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Why 3-dimensions?

‚ Easier than 4-dimensions to address some difficult problems

‚ AdS3/CFT2

‚ Relatively less explored

Which Problems?

‚ New models

‚ Connection to higher dimensions

‚ Supersymmetric solutions

‚ Holographic applications
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D=3, N=4, SO(4) Gauged Supergravity

This model comes from a consistent S3 reduction of the D “ 6,
N “ p1, 0q supergravity coupled to a single chiral tensor multiplet
whose Lagrangian is:

L6 “
?

´g
´

R ´
1
2Bµϕ Bµϕ´

1
12e´

?
2ϕHµνρHµνρ

¯

The reduction ansatz to compactify this theory on the three-sphere
was found in:

A supersymmetric reduction on the three-sphere, NSD, H.
Samtleben, O. Sarioglu, and D. Van den Bleeken, Nucl.Phys.B 890
(2014) 350, arXiv:1410.7168.

3 / 26



ds2
6 “ pdet T 1

4 q

´

∆ 1
2 ds2

3 ` g´2
0 ∆´ 1

2 T ´1
ij DµiDµj

¯

,

ϕ “
1

?
2

log
´

∆´1 det T 1
2

¯

,

H “ k0pdet T q vol3 ´
1
6ϵijkl

`

g´2
0 M∆´2µiDµj ^ Dµk ^ Dµl

` 3g´2
0 ∆´2Dµi ^ Dµj ^ DTkmTlnµ

mµn ` 3g´1
0 ∆´1F ij ^ DµkTlmµ

m˘

where k0 and g0 are constants and

µiµi “ 1 , ∆ “ Tijµ
iµj , M “ 2 TikTjkµ

iµj ´ ∆Tii ,

Dµi “ dµi ` g0Aijµj , DTij “ dTij ` g0AikT kj ` g0AjkT ki ,

F ij “ dAij ` g0Aik ^ Akj , i , j “ 1, . . . , 4 .

4 / 26



After the reduction one gets three-dimensional SO(4) gauged,
N “ 4 supergravity with quaternionic sigma model target space
SO(4,4){(SO(4)ˆSO(4)):

L3 “
?

´g
ˆ

R ´
1
4 T ´1

ij T ´1
kl DµTjkDµTli ´

1
8 T ´1

ik T ´1
jl F ij

µνF kl µν ´ V
˙

`LCS

V “
1
2

`

k2
0 det T ` 2g2

0 TijTij ´ g2
0 pTiiq

2˘

LCS “ ´
1
8 k0ϵijklε

µνρAij
µ

´

BνAkl
ρ `

2
3 g0Akm

ν Aml
ρ

¯

General construction of D=3, gauged supergravities is known
but explicit construction of any one of them needs effort.

(Gauged locally supersymmetric D = 3 nonlinear sigma models,
B. de Wit, I. Herger, H. Samtleben, Nucl.Phys.B 671 (2003) 175,
hep-th/0307006.)
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Consistent reduction means that any solution of the
3-dimensional theory is a solution of the 6-dimensional one. This
provides an opportunity to construct some complicated solutions in
6-dimensions by uplifting 3-dimensional solutions.

D=3 solutions ÝÑ D=6 solutions ÝÑ D=10 solutions

Supersymmetric solutions are more special.
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To take advantage of this, we simplify the D=3 model further by
truncating it so that only the U(1) ˆ U(1) Ă SO(4) symmetry is
preserved. This corresponds to choosing the Tij matrix as

T “

¨

˝

eξ1eRpρ,θqI2 02

02 eξ2 I2

˛

‚ with Rpρ, θq “ ρ

¨

˝

sin θ cos θ

cos θ ´ sin θ

˛

‚ ,

and the vectors Aµ ij as

Aµ “

¨

˚

˝

A1
µ 0

0 A2
µ

˛

‹

‚

with A1,2
µ “

¨

˚

˝

0 A1,2
µ

´A1,2
µ 0

˛

‹

‚

,

where A1,2
µ are two Abelian vector fields.
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The result is

L3 “
?

´g
ˆ

R ´
1
2

“

Bµξ1 Bµξ1 ` Bµξ2 Bµξ2 ` Bµρ Bµρ` sinh2 ρDµθDµθ
‰

´
1
4 e´2ξ1 F1

µν F1 µν ´
1
4 e´2ξ2 F2

µν F2 µν ´ V
˙

´
k0
2 εµνρ A1

µ F2
νρ ,

where
Dµθ “ Bµθ ` 2 g0 A1

µ .

The scalar potential does not depend on the field θ and is given as

V “ ´4 g2
0 eξ1`ξ2 cosh ρ` 2 g2

0 e2ξ1 sinh2 ρ`
k2

0
2 e2pξ1`ξ2q .
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This potential has only one supersymmetric vacuum, which is
AdS3 and is located at

ρ “ 0 , eξ1 “ eξ2 “
2g0
k0

.

The potential V can be written in terms of the superpotential W

V “ 2
“

pBξ1W q2 ` pBξ2W q2 ` pBρW q2 ´ W 2‰

,

where
W “

eξ2

2

´

´2 g0 ` k0 eξ1
¯

´ g0 eξ1 cosh ρ .

Supersymmetric Dyonic Strings in 6-Dimensions from
3-Dimensions, NSD, N. Petri, D. Van den Bleeken, JHEP 04
(2019) 168, arXiv:1902.05325.
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The Killing spinor equation is

pBµ `
1
4 ω

bc
µ γbcq ζa ` Xµ ϵab ζ

b ´
1
2 W γµ ζa “ 0 ,

where

Xµ “
1
4 p1 ´ cosh ρq Dµθ ´ 2ϵ σρ

µ

`

F1
ρσ ` F2

ρσ

˘

.

The BPS conditions from matter fermions are:

pγµ Bµξ1,2q ζa ´
`

γµ ϵ
µσρ F1,2

ρσ

˘

ϵab ζ
b ` 2 BW

Bξ1,2
ζa “ 0 ,

pγµ Bµρq ζa ` sinh ρ pγµDµθq ϵab ζ
b ` 2 BW

Bρ
ζa “ 0 .

In these supersymmetry transformations ζa’s pa “ 1, 2q are defined
in terms of Majorana spinors λA’s pA “ 1, 2, 3, 4q as ζ1 “ λ1 ` iλ3
and ζ2 “ λ2 ` iλ4. Here, ϵab “ ´ϵba such that ϵ12 “ ϵ12 “ ´1.
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A systematic way of constructing supersymmetric solutions of a
supergravity based on Killing spinor bilinears was developed in:

All Metrics Admitting Supercovariantly Constant Spinors, K.P.
Tod, Phys. Lett. B 121 (1983) 241.

This is a powerful method and has been applied to many
supergravities in different dimensions but not much is done in
D=3. We applied this method to the above model in 2 papers:

1) Rotating AdS3xS3 and dyonic strings from 3-dimensions,
NSD, C.A. Deral, A. Saha, O. Sarioglu, JHEP 10 (2024) 185,
arXiv:2408.03197.

2) Timelike supersymmetric solutions of D=3, N=4
supergravity, NSD, C.A. Deral, Phys.Rev.D 111 (2025) 4, 4,
arXiv:2411.04437.
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In this method, one starts with assuming the existence of one
set of Killing spinors λA pA “ 1, 2, 3, 4q which we take as
commuting and main objects are the spinor bilinears constructed
out of them:

F AB “ λ̄AλB “ ´F BA ,

V AB
µ “ λ̄Aγµλ

B “ V BA
µ .

One then derives algebraic and differential conditions on them
from the supersymmetry transformations. A useful tool is the Fierz
identity for spinors

λχ̄ “
1
2pχ̄λq1 `

1
2pχ̄γµλqγµ ,
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Using the Fierz identity one finds that, the spinor indices can be
split as A “ pa, ãq with a “ t1, 2u and ã “ t3, 4u and one can
choose a basis in which

F ab “ ´f ϵab , F aã “ F ãb̃ “ 0 .

Consequently, only V ab
µ ’s are non-zero, and we define the following

vectors using them:

Vµ “ V 11
µ ` V 22

µ , Kµ “ V 11
µ ´ V 22

µ , Lµ “ 2V 12
µ ,

which satisfy the following algebraic conditions

V µKµ “ V µLµ “ KµLµ “ 0 , VrµKνs “ f ϵµνσLσ ,

V µVµ “ ´KµKµ “ ´LµLµ “ ´4f 2 .

When f ‰ 0, they constitute an orthogonal basis for the
3-dimensional spacetime. However, when f “ 0 we can choose a
basis in which Vµ “ Kµ and Lµ “ 0.

13 / 26



Supersymmetry breaking conditions are found as

V µγµλa “ 2f ϵabλ
b , Kµγµλa “ 2f p´1qaϵabλ

b , Lµγµλa “ 2f p´1qaλa .

Only two of these relations are independent.
From the Killing spinor equation we get

Bµf “ 0 ,

and

∇µVν “ ´W ϵµνσV σ ,

from which we see that ∇pµVνq “ 0. Since V µVµ “ ´4f 2, we
conclude that V µ is either a timelike (f ‰ 0) or a null (f “ 0)
Killing vector which can be used to classify solutions.

14 / 26



One also finds

LV ξ1 “ LV ξ2 “ LV ρ “ 0 ,

where LV is the Lie derivative in the Killing direction V .
Moreover, we have

LV A1,2
µ “ 0 ,

after choosing the gauge

V µA1,2
µ “ ´f ξ1,2 .

When ρ ‰ 0, with this gauge choice one has

LV θ “ 2fg0p2eξ1 ` ξ1q .
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Null Killing Vector Case

In this case one finds that the most general spacetime metric
admitting V “ Bv as a null Killing vector is

ds2 “ dr2 ` 2e2Uprqdudv ` e2βpu,rqdu2 ,

where Uprq is related to the superpotential W as

U 1prq “ W .

Vector fields take the form

A1,2
u “ χ1,2pu, rq , A1,2

v “ A1,2
r “ 0.

For the scalar fields we have θ “ 0 and we assume pξ1, ξ2, ρq

depend only on r .
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From these we get the Killing spinors as

λa “ p1 ` iq eU´
1
2 β λa

0 ,

where λa
0 is a constant, real spinor that satisfies pγ1 ´ γ0qλa

0 “ 0.
From matter BPS equations one also obtains

ξ1
1 “ ´k0eξ1`ξ2 ` 2g0eξ1 cosh ρ ,
ξ1

2 “ ´k0eξ1`ξ2 ` 2g0eξ2 ,

ρ 1 “ 2g0eξ1 sinh ρ ,

and

p1 ´ cosh ρqg0χ
1 ` 8pBrχ

1 ` Brχ
2q “ 0 .
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The scalar field equations and all the Einstein’s field equations
except its uu-component are satisfied automatically, which implies

2Br pe2βW q ´ B 2
r pe2βq “ 4g2

0 sinh2 ρpχ1q2 ` e´2ξ1 pBrχ
1q2 ` e´2ξ2 pBrχ

2q2 .

Finally, the vector field equations reduce to

0 “ Br pe´2ξ1Brχ
1q ´ 4g2

0 sinh2 ρχ1 ´ k0Brχ
2 ,

0 “ Br pe´2ξ2Brχ
2q ´ k0Brχ

1.

We were able to solve these equations in full generality.
Solutions can be classified with respect to the number of active
scalars that are distinct which ranges from 0 to 3. They are
independent solutions, that is one cannot go from, let’s say, the
3-scalars to the 2-scalars solution by setting the extra active scalar
to a constant and so on. This is so since the scalars are
functionally dependent on each other in these solutions.
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Example: Null warped AdS

Assuming all scalar fields are constant we find

ds2
3 “ ´

k2
0 Q2

4g2
0

R4 du2 ` 2R2 dudv `
k2

0
4g4

0

dR2

R2 ,

A1 “ ´A2 “ Q R2 du , eξ1 “ eξ2 “
2g0
k0

, ρ “ θ “ 0 .

When Q “ 0 we have the usual AdS3. This metric with Q ‰ 0 is
called the null warped AdS3 and is also known as the Schrödinger
spacetime due to its anisotropic scale invariance

R Ñ λR , u Ñ
u
λ2 , v Ñ v .
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After the uplift of the null warped AdS3 solution we obtain

ds2
6 “ ω

„

2R2du dv `
dR2

R2

ȷ

´ ωQ R2 σ du ` ω dΩ2
3 ,

H3 “
2
g2

0
R dR ^ du ^ dv ´

2
g2

0
volS3 `

Q
2g2

0
d

“

R2 σ ^ du
‰

,

e
?

2ϕ “
2g0
k0

, ω2 “
k0

2g5
0
.

Here σ is the Up1q fiber direction of the 3-sphere

dΩ2
3 “ 1

4pdη2 ` sin2 η dφ2 ` σ2q , σ “ dψ ´ cos η dφ .

When Q “ 0, we have the usual, i.e. non-rotating, AdS3ˆS3

solution. It was obtained before using the TsT solution generating
technique:

The Spectrum of Strings on Warped AdS3ˆ S3, T. Azeyanagi,
D. M. Hofman, W. Song, and A. Strominger, JHEP 04 (2013)
078, arXiv:1207.5050
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D “ 3 D “ 6

Constant scalars
‚ AdS3 ‚ AdS3 ˆ S3

‚ Null warped AdS3, ‚ Rotating AdS3 ˆ S3

Single active
scalar

‚ Uncharged string with
waves

‚ Dyonic string with
waves

‚ Charged string with
waves ‚ Rotating dyonic string

Two active
scalars

‚ Uncharged string with
waves

‚ A dyonic string distri-
bution

Three active
scalars

‚ Uncharged string with
waves

‚ A dyonic string distri-
bution
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Timelike Killing Vector Case

The most general 3-dimensional spacetime metric that admits
V “ Bt as a Killing vector with the constant negative norm
´4f 2 ‰ 0 can be written as:

ds2 “ ´4f 2“

dt ` Mpx , yqdx ` Npx , yqdy
‰2

` e2σpx ,yqpdx2 ` dy2q .

It turns out that for the gauged model for which constants g0 and
k0 of the theory are non-vanishing, the only supersymmetric
solution is AdS3. Therefore, we consider the ungauged limit of our
model for which we must set g0 “ k0 “ 0.
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In this case, BPS conditions set scalars ξ1,2 and vector fields to
zero, and the model effectively reduces to a supergravity coupled
to a sigma model. The remaining scalar fields pρ, θq describe a
sigma model with a hyperbolic target space H2 “ SUp1, 1q{Up1q:

Lsigma model “ ´
1
2

?
´g

“

Bµρ Bµρ` sinh2 ρ Bµθ Bµθ
‰

.

It turns out that all supersymmetric solutions can be expressed in
terms of 2 holomorphic functions and their metric has the form:

ds2
spacetime “ ´dt2 ` eHe´3Kpρqpdρ2 ` sinh2 ρ dθ2q .

The function K pρq in the warp factor is the non-harmonic part of
the Kähler potential of the sigma model target space H2. Whereas,
H is a harmonic function determined by the 2 holomorphic
functions.
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Some Other Work on D=3 Supergravities

* Construction of new D=3 supergravities

Minimal Massive Supergravity, NSD, M. Geiller, J. Rosseel, H.
Samtleben, Phys.Rev.Lett. 129 (2022) 17, 17, arXiv:2206.00675,

(Also arXiv:2312.12387, arXiv:2410.07964.)
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* Supersymmetric solutions and their applications

‚ Warped AdS black holes

Supersymmetric Warped AdS in Extended Topologically
Massive Supergravity, NSD, A. Kaya, H. Samtleben, E. Sezgin,
Nucl.Phys.B 884 (2014) 106, arXiv:1311.4583.

(Also arXiv:1602.07263, arXiv:1803.06926.)

‚ RG flows

Renormalization group flows from D = 3, N=2 matter coupled
gauged supergravities, NSD, JHEP 11 (2002) 025,
hep-th/0209188.

(Also arXiv:2402.11586.)
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Thank you
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