HIGH ENERGY PHENOMENOLOGY GROUP

YASAMAN FARZAN

SCHOOL OF PHYSICS, IPM

ICTP SIMONS ASSOCIATE

TOPICS

- Neutrino physics
- Dark Matter
- Neutrino interaction with matter (PDFs)
- Forward physics facility

SM PARTICLES

COSMIC PIE

OLDER TOPICS

• CP violation (Electric dipole moments of elementary fermions)

• Supersymmetry

• supergravity

OLDER TOPICS

- CP violation (Electric dipole moments of elementary fermions)
- Supersymmetry

• supergravity

OLDER TOPICS

- CP violation (Electric dipole moments of elementary fermions)
- Supersymmetry

- Supergravity
- D.A. Demir and Y.F., "Correlating mu parameter and right-handed neutrino masses in N=1 supergravity," JHEP 03 (2006), 010 doi:10.1088/1126-6708/2006/03/010

GROUP MEMBER

• Yasaman Farzan (founder)

• Saeed Abbaslu

Saeed Ansarifard

• Peyman Zakeri

• Saeed Abbaslu

• Saeed Ansarifard

• Peyman Zakeri

• Saeed Abbaslu

• Saeed Ansarifard

• Peyman Zakeri

Cosmology Data scientist

• Saeed Abbaslu

Saeed Ansarifard

• Peyman Zakeri

Cosmology Data scientist

Climate change

https://www.aparat.com/schoolofphysics

- Saeed Abbaslu
- Saeed Ansarifard

• Peyman Zakeri

LONG TERM VISITOR

• Hamed Abdolmaleki

xFitter Developers' team

MASTER STUDENTS

• Sahar Safari

• Mehran Dehpour

MASTER STUDENTS

• Sahar Safari

• Mehran Dehpour

NETWORKS

INVISIBLEs ELUSIVEs HiDDeN ASYMMETRY

DUNE COLLABORATION

CURRENT AND UPCOMING PROJECTS

- Non-standard interactions of neutrinos
- Solar neutrinos
- Dark matter interaction with matter
- Gears up for serendipitous searches

NON-STANDARD NEUTRINO INTERACTIONS

Neutral current Non-Standard Interaction (NSI): propagation of neutrinos in matter

$$\mathcal{L}_{\rm NC-NSI} = -2\sqrt{2}G_F \,\epsilon^{fX}_{\alpha\beta} \left(\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta}\right) \left(\bar{f}\gamma_{\mu}P_Xf\right)$$

matter field $f \in \{e, u, d\}$ (for NC-NSI)

• Charged current Non-Standard Interaction (NSI): production and detection

$$\mathcal{L}_{\rm CC-NSI} = -2\sqrt{2}G_F \,\epsilon_{\alpha\beta}^{ff'X} \left(\bar{\nu}_{\alpha}\gamma^{\mu}P_L\ell_{\beta}\right) \left(\bar{f}'\gamma_{\mu}P_Xf\right)$$

 $f \neq f' \in \{u, d\}$ (for CC-NSI).

NEUTRAL CURRENT NSI

PHENOMENOLOGICAL CONSEQUENCES OF **VECTOR NSI** $\epsilon^{fV}_{\alpha\beta} = \epsilon^{fL}_{\alpha\beta} + \epsilon^{fR}_{\alpha\beta}$

- Neutrino propagation in matter
- Coherent Elastic neutrino Nucleus Scattering $(CE\nu NS)$: for coupling to u and d quarks •

 $\epsilon^{eL}_{\alpha\beta} + \epsilon^{eR}_{\alpha\beta}$

$$\epsilon^{uL}_{\alpha\beta} + \epsilon^{uR}_{\alpha\beta}$$

- Scattering of neutrinos off electron at BOREXINO
- High energy neutrino scattering experiments (CHARM
- Neutral current scattering off deuterium at SNO

$$\nu + D \rightarrow \nu + n + p$$

 $\epsilon^{dL}_{lphaeta}+\epsilon^{dR}_{lphaeta}$ $\nu + e \rightarrow \nu + e$

24 PHENOMENOLOGICAL CONSEQUENCES OF AXIAL VECTOR NSI $\epsilon^{fA}_{\alpha\beta} = \epsilon^{fR}_{\alpha\beta} - \epsilon^{fL}_{\alpha\beta}$

Neutrino propagation in matter

• Scattering of neutrinos off electron u + e
ightarrow
u + e

$$\epsilon^{eA}_{\alpha\beta} = \epsilon^{eR}_{\alpha\beta} - \epsilon^{eL}_{\alpha\beta}$$

- High energy neutrino scattering experiments (CHARM and NuTeV)
- Neutral current scattering off deuterium at SNO

 $\nu + D \rightarrow \nu + n + p$

OSCILLATION IN MATTER IN PRESENCE OF NSI

$$\begin{split} i\frac{d}{dx} \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} &= H^{\nu} \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} \\ \hline H^{\nu} &= H_{\text{vac}} + H_{\text{mat}} \quad \text{and} \quad H^{\overline{\nu}} = (H_{\text{vac}} - H_{\text{mat}})^* \\ F^{\mu}_{\alpha\beta} &= \epsilon^{fL}_{\alpha\beta} + \epsilon^{fR}_{\alpha\beta} \\ \hline H_{\text{mat}} &= \sqrt{2}G_F N_e(r) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \sqrt{2}G_F \sum_{f=e,u,d} N_f(r) \begin{pmatrix} \varepsilon^{f}_{ee} & \varepsilon^{f}_{e\mu} & \varepsilon^{f}_{e\mu} \\ \varepsilon^{f*}_{e\mu} & \varepsilon^{f*}_{\mu\mu} & \varepsilon^{f*}_{\mu\tau} \\ \varepsilon^{f*}_{e\tau} & \varepsilon^{f*}_{\mu\tau} & \varepsilon^{f*}_{\tau\tau} \end{pmatrix} \\ \end{split}$$

26 LMA-DARK SOLUTION

• Miranda, Tortola and Valle, JHEP 2006; Escrihuela et al., PRD 2009

Yasaman Farzan

WHAT IS THE UNDERLYING MODEL FOR THE EFFECTIVE FOUR-FERMION LAGRANGIAN?

- Integrating out Z' with mass $\, m_{Z'} \,$ and coupling $\, g_{Z'} \,$

$$-2\sqrt{2}G_F \,\epsilon^{fX}_{\alpha\beta} \left(\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta}\right) \left(\bar{f}\gamma_{\mu}P_Xf\right)$$

$$\epsilon = \left(\frac{g_{Z'}^2}{m_{Z'}^2}\right) G_F^{-1}$$

UNDERLYING THEORY FOR NSI

$$\mathcal{L}_{\rm NC-NSI} = -2\sqrt{2}G_F \,\epsilon^{fX}_{\alpha\beta} \left(\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta}\right) \left(\bar{f}\gamma_{\mu}P_Xf\right)$$

Integrating out a heavy intermediate state

Neutral U(1) gauge boson as mediator

$$Z'_{\mu}\bar{\nu}_{\alpha}\gamma^{\mu}P_{L}\nu_{\beta}$$

ATLAS, CMS, CDF, and UA2 experiments

30 SUGGESTION

• What if $m_{Z'} \sim 10 \,\, {
m MeV}$

YF, "A model for large non-standard interactions leading to LMA-Dark solution," Phys. Lett. B748 (2015) 311-315;YF and J Heeck, "Neutrinophilic nonstandard interactions," PRD 94 (2016) 53010;YF and I Shoemaker, "lepton flavor violating NSI via light mediator," JHEP 1607 (2016) 33.

YF and M Tortola, "neutrino oscillations and non-standard interactions," Front.in Phys. 6 (2018) 10; P.B.Denton, Y.F. and I.M.Shoemaker, "Activating the fourth neutrino of the 3+1 scheme," Phys. Rev. D 99 (2019) no.3, 035003; Y.F., "A model for lepton flavor violating non-standard neutrino interactions," Phys. Lett. B **803** (2020), 135349

31 SUGGESTION

• What if $m_{Z'} \sim 10 \,\, {
m MeV}$

Bounds can be avoided not because the mass of the intermediate state is high

But because coupling is small!

$\mathcal{L}_{\rm NC-NSI} = -2\sqrt{2}G_F \,\epsilon^{fX}_{\alpha\beta} \left(\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta}\right) \left(\bar{f}\gamma_{\mu}P_Xf\right)$

SOLAR NEUTRINOS

DARK MATTER INTERACTIONS

https://darwin.physik.uzh.ch/darwin.html

DARK MATTER INTERACTION

Y. Li, Z. Liu and Y. Xue,

"XQC and CSR constraints on strongly interacting dark matter with spin and velocity dependent cross sections," JCAP **05** (2023), 060

 N. Bernal, Y. Farzan and A.Y. Smirnov, ``Neutrinos from GRB 221009A: producing ALPs and explaining LHAASO anomalous gamma event," JCAP 11 (2023), 098

WORLD AS SEEN UNTILL RECENTLY

MULTIMESSENGER ERA

FERMI GAMMA RAY TELESCOPE

LHAASO

Large High Altitude Air Shower Observatory

• Sichuan, China (Tibetan plateau)

LHAASO

WCDA +

Z. Cao, International symposium on very high energy particle astromony, 2015

Z. Cao, International symposium on very high energy particle astromony, 2015

NEW MESSENGERS

• Cosmic ray (Since balloon based experiment since 1912 by Victor Hess)

• High energy Cosmic Neutrinos (by IceCube since 2013---- since 1987 from Supernova- earlier solar neutrinos since 1960s)

• Gravitational waves (Since 2015)

ICECUB

GAMMA RAY BURST (GRB)

Vela. (US air force)

First GRB discovered in 1967

~1700 GRB since day

One per day these days

FERMI GAMMA RAY TELESCOPE

CATEGORIES OF GRB

• Short GRB (duration shorter than 2 sec), 30 %, neutron star merger

• Long GRB (duration longer than 2 sec), 70 %, Core collapse supernova

GRB 221009A

Most luminous GRB discovered ever: GRB 221009A

- # events in LHAASO with $0.5 \text{ TeV} \le \omega \le 21 \text{ TeV}$ [observation: $\gtrsim 5000$]
- # events in LHAASO with $\omega \approx 18 \, (\pm 3.6)$ TeV [observation: 1]

Carenza and Marsh, arXiv:2211.02010

Zhen Cao et al., Science 380 (2023) 6652 And arXiv:2306.06372

PAIR PRODUCTION

 e^{-} $E_{\gamma} = 18 \text{ TeV}, \quad \tau_{\gamma} \simeq 15$ e^{+} $E_{\gamma} = 18 \pm 6.5 \text{ TeV},$ $E_{\gamma} = 10 \text{ TeV}, \text{ the optical depth is } \tau_{\gamma} \simeq 5$

Baktash, Horns and Meyer, arXiv:2210.07172

 $\exp(-15) = 3 \times 10^{-7}$ $\exp(-5) = 6.7 \times 10^{-3}$

SYNCHROTRON-SELF COMPTON

NEW PHYSICS?

• Axion or Axion Like Particle (ALP)

Baktash, Horns and Meyer, 2210.07172; Rojas et al., 2305.05145; Galant et al., 2210.05659; Lin and Yanagida, 2210.08841; Tritsky, 2210.09250; Nakagawa et al., PLB 839 (2023) 137824; Gonzalez, Astrophys J 944 (2023) 178

Neutrino based solutions

Cheung, 2210.14178, Smirnov and Traunter, PRL 131 (2023) 021002, Brdar and Li, PLB 839 (2023) 137763; Huang et al, JCAP 04 (2023) 056; Guo et al, PRD 108 (2023) L021302

Lorentz Invariance Violation

Li and Ma, Astropart phys 148 (2023) 10283; 2306.02962; Finke and Razzaque, Astrophys J Lett 942 (2023) L21

NEW PHYSICS?

• Axion or Axion Like Particle (ALP)

Neutrino based solution

Nicolas Bernal, YF and Alexei Smirnov, JCAP

Lorentz Invariance Violation

NEW PHYSICS?

• Axion or Axion Like Particle (ALP)

Neutrino based solution

Nicolas Bernal, YF and Alexei Smirnov, JCAP

Neutrinos from GRB 221009A: producing ALPs and explaining LHAASO anamolous gamma event

Lorentz Invariance Violation

DIAGNOSTICS: RATIO OF FLUXES

