-dimensional flat holography
- EMT at null infinity in 4 spacetime dimensions.
- Fluid/Gravity correspondence in flat spacetimes.


## Outlook

- Null EMT from limits:
- $\lim _{r \rightarrow \infty}$ (Brown-York EMT in bulk)
- $\lim _{\ell \rightarrow \infty}$ (Brown-York EMT at AdS boundary)
- Implications of the emergence of the Schwarzian action at null infinity:
- Celestial Sachdev-Ye-Kitaev (CSYK) model
- Chaos in three-dimensional flat holography
- EMT at null infinity in 4 spacetime dimensions.
- Fluid/Gravity correspondence in flat spacetimes.

> Thank You!

